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Cancer stem cells in progression of colorectal cancer
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ABSTRACT
Colorectal cancer is one of the most common cancers worldwide with high 

mortality. Distant metastasis and relapse are major causes of patient death. Cancer 
stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal 
cancer. CSCs are a subpopulation of cancer cells with unique properties of self-
renewal, infinite division and multi-directional differentiation potential. Colorectal 
CSCs are defined with a group of cell surface markers, such as CD44, CD133, 
CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and 
radioresistant and thus are critical in the metastasis and recurrence of colorectal 
cancer and disease-free survival. This review article updates the colorectal CSCs 
with a focus on their role in tumor initiation, progression, drug resistance and 
tumor relapse. 

INTRODUCTION

Advance in diagnosis and treatment of colorectal 
cancer (CRC) is not well translated into a favorable 
clinical outcome, and the disease-free survival of CRC 
remains poor [1]. A critical challenge in management 
of colorectal cancer is metastasis and relapse of the 
disease [2]. 

Cancer stem cells (CSCs) are a group of tumor 
cells with stem cell characteristics of self-renewal, 
infinite proliferation, and potential of multi-directional 
differentiation [3, 4]. The CSCs account for a very 
minor population of cancer, but are closely related 
to tumor metastasis, drug resistance and recurrence 
after primary treatment [5]. Traditional drugs and 
radiotherapy may make solid tumors relieved, but not 
kill CSCs. These CSCs may enter dormant status after 
treatment intervention and then become a source of 
cancer recurrence [6]. To date, CSCs are a great concern 
in treatment response and prognosis of various cancers, 
including colorectal cancer.

COLORECTAL CANCER STEM CELLS

CSCs were described first in acute myeloid 
leukemia (AML), but soon evidenced in solid tumors. The 
CSCs arise by gene mutations or deregulation of genetic 
programs in normal stem/progenitor cells [7]. In CRC, 
cells with epithelial characteristics, i.e., EpCAM high/CD44+ 
are isolated and these cells show stem cell-like properties, 
such as tumorigenesis, invasion and metastasis, indicating 
the epithelial source of CSCs [8]. In general, colorectal 
CSCs are mainly derived from differentiated intestinal 
cells or intestinal stem cells (ISCs) through gains of 
genetic alterations that are sufficient to induce malignant 
transformation [9].  

Colorectal CSCs share the major biological 
characteristics of stem cells from other solid tumors 
[6], including 1) self-renewal and multi-directional 
differentiation potential, 2) abnormal activation of 
proliferating signaling pathways, such as Wnt, Notch and 
Hedgehog, 3) high tumorigenicity, and 4) strong drug 
and/or radiation resistance [10]. The colorectal CSCs also 
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share many features of normal intestinal stem cells, such 
as infinite division, telomerase activity and organ-specific 
differentiation [11]. 

Cancer stem cells preferentially demonstrate 
persistent activation of multiple signal transduction 
pathways for stemness maintenance and self-renewal 
[12, 13]. The abnormal signaling pathways that have 
been well addressed in colorectal CSCs, including 
Wnt/β-catenin, Notch, TGF-β and Hedgehog (Figure 
1) [14–16]. The Wnt/β-catenin pathway is particularly 
important in stemness maintenance and drug resistance of 
colorectal CSCs [17]. Wnt/β-catenin signaling is activated 
through binding of Wnt ligands with Frizzled receptor 
complex, and β-catenin, a transcription co-regulator, is 
a key effector of this Wnt/β-catenin signaling [18–20]. 
Whether Wnt/β-catenin signaling functions depends on 
the level and cellular location of β-catenin, and GSK-
3β, a multifunctional kinase located in the regulatory 
APC/Axin/GSK-3β complex, is a negative regulator of 
β-catenin. This GSK-3β phosphorylates β-catenin and 
drives ubiquitination and proteasomal degradation through 
the β-TrCP/Skp pathway. Activation of the Wnt/receptor 
complex displaces GSK-3β from APC/Axin and thus 
stabilizes β-catenin. Accumulated β-catenin translocates 
into the nucleus, binds to LEF/TCF transcription factors, 
and drives target gene expression. In colorectal CSCs, the 
mutations that prevent formation of the APC/Axin/GSK-
3β destruction complex lead to accumulation and nuclear 
translocation of β-catenin, activating the target genes 
involved in stemness and differentiation [21]. 

Colorectal CSCs are identified via a group of surface 
markers. The main colorectal CSC markers documented 
are CD44, CD133, CD166, Lgr5, ALDH1 and EpCAM [8, 
22]. Other more universal CSC markers include Nanog, 
Sox2, Oct-4, CD51, CD24, CD26 and CD29 [8, 22–29]. 
In addition to being a surface marker, these molecules are 
biologically functional. Table 1 summarizes the colorectal 
CSC markers and their cellular function identified thus far. 
Introduced below are several important colorectal CSC 
markers.

CD44

CD44 is a hyaluronic acid receptor encoded by 
CD44 gene. It is a transmembrane glycoprotein that 
regulates cell-cell interaction, cell adhesion and migration 
[30]. CD44+ colon cancer cells display aggressive 
proliferation, high colony formation, insensitivity to 
apoptosis and resistance to chemo- and radiotherapies 
when compared to CD44 negative cells [22]. Knockdown 
of CD44 with short hairpin RNA (shRNA) leads to 
decrease of cell proliferation, migration and invasion, 
but to inhibition of apoptosis [31]. In the CD44-silenced 
HCT116 colon cancer cells, Bax was increased while Bcl-
2 and Bcl-xL were downregulated, leading to cleavages of 
caspase-3, caspase-9 and PARP [31]. Therefore, this CD44 

marker may be a potential therapeutic target of colorectal 
cancer. 

CD133

CD133 (also named AC133 or prominin-1) is a 
transmembrane glycoprotein expressed in hematopoietic 
cells, endothelial cells and neuroepithelial cells 
[32]. CD133+ colorectal cancer cells show stem cell 
characteristics, such as self-renewal and multi-directional 
differentiation potential [8]. CD133 is considered a 
specific marker of primary colorectal CSCs and the 
CD133 expression is associated with colorectal cancer 
cell differentiation and tumor size [33]. CD133+ colorectal 
cancer cells are also resistant to radio- and chemotherapy 
[34, 35]. However, controversial results were reported, 
where the CD133- cells may be more aggressive [36, 37].

CD166

CD166 is a adhesion molecule of leucocytes, 
participating in intercellular interaction and cell adhesion 
with extracellular matrix [38]. In colorectal cancer, CD166 
expression is correlated with the disease pathogenesis, 
being an early event in colon carcinogenesis [39]. 
However, CD166 expression was associated with a smaller 
size of the primary tumor in a meta-analysis [40]. As a 
CSC marker, therefore, CD166 needs to be considered 
together with other markers, such as CD44, CD24, CD29 
and CD26 [8]. 

Lgr5

Leucine-rich repeat-containing G protein-coupled 
receptor 5 (Lgr5) belongs to the family of G protein-
coupled receptors, which contains 17 leucine-rich repeats 
and a transmembrane domain of α-helix. Lgr-5 is a marker 
of normal intestinal stem cells [41] and also colorectal 
CSCs [42]. Lgr-5 plays an active role in pathogenesis 
of colorectal cancer [43], and the Lgr5 expression is 
closely related to tumorigenesis, 5-fluorouracil resistance 
and recurrence of colorectal cancer [43, 44]. In stage 
IV colorectal cancer, high Lgr5 expression is associated 
with poor prognosis [45]. Therefore, Lgr5 is considered 
an indicator of poor prognosis and a potential target of 
colorectal cancer. 

ALDH1  

Aldehyde dehydrogenase isoform 1 (ALDH1) 
catalyzes conversion of aldehyde to carboxylic acid. 
ALDH1 is often used as a surrogate marker of CSCs and 
non-CSCs in different cancers [46]. In colorectal cancer, 
ALDH1 serves as a CSC marker, and a high level of 
ALDH1 is associated with poor differentiation and high 
metastasis. ALDH1 is also a mediator of drug resistance 
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in colorectal CSCs [47], and in rectal cancer, preoperative 
radiochemotherapy induces expression of ALDH1 [48]. 
However, opposite observations were reported in which 
loss of ALDH1 expression was correlated with advanced 
stage of colorectal cancer [49]. Further study may be 
needed to define its role in development and progression 
of colorectal cancer.

EpCAM 

EpCAM is a 40 kDa single transmembrane protein 
encoded by tumor-associated calcium signal transducer-1 
(TACSTD-1) gene [50]. EpCAM is involved in regulation 
of intercellular adhesion-mediated signaling transduction, 
cell migration, proliferation and differentiation [50]. 
As an epithelial adhesion molecule, EpCAM plays a 
role in carcinogenesis of epithelial cells by activating 
expression of proto-oncogenes c-myc and cyclin A/E [51].  

In addition, EpCAM blocks antigen presentation of 
dendritic cells, driving escaping of the CD4+ T-cell 
dependent immune surveillance [52]. EpCAM can also 
potentiate the canonical WNT/β-catenin signaling cascade 
through intra-membrane proteolysis and subsequent 
nuclear translocation of its intracellular C-terminal 
domain, leading to cross-talk with the Notch, Hedgehog 
and TGFβ/BMP signaling cascades [53]. This constitutes 
the stem cell signaling network and regulates expression 
of other functional CSC markers [54–56]

COLORECTAL CSCS IN PROGRESSION 
OF COLORECTAL CANCER

CSC markers function in cell proliferation, 
metastasis and radio-/chemoresistance; and multiple cell 
proliferating cascades are activated in CSCs. Therefore, 
CSCs are critical to cancer progression and prognosis. 

Table 1: Surface markers of colorectal cancer stem cells
Name of Marker Function References

CD44
Cell surface glycoprotein involved in malignant progression, 

cell adhesion and migration, less sensitive to apoptosis 
signals and more resistance to therapies

[30, 31], [114]

CD24 Cell adhesion [27], [115]

CD133
Cell transmembrane glycoprotein involved in regulation 
of stemness, associated with cancer local recurrence and 

survival
[8], [32–35], [116]

CD166
Cell adhesion molecule involved in neuronal extension, 
embryonic hematopoiesis and embryonic angiogenesis, 

associated with the development of adenoma to carcinoma
[8], [40], [39]

Lgr-5
Expressed in intestinal stem cells and a downstream target 
of Wnt pathway, related to tumorigenesis, 5-fluorouracil 

resistance and recurrence of colorectal cancer
[41–42]

EpCAM
Cell adhesion molecule involved in Cadherin-Catenin and 

Wnt pathway, associated to lymph node metastasis, vascular 
invasion and distant metastasis

[50–52]

ALDH1
Associated with poor differentiation, metastasis and drug 
resistance, correlated with advanced-stage of colorectal 

cancer
[47], [49]

Oct 4 Regulation of stemness, negatively correlated with cancer 
death, lymphatic invasion and lymph node metastasis [117, 118]

SOX-2
Regulation of stemness, correlated with

recurrence and lower disease-free
survival

[118]

Nanog Transcriptional regulator, self-renewal [117], [119]

CD29
Cell adhesion molecule regulating differentiation and self-

renewal, involved in embryogenesis, hemostasis, tissue 
repair, immune response and cancer metastases

[29], [120–122]

CD26 Cell adhesion molecule involved in migration and invasion [28]

CD51 Associated with the EMT of colorectal cancer cells, sphere 
formation, cell motility and tumor formation [26]
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Colorectal CSCs and cancer metastasis

Distant metastasis of cancer cells is a complex 
process, including shedding and invading of primary 
cancer cells into circulatory system, migration and 
penetration of the vessel endothelial cell layer, tissue 
invasion, cell proliferation and angiogenesis [57]. 
Colorectal CSCs are “seed” cells for invasion and 
metastasis of colorectal cancer to distant organs, due to 1) 
infinite division, 2) plasticity to better adapt a new external 
microenvironment different from the primary tumor site, 
and 3) heterogeneity derived from asymmetric division, 
which produces a variety of heterogeneous tumor cells for 
the new microenvironmental selection. This also explains 
the heterogeneity of tumor cells in metastatic masses.

Migrating cancer stem cells and colorectal 
cancer metastasis

Not all CSCs in primary lesions are metastatic, 
and metastatic tumors are produced from a specific 
subpopulation of CSCs, named migrating cancer stem 
cells (MCSCs) [58, 59]. Brabletz’s and Oskarsson’s 
groups classified colorectal CSCs into two subgroups, 
i.e., stationary cancer stem cells (SCSCs) and MCSCs 
[60, 61]. The SCSCs exist in the epithelial tissues and are 
active even in benign precursor lesions. SCSCs mainly 
contribute to proliferation of the tumor mass in situ 

and remain in the differentiated area throughout tumor 
progression; they cannot disseminate [60]. The MCSCs 
lead to the rapidly invasive growth and dissemination 
of tumor cells [62]. MCSCs divide asymmetrically 
and generate differentiating cancer cells to start new 
proliferation and differentiation locally; the MCSCs then 
migrate a short distance and undergo a new asymmetric 
division to enlarge the primary tumor [63, 64]. SCSCs and 
other tumor cells can be transited into MCSCs in primary 
or metastatic tumor mass [65]. 

More interestingly, organ-specific metastases of 
cancer may be initiated by different MCSCs that have 
organ-unique characteristics. For example, CD110+ 
colorectal MCSCs are prone to colorectal-liver metastases 
(CRLM), but the colorectal MCSCs with a high level of 
CDCP1 are easier to colorectal-pulmonary metastases 
(CRPM) [11]. Nevertheless, specific surface markers of 
MCSCs are still under identification and further efforts 
are needed to accurately distinguish MCSCs and SCSCs. 
Furthermore, the CSCs may gradually evolve into MCSCs 
through epithelial mesenchymal transition (EMT) after 
formation of metastatic foci in distant organs [66]. 

EMT, CSCs and metastasis of colorectal cancer 
cells

Epithelial mesenchymal transition (EMT) is 
characterized by loss of epithelial morphology and 

Figure 1: Wnt/β-catenin, Notch and Hedgehog signaling pathways and cross-talks in CSC cells. Wnt/β-catenin signaling 
is transmitted through Frizzled (FZD) receptor and inhibits disheveled (Dvl) and then glycogen synthase kinase-3β (GSK-3β), thereby 
stabilizing β–catenin. Accumulated β–catenin translocates into the nucleus where it binds to TCF/LEF transcription factors and form a 
complex of TCF/LEF/β-catenin/Pygo/CBP/BCL-9, regulating expression of target genes. Wnt/β-catenin signaling cross-talks with Notch, 
MAPK and TGF-β signaling. In Notch signaling, binding of Notch ligands to the receptor results in two proteolytic cleavages to release 
NICD. The released NICD then translocates into the nucleus where it interacts with the transcription factors, forming the complex of Skip/
CSL/NICD/MAML/HAT to activate expression of Wnt, Ptc, BMP, Myc, and P21. Notch signaling cross-talks with the PI3K cascade. In 
Hedgehog signaling, Hh ligand secreted by Hedgehog secretory cells binds to PTCH1 (Ptc) and generates activated Gli/CBP that translocates 
into the nucleus and induce the expression of target genes, such as Cyclin D1, Cyclin E, Gli-1 and HIP. These main survival pathways and 
cross-talks among themselves and with other signaling pathways, i.e., TGF-β, MAPK and PI3K constitute a complex regulatory network 
for survival and proliferation of cancer stem cells.
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markers but gains of mesenchymal features and markers. 
EMT is a basic process of organ development during the 
embryonic development [67]. Cancer cells that undergo 
EMT acquire stemness [68]. Indeed, non-CSCs acquire 
CSC-like characteristics, capacity of seeding tumors and 
surface markers through EMT [69]. The colorectal cancer 
cells that undergo EMT exhibit properties of EMT and 
CSCs, such as high expression of Snail, Lgr5, CD133, 
CD44 and EpCAM [70–73].

Signaling pathways involved in EMT, e.g., TGF-β, 
Wnt and Notch, also play roles in CSCs [74–76]. For 
instance, TGF-β1 induces expression of EMT markers 
(such as Slug, Twist1, β-catenin and N-cadherin) and 
also upregulates CSC markers (e.g., Oct4, Sox2, Nanog 
and Klf4) in colorectal cancer. Snail and Nanog signaling 
promotes EMT and acquisition of stemness in colorectal 
cancer cells, such as self-renewal, tumorigenicity, 
metastasis and drug resistance [77, 78]. The colorectal 
cancer cells with a high level of Nanog show stem cell 
properties and high expression of Slug, a driver of EMT 
through the IGF/STAT3/NANOG/Slug cascade. 

CSCs and EMT processes interact at molecular 
levels [70]. CSC marker CD51 is co-localized with type 
I TGF-β receptor (TβRI) and type II TGF-β receptor 
(TβRII) and enhances the TGF-β dependent accumulation 
of p-Smad2/3 in the nucleus, which upregulates EMT-
related genes, such as PAI1, MMP9 and Snail, and 
promotes sphere formation, cell motility and tumor 
formation [26]. Therefore, it is speculated that metastasis 
of colorectal cancer is due to the EMT of colorectal CSCs, 
leading to loss of epithelial characteristics and acquisition 
of mesenchymal phenotypes. This process offers 
colorectal CSCs the ability of migration and invasion 
through degradation of extracellular matrix and infiltration 
into distant organs [79].

Tumor microenvironment, colorectal CSCs and 
cancer metastasis

Microenvironment of stem cells is a physiological 
environment to maintain their biological features; 
aberrations of microenvironment can induce normal stem 
cells into cancer stem cells. The CSC microenvironment is 
complex, in which there are cytokines and molecules that 
promote development of CSCs and there are also factors 
that prevent CSCs (Figure 2). The pro-CSC cytokines, 
i.e., hepatocyte growth factor (HGF), prostaglandin 
E2 (PGE2), bone morphogenetic protein (BMP) and 
interleukins produced by the tumor microenvironment, 
increase the CSC pool [58]. For example, MFG-E8 
secreted by tumor-associated macrophages maintains 
self-renewal of colorectal CSCs through the STAT3/Sonic 
Hedgehog signaling pathway; knockdown of MFG-E8 in 
the tumor-associated macrophages significantly inhibited 
tumorigenicity of CSCs in immunodeficient mice [80]. 
Oppositely, anti-CSC molecules decrease CSC number 

by forcing sequential differentiation into precursors [18]. 
Traditional chemotherapeutic agents are less effective 
in the presence of a pro-tumor microenvironment, but 
therapeutic agents that target CSC self-renewal or survival 
may be active. 

Distribution of cancer cells or cancer stem cells 
to specific organs is preferentially mediated by signals 
derived from the microenvironment, including oxygen 
gradient, chemokine receptors and cyclooxygenases 
[81–83]. Liver is a main target organ of colorectal 
cancer metastasis. In addition of the anatomical reason, 
chemokine receptor 4 (CXCR4) is an important factor 
involved in colorectal-liver metastases. CXCR4 is a 
specific receptor of stromal cell-derived factor 1 (SDF-1); 
the SDF-1 is highly expressed in the liver, which promotes 
the circulating CXCR4+ colorectal cancer cells to move 
into the liver [84]. TGF-β signaling pathway in hepatic 
stellate cells (HSCs) interacts with platelet-derived growth 
factor receptor alpha (PDGF-α), mediating proliferation 
and migration of CRC cells [85]. Thus HSCs with PDGF-α 
expression in the liver may form a microenvironment 
for colorectal-liver cancer metastasis. In addition, bone 
mesenchymal stem cells (MSCs) that migrate into the 
microenvironment of tumors in situ can differentiate into 
CRC-associated fibroblasts and promote cell invasion in 
the primary tumor site and metastasis to distant organs 
[86, 87]. Hence, CSCs have strong ability of migration 
and invasion, but the microenvironment provides specific 
biochemical factors for their metastasis to indicated 
tissues/organs with a specific microenvironment.

Colorectal CSCs and cancer resistance to 
treatment

Traditional treatments for CRC include surgery, 
radiotherapy and chemotherapy. Resistance of CRC 
to radiotherapy and chemotherapy is a major cause 
of treatment failure and cancer death. Radiation or 
chemotherapeutic drugs may effectively kill more 
differentiated no-CSCs in a mass, but have limited effects 
on CSCs. In fact, colorectal CSCs are widely resistant 
to radio- and chemotherapy, being a key factor of 
treatment resistance and cancer recurrence [88–91]. The 
discovery of colorectal CSCs highlights the intratumoral 
heterogeneity [92]. 

Exact mechanisms of colorectal CSC resistance 
to radiation and chemotherapeutic drugs remain to be 
fully understood, but several potential descriptions 
have been discussed [93]. First, CSCs may not enter the 
proliferating cycle, but be quiescent in the G0 phase and 
thus be resistant to radio- and chemotherapy [94]. Second, 
CSCs have enhanced ability of DNA damage repair and 
thus are resistant to DNA-damaging radiation and agents 
[95]. Third, CSCs express high levels of anti-apoptotic 
proteins, including Bcl-2 family members and apoptotic 
inhibitors, and thus are resistant to apoptosis [96]. Finally, 
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CSCs express high levels of ABC transporters and 
p-glycoproteins that pump chemotherapeutic drugs out 
of cells [97]. Recently, galectin-3 (Gal3) is identified as 
a novel protein mediating resistance to tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) through 
blockade of intracellular trafficking of death receptors 
[98]. The Gal3 expression is associated with increased 
sphere-forming ability (SFA), ALDH activity and 
tumorigenesis, and thus Gal3-positive colorectal CSCs are 
resistant to chemotherapy regimens, such as  FOLFOX 
(5-fluorouracil, oxaliplatin and leucovorin) and FOLFIRI 
(5-fluorouracil, irinotecan and leucovorin) [98]. 

PER3 is a protein that is negatively involved in 
colorectal CSC drug resistance. The PER3 expression in 
colorectal CSCs and drug resistant HCT-116 cells is low, 
and induction of PER3 leads to inhibition of self-renewal 
and sensitivity to 5-fluorouracil of colorectal CSCs [24]. 
This works through suppression of β-catenin expression. 
Aberrant activation of Wnt/β-catenin signaling promotes 
proliferation of colorectal CSCs by upregulation of c-Myc 
and cyclin D1 [99]. PER3 inhibits β-catenin expression 
and thus leads to inhibition of self-renewal and sensitivity 
of CSCs to 5-fluorouracil. In addition, interleukin-6 (IL-
6) stimulates stemness of colorectal CSCs and induces 

resistance to 5-fluorouracil through activation of Notch-3 
signaling pathway [100, 101]. Anti-IL-6 therapy can 
reduce the expression of Oct-4, Klf4, Bmi-1, Lgr5 and 
Notch-3 and increase cell sensitivity to chemotherapeutic 
drugs [102]. 

Radiotherapy is a major means of CRC treatment, 
which kills cancer cells through DNA damage by ionizing 
radiation and resultant reactive oxygen species (ROS). 
Colorectal CSCs demonstrate unique characteristics, such 
as upregulated anti-apoptotic proteins, enhanced DNA 
damage repair and dormancy/slow cell cycle kinetics, and 
thus are radioresistant [103, 104]. To date, the described 
mechanisms that cause radioresistance of colorectal 
CSCs include enhanced DNA damage repair, decreased 
cell cycle activity, high ROS inhibitors, resistance to 
apoptosis and activation of survival pathways, e.g., Notch, 
c-Jun N-terminal kinase and protein kinase C δ signaling 
pathways [89, 105–107]. Radiation resistance of colorectal 
CSCs is also related to adaptive response induced by 
ionizing radiation and microenvironmental changes, such 
as cytokines, nitric oxide and oxygen contents [94]. In 
addtion, radiation can induce non-stem cancer cells to 
obtain the phenotypes and function of CSCs, leading to 
resistance to radiotherapy [108]. The radiotherapy may 

Figure 2: Microenvironmental molecules of colorectal CSCs. Microenvironmental molecules of CSCs include two groups: 
Pro-cancer stem cells (Pro-CSC) molecules and anti-cancer stem cells (anti-CSC) molecules. The Pro-CSC molecules in the tumor 
microenvironment promote proliferation of CSC while anti-CSC factors promote CSC differentiation, lowering down CSC number. 
Chemoradiotherapy is scarcely effective in the presence of a Pro-CSC tumor microenvironment and therapeutic molecules that target CSC 
self-renewal or survival may kill CSCs. HGF, hepatocyte growth factor; PGE2, prostaglandin E2; OPN, osteopontin; SDF1, stromal-cell-
derived factor 1; BMP, bone morphogenetic protein; IL, interleukin; and TGF-β, transforming growth factor beta. 
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also induce cancer cells to undergo EMT, thus resulting 
in gain of stemness and radioresistance [109, 110]. 
Inhibition of NF-κB signaling blocks radiation-induced 
stemness, and inactivation of Notch signaling inhibits 
EMT via downregulation of Snail, enhancing sensitivity 
to radiotherapy [89, 111]. 

 Colorectal CSCs and cancer recurrence

Traditional radiotherapy and chemotherapy can 
reduce the number of tumor cells and tumor volume, 
achieving remission of CRC on gross pathology, but the 
recurrence is high if the entire tumor is not surgically 
removed. Colorectal CSCs may be a key factor that 
promotes CRC recurrence. A principle limitation of 
current chemo-/radiotherapy is that it only eliminates more 
differentiated cancer cells, but not CSCs [112]. The CSCs 
tolerate or escape the destruction of chemotherapeutic 
agent and radiotherapy and survive. Due to their strong 
tumorigenicity, a small portion of survived CSCs in 
the quiescent status could re-enter into cell cycle for 
continuous proliferation by stimulation of appropriate 
signals in the microenvironment, leading to tumor 

recurrence. For instance, CD133+ colorectal cancer cells 
with high expression of ACBG2 and OCT-4 contribute to 
colorectal cancer recurrence [113]. 

CONCLUSIONS

High mortality of CRC is ascribed to metastasis, 
treatment resistance and recurrence. Understanding of 
colorectal CSCs has opened a window to cure this cancer. 
Through dedication of cancer research scientists in the 
past decades, knowledge of colorectal CSCs has been 
enriched in terms of their origins, biomarkers, signaling 
transduction and biological functions in tumor metastasis, 
treatment resistance and relapse (Figure 3). This provides 
a novel platform for development of new treatment modes 
to overcome the shortage of traditional therapies and 
achieve the purpose of curing cancer. However, due to 
lack of highly specific markers and complex biological 
characteristics of colorectal CSCs, effectively targeted 
therapies remain to be explored. Continuing efforts of 
scientists are needed for accurate and effective treatment 
targeted to CSCs in CRC.

Figure 3: Origins and effects of colorectal CSCs on treatment. CSCs with sustained self-renewal, persistent proliferation and 
tumor initiation originate from mutated adult stem cells, mature cells and differentiated cells. CSCs play a role of pro-tumorigenesis due 
to the active Wnt, Hedgehog, TGF- beta and Notch signaling pathways. Traditional treatment cannot kill all CSCs, and the survival CSCs 
lead to the cancer relapse and form migrating cancer stem cells (MCSCs) which form metastatic neoplasms in the distant organs. Primary 
cancer that accepts therapies targeting CSCs can achieve complete remission.
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