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ABSTRACT
Our study addresses the issue of the clinical reliability of three candidate DPYD 

and one UGT single nucleotide polymorphisms in predicting 5-fluorouracil- and 
irinotecan-related adverse events. To this purpose, we took advantage of a large 
cohort of metastatic colorectal cancer patients treated with first-line 5-fluorouracil- 
and irinotecan-based chemotherapy regimens (i.e., FOLFIRI or FOLFOXIRI) plus 
bevacizumab in the randomized clinical trial TRIBE by GONO (clinicaltrials.gov: 
NCT00719797), in which adverse events were carefully and prospectively collected 
at each treatment cycle. Here we show that patients bearing DPYD c.1905+1G/A and 
c.2846A/T genotypes, together with UGT1A1*28 variant carriers, have an increased 
risk of experiencing clinically relevant toxicities, including hematological AEs and 
stomatitis. No carrier of the DPYD c.1679T>G minor allele was identified. Present 
results support the preemptive screening of mentioned DPYD and UGT1A1 variants 
to identify patients at risk of clinically relevant 5-fluoruracil- and irinotecan-related 
AEs, in order to improve treatments’ safety through a “genotype-guided” approach.
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INTRODUCTION

5-fluorouracil (5-FU) and irinotecan, together with 
oxaliplatin, are the milestones of the first-line treatment of 
metastatic colorectal cancer (mCRC) [1]. Around 35–50% 
of patients treated with combination regimens including 
5-FU and irinotecan experience unpredictable and 
sometimes clinically relevant treatment-related toxicities, 
mainly diarrhea, stomatitis and myelosuppression [2, 3]. 
Based on efficacy results of recent randomized trials  
[3–6], FOLFOXIRI (5-FU, oxaliplatin and irinotecan) plus 
bevacizumab is now recommended by all major guidelines 
as upfront regimen for selected mCRC patients [7, 8]. 
Although feasible, its use is associated with increased 
grade 3/4 neutropenia, diarrhea and stomatitis, so that 
tools able to predict the probability to develop potentially 
severe toxicities would be of major interest in order to 
better select candidate patients and to properly manage 
the treatment.

A substantial interindividual difference in the 
occurrence and/or seriousness of 5-FU- and irinotecan-
related toxicities may be partially due to clinical factors, 
including age, sex and performance status [9].Nonetheless, 
variability in individuals’ drug-metabolism may contribute 
as well [10, 11]. Indeed, deficiencies in two key enzymes 
involved in the first steps of the catabolic pathways of 
these two drugs, dihydropyrimidine dehydrogenase (DPD) 
and uridine diphosphate glucuronosyltransferases (UGT) 
1A1 [12, 13], lead to increased exposure to the cytotoxic 
agents and their active metabolites with higher risk of 
related adverse events (AEs). 

Most cases of DPD and UGT1A1 deficiency are 
attributable to germline polymorphisms in their encoding 
genes, leading to partially non-functional enzymes 
[10, 14].

Among more than 50 described allelic variants of 
DPYD [15], only a few of them have clinical relevance, 
resulting in the synthesis of non-functional or poorly 
functional enzymes, and thus exposing patients to an 
increased risk of 5-FU-related AEs [16]. To date, three 
DPYD variants, clearly affecting DPD activity, have 
been suggested with the highest level of evidence as 
predictors of severe toxicity from 5-FU: DPYD*2A 
(IVS14+1G>A, c.1905+1G>A or rs3918290), DPYD 
p.D949V (c.2846A>T or rs67376798) and DPYD*13 
(p.I560S, c.1679T>G or rs55886062) [17–20]. All three 
variants have very low estimated frequencies of minor 
alleles in the Caucasian population (0.1 to 1.0%) [16, 17].

A variable number of TA repeats in the promoter 
region of UGT1A1 affects its transcriptional efficiency 
[21, 22]. In particular, when compared with the wild-type 
six-repeat allele (UGT1A1*1), the seven-repeat variant 
(UGT1A1*28) is responsible for a dramatically reduced 
expression of UGT1A1, resulting in poor metabolism of 
the SN38 active metabolite of irinotecan and increased 
neutropenia and, to a lesser extent, diarrhea [13, 23].

The present study has been conceived with the purpose 
to evaluate the individual association of three DPYD single 
nucleotide polymorphisms (SNPs), whose relation with 
5-FU-related toxicity is more robust [17], and of UGT1A1*28 
variant with chemotherapy-related AEs experienced by 
patients treated with first-line FOLFOXIRI plus bevacizumab 
or FOLFIRI plus bevacizumab in the phase III TRIBE trial.

RESULTS

Four hundred and forty-three (87%) out of 508 
randomized patients were tested for DPYD and UGT1A1 
variants, and defined as “pharmacogenetic assessable 
population”. All patients received study treatments at 
planned dosages and, in the case of pre-specified AEs, 
treatment modifications were allowed according to study 
protocol. Main demographic and clinical characteristics 
at baseline did not differ between the pharmacogenetic 
assessable and the intention-to-treat population 
(Supplementary Table 1), as well as the incidence of 
treatment-related grade ≥ 3 AEs (Supplementary Table 2) 
[3]. In the pharmacogenetic assessable population, 225 
patients (51%) experienced any grade ≥3 AE (overall 
AEs), with 102 (23%) and 170 (38%) patients reporting 
grade ≥3 gastrointestinal and hematological AEs, 
respectively. Most frequent chemotherapy-related 
toxicities included neutropenia (37%), diarrhea (15%), 
febrile neutropenia (8%) and stomatitis (7%).

Among investigated clinical characteristics, age, 
sex and treatment arm had a significant impact on the 
occurrence of grade 3 or greater treatment-related overall 
AEs in univariate analysis. Associations between clinical 
variables and AEs are shown in Table 1. Female gender 
and, to a lesser extent, worst ECOG performance status 
(PS) and older age were associated with a higher risk 
of grade ≥ 3 overall gastrointestinal AEs. As expected, 
patients in the FOLFOXIRI plus bevacizumab arm 
experienced more frequently grade ≥ 3 neutropenia, 
overall gastrointestinal and hematological AEs.

Four hundred and thirty-nine (99%) out of 443 
patients were successfully genotyped for investigated 
DPYD variants (DPYD c.1905+1G>A; DPYD c.2846A>T; 
DPYD c.1679T>G) and 436 (98%) for UGT1A1*28 
variant (Table 2).

Among patients genotyped for DPYD variants, 
minor alleles for DPYD c.1905+1G>A and DPYD c.2846 
A>T were found only in heterozygosis in 5 (1.1%) and 
5 (1.1%) patients, respectively; no carriers of DPYD 
c.1679T>G minor allele were identified (Table 2). Allele 
frequencies for DPYD c.1905+1G>A, DPYD c.2846A>T 
and DPYD c.1679T>G were consistent with published 
data [16, 24] and were in Hardy-Weinberg equilibrium 
(χ2 test p value: 0.90). Out of 436 patients genotyped for 
UGT1A1, *1/*1, *1/*28 and *28/*28 genotypes were 
detected in 146 (33.5%), 251 (57.6%) and 39 (8.9%) 
cases, respectively (Table 2).
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Additionally, as detailed in Supplementary Figure 
1, seven patients showed the concomitant presence of 
DPYD and UGT1A1*28 minor variants. In particular, 
DPYD c.1905+1G/A variant was concomitantly found with 
UGT1A1 *1/*28 genotype in three patients, and DPYD 
c.2846A/T was associated with UGT1A1 *1/*28 and 
*28/*28 in three and one patient, respectively.

Eight (80%) out of 10 DPYD c.1905+1G/A (n = 5) 
or DPYD c.2846A/T (n = 5) carriers experienced at least 
one grade ≥ 3 AE during the treatment. Seven (70%) out 
of 10 patients bearing a DPYD variant allele had a grade 
≥ 3 AE within the first four cycles of induction therapy 
(Supplementary Table 3) as compared to 166 (39%) out 
of 429 patients bearing DPYD c.1905+1G/G and DPYD 
c.2846A/A genotypes (P = 0.055). Most frequent AEs 
were neutropenia (70%), stomatitis (40%), diarrhea and 
febrile neutropenia (20%), and thrombocytopenia (10%).

Significant associations were identified between both 
DPYD c.1905+1G/A (OR, 9.69 [95% CI, 1.56–60.39]; P = 
0.02) and DPYD c.2846A/T (OR, 9.69 [95% CI, 1.56–60.39]; 
P = 0.02) variants and grade ≥3 stomatitis (Supplementary 
Table 4) and between DPYD c.1905+1G/A and grade ≥ 3 
thrombocytopenia (OR, 21.50 [95% CI, 2.02–228.16]; 
P = 0.01). In the multivariate model, including age, sex, 
treatment arm and ECOG PS, both DPYD c.1905+1G/A 

(OR, 17.32 [95% CI, 2.50–120.12]; P = 0.004) and 
DPYD c.2846A/T (OR, 14.11 [95% CI, 2.01–99.29]; P 
= 0.008) variants retained their association with grade ≥ 3 
stomatitis; the association between DPYD c.1905+1G/A and 
thrombocytopenia was also confirmed (OR, 62.81 [95% 
CI, 4.41–895.12]; P = 0.002) (Table 3). Furthermore, at the 
multivariate analysis, DPYD c.1905+1G/A was significantly 
associated with a higher risk of anemia (OR, 41.26 [95% CI, 
1.74–903.61]; P = 0.04) (Table 3).

Patients bearing DPYD c.1905+1G/A or DPYD 
c.2846A/T variants (n = 10) had an increased risk of 
experiencing grade ≥ 3 overall hematological AEs (OR, 
3.88 [95% CI, 0.99–15.23]; P = 0.05), neutropenia (OR, 
4.12 [95% CI, 1.05–16.17]; P = 0.04), thrombocytopenia 
(OR, 9.42 [95% CI, 1.00–89.06]; P = 0.05) and stomatitis 
(OR, 10.33 [95% CI, 2.74–38.91]; P < 0.001), as 
compared to patients bearing DPYD c.1905+1G/G and 
DPYD c.2846A/A genotypes (n = 429) (Supplementary 
Table 4). These associations were confirmed in the 
multivariate analysis, where increased risk of developing 
overall gastrointestinal AEs was also reported (OR, 4.59 
[95% CI, 1.25–16.84]; P = 0.02) (Table 3).

Among patients carrying UGT1A1*1/*28 or 
UGT1A1*28/*28 genotype, the incidence of grade ≥3 overall 
AEs was 136/251 (54%) and 24/39 (62%), respectively. 

Table 1: Association of relevant clinical variables with grade ≥ 3 AEs

Grade ≥ 3 AEs
Agea Sex (Male/Female)b Treatment armc ECOG PSd

OR 
(95% CI) P value OR

(95% CI) P value OR 
(95% CI) P value OR 

(95% CI) P value

Nausea 1.08 
(0.74–1.58) 0.52 3.93

(1.21–12.74) 0.02 0.96
(0.33–2.78) 0.94 5.23

(1.67–16.35) 0.004

Vomit 1.14
(0.81–1.59) 0.45 3.16

(1.16–8.58) 0.02 1.21 
(0.47–3.12) 0.69 3.58

(1.22–10.56) 0.02

Diarrhea 1.32
(1.09–1.60) 0.005 1.31

(0.77–2.21) 0.32 1.58
(0.93–2.69) 0.09 1.44

(0.66–3.15) 0.36

Stomatitis 1.14
(0.88–1.49) 0.32 3.27

(1.49–7.17) 0.003 2.01
(0.92–4.40) 0.08 1.35

(0.45–4.06) 0.59

Neutropenia 1.11
(0.97–1.28) 0.14 1.58

(1.07–2.35) 0.02 3.44
(2.28–5.19) < 0.001 0.58

(0.29–1.15) 0.12

Febrile neutropenia 1.01
(0.79–1.29) 0.92 1.47

(0.73–2.93) 0.28 1.15
(0.58–2.31) 0.69 1.12

(0.38–3.32) 0.84

Thrombocytopenia 1.24
(0.69–2.22) 0.47 0.75

(0.14–4.14) 0.74 12.82
(0.71–230.54) 0.08 1.73

(0.20–15.17) 0.62

Anemia 3.09
(1.16–8.18) 0.02 3.06

(0.55–16.88) 0.20 12.82
(0.71–230.54) 0.08 0.65

(0.04–11.97) 0.77

Overall gastrointestinal 
AEse

1.27
(1.08–1.49) 0.004 2.00

(1.28–3.13) 0.002 1.59
(1.01–2.49) 0.04 1.92

(1.00–3.68) 0.05

Overall hematological 
AEsf

1.11
(0.97–1.27) 0.14 1.72

(1.16–2.54) 0.007 3.42
(2.27–5.13) < 0.001 0.60

(0.31–1.18) 0.14

Overall AEsg 1.19
(1.04–1.36) 0.01 1.89

(1.28–2.78) 0.001 2.80
(1.90–4.11) < 0.001 0.97

(0.52–1.78) 0.91

Abbreviations: OR, odds ratio; ECOG PS, Eastern Cooperative Oncology Group Performance Status.
areported ORs refer to a quintile increase of the predictor variable; breported ORs refer to female vs male; c: reported ORs refer to arm receiving FOLFOXIRI 
plus bevacizumab vs arm receiving FOLFIRI plus bevacizumab; dreported ORs refer to ECOG PS 1-2 vs 0; eincluding nausea, vomit, diarrhea, stomatitis; 
fincluding neutropenia, febrile neutropenia, thrombocytopenia, anemia; gincluding neutropenia, febrile neutropenia, thrombocytopenia, anemia, nausea, 
vomit, diarrhea, stomatitis. P values in bold indicate statistical significance.
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Patients bearing UGT1A1*28/*28 genotype 
experienced more frequently a grade ≥ 3 AE within the 
first four cycles of induction therapy (22 out of 39, 56.4%) 
as compared to those carrying UGT1A1*1/*28 (108 out of 
251, 43.0%) and UGT1A1*1/*1 genotypes (43 out of 146, 
29.5%) (P = 0.002).

As shown in Supplementary Table 5, a significant 
association was found between UGT1A1 variants 
and neutropenia (P = 0.001) with higher risk for 
UGT1A1*28/*28 (OR, 3.75 [95% CI, 1.80–7.80]) 
than UGT1A1*1/*28 variants (OR, 1.66 [95% CI, 
1.07–2.59]), both compared with the UGT1A1*1/*1 
group. Consistent results were reported in the 
multivariable model (P = 0.001). UGT1A1 variants 
were also associated with the overall risk of developing 
hematological and overall AEs, both in the uni- and 
multivariable models.

Patients carriers of DPYD c.1905+1G/A or DPYD 
c.2846A/T and/or UGT1A1*28/*28 genotypes (n = 
48) had a higher risk of experiencing grade ≥ 3 overall 
AEs (OR, 1.89 [95% CI, 1.01–3.53]; P = 0.05), overall 
hematological AEs (OR, 2.79 [95% CI, 1.51–5.15];  
P = 0.001), stomatitis (OR, 3.32 [95% CI, 1.39–7.94]; 
P = 0.007), neutropenia (OR, 2.98 [95% CI, 1.61–5.52]; 
P< 0.001) and febrile neutropenia (OR, 2.78 [95% CI, 
1.18–6.54]; P = 0.02), compared to patients bearing DPYD 
c.1905+1G/G and DPYD c.2846A/A and UGT1A1*1/- 
genotypes (n = 387) (Supplementary Table 6). These 
associations were confirmed in the multivariable models 
(Supplementary Table 6).

The sensitivity and specificity of the combined 
evaluation of DPYD and UGT1A1 genotypes as 
predictor of overall grade ≥ 3 AEs were 14% and 92%, 
respectively.

Table 2: DPYD and UGT1A1 genotypes frequency in the pharmacogenetic assessable population.

Variants genotyped

Treatment arm
Pharmacogenetic

assessable population
No. (%)
n = 443

Arm A
FOLFIRI+bev

No. (%)
n = 217

Arm B
FOLFOXIRI+bev

No. (%)
n = 226

DPYD c.1905+1G>A

G/G 213 (99.1%) 222 (98.7%) 435 (98.9%)
G/A 2 (0.9%) 3 (1.3%) 5 (1.1%)
A/A 0 0 0
NE 2 1 3
DPYD c.2846A>T

A/A 213 (99.1%) 222 (98.7%) 435 (98.9%)
A/T 2 (0.9%) 3 (1.3%) 5 (1.1%)
T/T 0 0 0
NE 2 1 3
DPYD c.1679T>G

T/T 215 (100%) 225 (100%) 440 (100%)
T/G 0 0 0
G/G 0 0 0
NE 2 1 3
UGT1A1*28
*1/*1 74 (34.7%) 72 (32.4%) 146 (33.5%)
*1/*28 119 (55.9%) 132 (59.5%) 251 (57.6%)
*28/*28 20 (9.4%) 19 (8.6%) 39 (8.9%)
NE 4 3 7

FOLFIRI: fluorouracil, leucovorin, and irinotecan; FOLFOXIRI: fluorouracil, leucovorin, oxaliplatin and irinotecan; bev: 
bevacizumab; NE: not evaluable.
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DISCUSSION

In the last few years, a growing amount of mainly 
retrospective data suggested the role of DPYD and UGT1A1 
variants as potential risk factors for toxicities in patients 
treated with fluoropyrimidines (i.e., 5-FU and capecitabine) 
and irinotecan, respectively [19, 23]. Nevertheless, since 
the current guidelines do not provide a firm consensus 
on the clinical validity of pretreatment DPYD and 
UGT1A1 screening [7, 8], the implementation of these 
pharmacogenetic tests in the daily clinical practice remains a 
highly debated issue, especially regarding DPYD genotyping 
[25, 26]. The lack of evidence from prospective studies, 
together with some inconsistent results from retrospective 
series, in particular about DPYD, slowed a widespread 
consensus on these tests and the definition of conclusive 
recommendations on the implementation in the clinical 
practice of a “genotype-guided” dosing of cytotoxic agents.

Recently, this controversy acquired growing remark 
in the precision medicine scenario, and in the perspective 
of individualizing therapies and improving patients’ safety 
and clinical benefit. Indeed, the preventive identification 
of patients deemed at risk of developing clinically relevant 
5-FU- and irinotecan-related AEs, able to heavily affect 
treatment feasibility, may represent a useful and rationale 
tool to drive the therapeutic decision-making process, as 
well as treatment management.

In the present work, we genotyped three DPYD 
and one UGT1A1 variants in a large cohort of mCRC 
patients enrolled in the phase III TRIBE trial. With regard 
to DPYD, we focused on three SNPs whose relation 

with 5-FU-related toxicities is more robust [17], as 
recommended by a position paper shared by the Italian 
societies of Medical Oncology and Pharmacology (AIOM-
SIF Working Group) [27].

In our opinion, the main strength point of this 
analysis lies in the availability of a large cohort of patients 
enrolled in a clinical trial with homogeneous baseline 
characteristics, including type of cancer, stage of disease, 
and line of treatment, and with a careful and uniform 
assessment of treatment-related AEs, performed at every 
cycle of therapy and graded according to NCI-CTCAE, 
version 3.0.

Through the analysis of 443 patients from TRIBE 
trial, we identified statistically significant associations 
between DPYD c.1905+1G/A and DPYD c.2846A/T 
genotypes and grade ≥ 3 hematological AEs and 
stomatitis, and between UGT1A1*28 variant and grade ≥ 
3 hematological AEs, in particular neutropenia, regardless 
of the treatment arm. We were unable to assess any 
relation between DPYD c.1679T>G and 5-FU-related 
AEs, because none of our patients harbored a G allele, 
consistently with its low minor allele frequency (around 
0.1% among Caucasians) [16]. In addition, we showed 
that taking into account both DPYD and UGT1A1 
genotypes allows predicting with high specificity grade 
≥ 3 hematological AEs, including febrile neutropenia, and 
stomatitis. Furthermore, in DPYD and UGT1A1 variant 
allele carriers we observed that grade ≥ 3 AEs occurred 
more frequently early during the treatment, within the first 
four cycles of therapy. These events were often clinically 
relevant, requiring dose modifications and/or delays in 

Table 3: Multivariate analysis adjusted for age, sex, treatment arm and ECOG PS, testing 
association hypotheses of DPYD c.1905+1G>A and DPYD c.2846A>T genotypes with AEs

Grade ≥ 3 AEs DPYD c.1905+1G>Ad
DPYD c.2846A>Te DPYD c.1905+1G>A and DPYD 

c.2846A>Tf

OR [95% CI] P value OR [95% CI] P value OR [95% CI] P value

Nausea 5.05 [0.20–128.63] 0.33 3.93 [0.15–104.06] 0.41 2.35 [0.12–46.78] 0.58

Vomit 3.51 [0.14–88.02] 0.44 2.60 [0.10–68.13] 0.57 1.58 [0.08–31.42] 0.77

Diarrhea 0.69 [0.03–16.63] 0.82 4.03 [0.65–25.12] 0.14 1.91 [0.42–8.79] 0.40

Stomatitis 17.32 [2.50–120.12] 0.004 14.11 [2.01–99.29] 0.008 16.95 [3.97–72.34] < 0.001

Neutropenia 6.23 [0.75–51.52] 0.09 2.42 [0.37–15.95] 0.36 4.14 [1.01–16.95] 0.05

Febrile neutropenia 4.18 [0.53–33.22] 0.18 4.09 [0.52–32.33] 0.18 3.83 [0.83–17.72] 0.09

Thrombocytopenia 62.81 [4.41–895.12] 0.002 5.23 [0.20–138.80] 0.32 16.17 [1.93–135.85] 0.01

Anemia 41.26 [1.74–903.61] 0.04 4.96 [0.13–193.65] 0.39 4.81 [0.17–137.96] 0.36

Overall 3.67 [0.60–22.68] 0.16 5.52 [0.87–34.89] 0.07 4.59 [1.25–16.84] 0.02

gastrointestinal AEsa

Overall 5.96 [0.72–49.43] 0.10 2.31 [0.35–15.29] 0.39 3.98 [0.97–16.33] 0.05

hematological AEsb

Overall AEsc 3.65 [0.46–28.94] 0.22 3.12 [0.38–25.49] 0.29 3.89 [0.85–17.90] 0.08

AEs, adverse events; OR, odds ratio. a: including nausea, vomit, diarrhea, stomatitis; b: including neutropenia, febrile neutropenia, thrombocytopenia, 
anemia.; c: including neutropenia, febrile neutropenia, thrombocytopenia, anemia, nausea, vomit, diarrhea, stomatitis; d: reported ORs refer to DPYD 
c.1905+1G/A vs DPYD c.1905+1G/G carriers; e: reported ORs refer to DPYD c.2846A/T vs DPYD c.2846A/A carriers; f: reported ORs refer to DPYD 
c.1905+1G/A or DPYD c.2846A/T vs DPYD c.1905+1G/G and DPYD c.2846A/A carriers. P values in bold indicate statistical significance.
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therapy administration as well as preventing treatment 
continuation in more serious cases.

In order to prevent the occurrence of treatment-
related AEs in patients known to be carriers of DPYD 
or UGT1A1*28 variants, some reports recommended to 
adopt a reduced starting dose of 5-FU and irinotecan, 
respectively, to be then increased based on reported 
toxicities, while not affecting treatment efficacy [17, 
28–32]. The proposed practical approach may be of 
crucial interest for an optimal and proper management 
of fluoropyrimidine- and irinotecan-based regimens 
(i.e., FOLFOXIRI, FOLFIRI, XELIRI), supposing that 
the personalization of treatment starting doses according 
to DPYD and UGT1A1 genotypes might contribute to 
decrease the incidence of some preventable AEs. The lack 
of planned DPYD and UGT1A1 genotype-guided dose 
modifications in the TRIBE study clearly prevents us from 
deriving definitive conclusions about the effectiveness 
of the dose titration approach in reducing the incidence 
of AEs and improving treatment adherence, while not 
compromising its efficacy.

A potential contribution to fluoropyrimidines 
toxicity has been recently hypothesized for other DPYD 
variants, including c.2194G>A [20, 22]. However, the 
association of these variants with toxicity has not been 
consistently replicated in different series [33–35], so 
that prospective and well-powered studies able to further 
validate this association are urgently needed.

In conclusion, based on present results and 
consistent with literature data, our work supports the 
upfront test of DPYD c.1905+1G>A and c.2846A>T and 
UGT1A1*28 variants for the assessment of the risk of AEs 
in all mCRC patients candidate to first-line 5-FU- and 
irinotecan-containing regimens.

MATERIALS AND METHODS

Patients

TRIBE (TRIplet plus BEvacizumab) was a 
multicenter, randomized, phase III trial conducted by the 
Italian Cooperative GONO (Gruppo Oncologico Nord Ovest) 
group (NCT00719797). Five-hundred and eight unresectable 
mCRC patients, untreated for the metastatic disease were 
randomized to receive either FOLFOXIRI plus bevacizumab 
or FOLFIRI plus bevacizumab as initial treatment. Patients 
received up to 12 cycles of induction treatment according 
to randomization, followed by maintenance therapy with 
5-FU and bevacizumab until evidence of disease progression 
in both arms. Full details of the TRIBE study have been 
previously published [3]. The emergence of AEs was 
biweekly monitored and graded according to National Cancer 
Institute-Common Toxicity Criteria for Adverse Events (NCI-
CTCAE), version 3.0 [36].

Patients enrolled in the TRIBE trial, included in the 
safety population (i.e., who had received at least one cycle 

of the assigned study treatment), providing their written 
informed consent to blood sampling and pharmacogenetic 
analyses were evaluated. The protocol was approved by 
local Ethics Committees at each participating site.

Genotyping

One ml of whole blood were taken from all patients, 
stored in EDTA, and genomic DNA was extracted from 
200 μl by the Biorobot EZ1 (Qiagen®, Valencia, CA, 
USA). The DPYD and UGT1A1 variants were analysed 
by pyrosequencing method. DNA was amplified using 
the “Fluoropyrimidines response” and “Irinotecan 
response” kit (Diatech Pharmacogenomics®, Jesi, Italy) 
on a RotorGene TM6000 (Corbett Research®, Sydney, 
Australia), according to the manufacturer's instructions. 
The reaction products were run on a PyroMark Q69 ID 
system, and the results were analysed on the PyroMark 
Q24 1.0.9 software (Biotage®, Uppsala, Sweden).

Statistical analysis

The study endpoints were the development of grade 
≥ 3 gastrointestinal AEs, including nausea, vomit, diarrhea 
and stomatitis, and/or hematological AEs, including 
neutropenia, febrile neutropenia, thrombocytopenia and 
anemia. Logistic regression modeling was used to test the 
hypothesis of associations between the genotypes of each 
DPYD and UGT1A1 polymorphism and the end points. 
Firth’s penalized maximum likelihood estimation was 
used to avoid modeling separability issues. Associations 
of tested polymorphisms were assessed using the Wald 
chi-square test. Using a sample size of 440, associations 
with an OR equal to 5 for an overall grade 3 or greater 
toxicity-related allele of 3% could be detected with an 
α = 0.05 and a power of 0.80. To account for potential 
confounding factors, multivariate models were used. A 
set of 4 relevant clinical variables (sex, age, treatment 
arm and ECOG PS) was used (Table 1). The frequency 
of each DPYD variant was compared to the published 
frequencies in dbSNP [15] and tested for departure from 
Hardy-Weinberg equilibrium. Sensitivity and specificity 
were calculated for the combined assessment of DPYD 
and UGT1A1 genotypes.

All statistical tests were two-sided and P values of 
0.05 or less were considered statistically significant.
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