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ABSTRACT
Hypoxia preconditioning is an effective strategy of intrinsic cell protection. An 

acute repetitive hypoxic mice model was developed. High-throughput microarray 
analysis was performed to explore the integrative alterations of gene expression 
in repetitive hypoxic mice. Data obtained was analyzed via multiple bioinformatics 
approaches to identify the hub genes, pathways and biological processes related 
to hypoxia preconditioning. The current study, for the first time, provides insights 
into the gene expression profiles in repetitive hypoxic mice. It was found that a 
total of 1175 genes expressed differentially between the hypoxic mice and normal 
mice. Overall, 113 significantly up-regulated and 138 significantly down-regulated 
functions were identified from the differentially expressed genes in repetitive hypoxic 
brains. Among them, at least fourteen of these genes were very associated with 
hypoxia preconditioning. The change trends of these genes were validated by reverse-
transcription polymerase chain reaction and were found to be consistent with the 
microarray data. Combined the results of pathway and gene co-expression networks, 
we defined Plcb1, Cacna2d1, Atp2b4, Grin2a, Grin2b and Glra1 as the main hub 
genes tightly related with hypoxia preconditioning. The differential functions mainly 
included the mitogen-activated protein kinase pathway and ion or neurotransmitter 
transport. The multiple reactions in cell could be initiated by activating MAPK pathway 
to prevent hypoxia damage. Plcb1 was an important and hub gene and node in the 
hypoxia preconditioning signal networks. The findings in the hub genes and integrated 
gene networks provide very useful information for further exploring the molecular 
mechanisms of hypoxia preconditioning.

INTRODUCTION

The maintenance of oxygen homeostasis in cells, 
tissues, organs and organisms is a complex process of 
integration and regulation, which is primarily dominated 
via changes in gene expression. Oxygen deprivation 
(hypoxia) is a great challenge in some conditions such as 
high plateau, deep sea, and aviation [1]. Hypoxia might 
be associated with many pathophysiological processes 

and diseases such as stroke, asthma, emphysema, angina 
pectoris, myocardial infarction and tumor [2]. Oxygen 
is indispensable for all aerobic life as the final electron 
acceptor in the cellular respiration chains [3]. Successful 
adaptation to hypoxia involves various changes in gene 
programs including cellular differentiation, metabolism, 
growth, aging and death. Since complicated genes and 
pathways are involved in the regulation of oxygen 
homeostasis, the molecular mechanisms that underpin 
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these networks are not yet fully understood. Hypoxia 
preconditioning (HPC) is an effective strategy of intrinsic 
cell protection that developed during biological evolution 
[4]. HPC is triggered by the repetitive exposure of 
organisms, organs, tissues and cells to hypoxia, resulting 
in an increased acclimatization to subsequent exposure 
to severe hypoxia. The results indicated that the survival 
time of HPC mice was significantly longer than that of 
the normal mice, suggesting that HPC had a markedly 
protective effect against hypoxia damage [5–8]. Although 
the protective effect clearly exists and some investigations 
have been performed, the protective mechanisms of HPC 
still remain unclear, especially at molecular level of the 
genes involved.

High-throughput microarray analysis is an effective 
approach to profile gene expression and has been 
successfully applied to investigate crucial genes related to 
HPC [9, 10]. Because of the high sensitivity to hypoxia, 
the brain tissue has been used to identify the important 
genes related to HPC by microarray gene-chip and 
gene network analyses. The gene network analysis is a 
powerful tool and has been used to investigate the detailed 
interactions among genes [11, 12]. In the current study, the 
changes in gene expression levels were observed between 
the experimental group and control group by multiple 
sample analysis. The multiple bioinformatics analysis 
approaches have been used to construct the gene networks 
of HPC, and the hub genes in these networks have been 
identified. The expression analyses of entire genome 
combined with gene network analyses are expected to 
reveal the protective mechanisms for HPC. Here, the genes 
in the brain tissue of HPC group and control group were 
analyzed using the Affymetrix Gene 1.0 Array [11]. In 
addition, Real-time reverse-transcription polymerase chain 
reaction (RT-PCR) was used to validate the differential 
expression of genes identified by microarray analysis. 
The microarray analysis was used to detect the differential 
gene expression of mouse brain in acute repetitive hypoxia 
conditions. Multiple bioinformatics methods were used to 
reveal the molecular mechanism associated with HPC. 

RESULTS

Mouse model of HPC

The mice exposed to hypoxic condition for six times 
(H6) were adopted as the HPC animal model. The mice 
of repeated six times sham-HPC were employed as the 
control group. The tolerance duration of the HPC mice 
were recorded when the asthmoid respiration of hypoxic 
mice just appeared. It was noted that the tolerance duration 
of mice to hypoxia was significantly prolonged as the 
number of exposure increased. The mean tolerance time 
of H6 mice was up to 6.8 times longer than that of the 
mice on their first exposure to hypoxia even though the 
tolerance times had some animal differences [7, 8]. A 

linear relationship between the tolerance times and the 
number of times exposed was observed in the HPC mice 
(y = 16.471x + 0.888, R2 = 0.9882), suggesting a positive 
correlation between the exposure times and the tolerance 
duration to some extent. But there was some individual 
variance in the HPC mice at the different hypoxic 
exposure time owing the biological differences.

Screening and analysis of differential gene

The gene expression profiles in the H6 mice and 
the sham-HPC mice were examined using an Affymetrix 
microarray. The random variance model (RVM) t-test was 
applied to screen the differentially expressed genes from 
these two groups, which was suitable for cases of small 
samples [13, 14]. Based on the significant analysis and 
the false discovery rate (FDR), the differentially expressed 
genes were selected at a cutoff threshold of p < 0.05 and 
FDR < 0.05. Compared with the sham-HPC mice, a total 
of 1175 genes of H6 mice showed significant difference 
in their expression levels. Among these genes, 460 genes 
were up-regulated in the H6 mice with a maximum fold 
change of 47.26 times. 715 genes were down-regulated 
genes in the H6 mice with the fold change of 20 times. A 
volcano plot of all the genes in the microarray is shown in 
Figure 1. The top 20 differentially expressed genes in the 
H6 mice are listed in Table 1. 

GO analysis based on differential genes

The Fisher’s exact test and χ2 test were used to 
classify the GO categories, and the FDR was used to 
calculate and adjust the p-value [15]. A low FDR indicates 
that the error is small in judging the p-value. The p-value 
was computed for the GO categories for the differential 
genes. Enrichment was used to measure the significance 
of assigned GO functions. The analysis revealed 113 up-
regulated and 138 down-regulated functions that were 
significantly enriched among the differentially expressed 
genes (see Supplementary Table 1 and Supplementary 
Table 2). The significantly enriched functions of up-
regulated genes included ion transport, neurotransmitter 
transport, synaptic transmission, signal transduction, and 
cranial nerve development. The significantly enriched 
functions of down-regulated genes included calcium 
and potassium ion transport, nervous system and brain 
development, and neuron migration and neuronal 
differentiation. 

All the significantly enriched GO terms were 
assembled into a GO map (see Figure 2) to help to 
visualize the interactive networks. The GO map can 
systemically construct the interaction networks of 
significant GO terms [13]. The nodes in the networks 
represent the functions of differential genes, and the 
lines represent the relationship between the functions. 
Twenty-one sub-networks were revealed including 
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signal transduction, synaptic transmission, brain 
development, neuron differentiation, axonogenesis 
and cell proliferation. The interaction networks in the 
GO map suggested that HPC may trigger a series of 
signal transduction events involving GTPase-mediated 
signal transduction and G-protein signaling pathways. 
The cell proliferation, intermediating filament, and 
neurotransmitter transport functions were up-regulated 
in the H6 mice brains, while the vasodilatation, calcium 
ion transport, and blood pressure functions were down-
regulated in the H6 brains. 

Pathway analysis based on the significant 
differential genes

The main pathways linked to the significant 
differential genes were assigned based on the pathway 
maps of KEGG, Biocarta and Reactome. Nineteen 
of the up-regulated signaling pathways are listed in 
Supplementary Table 3, including neuro-active ligand-
receptor interaction, mitogen-activated protein kinase 
(MAPK) signaling pathway, calcium signaling pathway, 
inositol phosphate and ether lipid metabolic pathways 

[15]. The relationships among these pathways were 
built using the PathNet, summarized in Figure 3. The 
Path-Network was the interactive network of significant 
pathways from the differential expression genes, which 
was constructed according to the interaction pathways 
of KEGG database. In these pathway networks, MAPK 
signaling pathway had the greatest degree; it existed at 
the central position of Path-Network by mediating the 
cascade reactions. MAPK is the serine-threonine kinase 
that regulates multiple cellular functions such as mitogens, 
inflammatory cytokines, gene expression and cell survival 
or apoptosis, etc. MAPK is also a key component for 
extra-cellular stimuli. During HPC process, the multiple 
molecular reactions in cells could be initiated by activating 
MAPK pathway to prevent hypoxia damage [16].

Signal network analysis based on differential 
genes

Signal networks of gene interactions were 
constructed to reveal the relationships among the 
significant differential genes, and to map the upstream 
and downstream of target genes (see Figure 4). When 

Figure 1: A volcano plot of the genes in microarray. The Log2 fold changes and their corresponding –log10 p-value of all genes were 
taken for construction of the volcano plot in the microarray. The genes with p < 0.05 are depicted in blue dots. All other genes that were not 
found to be significant altered are in black dots in this array.
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there was evidence that two genes interacted with each 
other, an interaction edge was assigned between the two 
genes. To investigate the entire signal networks, the most 
important nodes were identified computationally. The 
connectivity was defined to measure how closely a target 
gene correlated with other genes in this network. The 
degree was estimated according to the number of genes 

correlated with the target gene. The characteristics of 
these genes were described by the betweenness centrality 
of nodes, which reflected the importance of a node in a 
graph relative to other nodes. It was noted that Plcb1, 
encoded phospholipase that had crucial roles in lipid 
metabolism, was significantly down-regulated in the 
H6 mice. The interaction networks of differential genes 

Figure 2: The function networks of the differentially expressed genes by GO terms. One node represents one GO term and 
function of one differential gene. The red nodes represent the up-regulated genes, the blue nodes represent the down-regulated gene and 
the yellow nodes mean both up and down regulated gene. The lines represent the relationship of the functions, with arrow from the lower 
ranking Go term pointing towards to the higher one.
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Table 1: The top 20 differentially expressed genes in HPC mice

Gene 
Symbol p-value FDR

value
Geom mean of intensities 

in experimental group

Geom mean of 
intensities in control 

group

Fold 
change Trend

Glra1 8.157E-12 1.813E-11 2650.31 56.08 47.26 up
Foxf1a 3.199E-11 3.555E-11 551.13 70.9 7.77 up
Nefh 6.781E-11 5.023E-11 1345.14 343.73 3.91 up
Tppp3 0.0000003 4.896E-05 1202.14 286.92 4.19 up
Ankrd55 0.0000003 4.896E-05 368.15 76.36 4.82 up
Slc17a6 0.0000003 4.896E-05 976.2 174.12 5.61 up
Sncg 0.0000003 4.896E-05 984.48 87.66 11.23 up
Vamp1 0.0000006 7.63E-05 3440.73 956.74 3.6 up
Foxf1a 0.0000006 7.63E-05 380.63 94.12 4.04 up
Adamts9 0.0000012 0.0001141 156.57 56.26 2.78 up
Dennd3 0.0000013 0.0001141 155.66 69.33 2.25 up
Apold1 0.0000013 0.0001141 239.55 84.38 2.84 up
Dock5 0.0000018 0.0001296 180.49 82.61 2.18 up
Prune2 0.0000021 0.0001296 205.25 30.72 6.68 up
Asah2 0.0000022 0.0001296 470.21 158.82 2.96 up
Cd38 0.0000022 0.0001296 400.77 131.11 3.06 up
Cdkn1a 0.0000023 0.0001296 910.32 219.95 4.14 up
Spnb3 0.0000024 0.0001296 341.48 785.22 0.43 down
Ahnak2 0.0000024 0.0001296 201.92 84.16 2.4 up
Slc6a5 0.0000025 0.0001296 2625.3 74.1 35.43 up

Table 2: The interaction networks of hub genes in HPC mice brain
Gene 
symbol Description Betweenness 

centrality Degree Indegree Outdegree Style

Plcb1 Mus musculus phospholipase C, beta 1 (Plcb1), 
transcript variant 2, mRNA.

0.996131 17 16 16 down

Pip5k1a Mus musculus phosphatidylinositol-4-phosphate 
5-kinase, type 1 alpha (Pip5k1a), mRNA.

0.7864583 6 5 6 down

Itga5 Mus musculus integrin alpha 5 (fibronectin 
receptor alpha) (Itga5), mRNA.

0.3208333 5 5 3 down

Actn1 Mus musculus actinin, alpha 1 (Actn1), mRNA. 0.271875 3 3 3 down
Actn2 Mus musculus actinin alpha 2 (Actn2), mRNA. 0.271875 3 3 3 down
Prkcb Mus musculus protein kinase C, beta (Prkcb), 

mRNA.
0.2330357 9 4 8 down

Plcd4 Mus musculus phospholipase C, delta 4 (Plcd4), 
transcript variant 1, mRNA.

0.219122 11 11 11 up

Plce1 Mus musculus phospholipase C, epsilon 1 
(Plce1), mRNA.

0.219122 11 11 11 up

Rasgrp1 Mus musculus RAS guanyl releasing protein 1 
(Rasgrp1), mRNA.

0.2 9 8 9 down

Prkca Mus musculus protein kinase C, alpha (Prkca), 
mRNA.

0.1607143 8 3 8 down
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demonstrated that Plcb1 displayed the largest betweenness 
centrality, implying that this gene was mostly involved in 
interactions with other genes in HPC (showed in Table 2). 
Plcb1 showed the highest activity and might perform as an 
intermediary in the networks, suggesting that Plcb1 was a 
hub gene and a key node in these signal networks. 

Gene co-expression networks based on GO and 
pathway analyses

On basis of normalized signal intensities for 
these differential expression genes, the co-expression 
networks were constructed with an aim to identify the 
core regulatory genes [17, 18]. The degree centrality, 
as a simplest and most important index, was defined to 
describe the number of links that one node connecting 
to the other in the network. In addition, the k-cores were 
introduced as a method to simplify the analysis of graph 
topology. The k-core presented as a sub-network where 
the nodes were connected to others.

The gene co-expression networks for the H6 and 
sham-HPC mice were also constructed based on the 
gene expression data (seen in Figure 5 and Figure 6). 
The dominated genes were screened and identified based 
on the co-expression network and status changes. The 
co-expression changes of these key genes reflected the 
differences of brain samples between the H6 mice and 
sham-HPC mice. 

Amplification and verification of differential 
expression genes by RT-PCR

Quantitative real-time RT-PCR was used to validate 
the reliability of microarray results. Fourteen hub genes 
with more than 2-fold differential expression in the 
networks were studied. The gene expression levels were 
quantified relative to the expression level of β-actin by 
the 2-ΔΔCt method [19]. The RT-PCR results suggested that 
ten differentially expressed genes (Cacna2d1, Grin2a, 
Npy1r, Mef2c, Epha4, Rxfp1, Chrm3, Pde1a, Atp2b4 and 

Figure 3: The pathway network of the differentially expressed genes in HPC mice. The nodes represent the pathways and the 
lines represent the relationship between the pathways. The red nodes mean up-regulated pathways; the blue nodes mean down-regulated 
pathways and the yellow mean both up and down regulated pathways.
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Grin2b) were significantly down-regulated in the H6 mice 
brains compared with those in the sham-HPC mice. Four 
genes (Glra1, Idi1, Fgf1 and Cda) were significantly up-
regulated in the H6 mice (shown in Figure 7). The findings 
from the RT-PCR experiments, including the variation 
trends and expression levels of these fourteen genes, were 
in line with that from the microarray analysis.

Based on our data, the gene networks were 
constructed for the major genes related to HPC mice. The 
results showed that: (1) there were marked differences in 
the gene expression profiles between the HPC mice and 
control group; (2) the hub genes such as Plcb1 was crucial 
in HPC process; and (3) the microarray and gene network 
analyses were very powerful tools to identify the HPC hub 
gene.

DISCUSSION 

The ability to sense oxygen levels and maintain 
oxygen homeostasis is crucial for cell survival. The 
hypoxic-sensitive regulation of gene expression for 
oxygen status can be converted into appropriate cellular 
responses. Although there are some core transcriptional 
pathways in cells, the signaling cascades can be modified 
to allow the diversity and specificity in transcriptional 
output. Pathophysiological conditions and diseases such 
as cardiovascular disease, stroke and cancer often lead to 
a significant decrease in oxygen supply to cells. Hypoxia 
can also induce the significant metabolic changes. 
Oxygen homeostasis in organisms is a complex process 
of integration and regulation via the hub gene and protein 

Figure 4: The interaction networks of differentially expressed genes in HPC mice. The nodes represent the genes, the red 
nodes mean the up-regulated genes and the blue nodes mean the down-regulated genes. The edges indicate the interaction between the 
genes. The arrows show the action direction. The size of nodes means the level of expressed degree. All the nodes were marked with k-core 
values. The genes with higher k-core values are more centralized in the network and have a stronger capacity of modulating adjacent genes.



Oncotarget11896www.impactjournals.com/oncotarget

expression. Successful adaptation to hypoxia involves 
changes in the gene programs that modulate cellular 
metabolism for substances and energy [20]. Thus, the 
gene networks that govern oxygen homeostasis are of 
great significance for investigation into the molecular 
mechanisms of hypoxia and HPC. The microarray and 
gene network analyses are effective approaches to identify 
HPC-related genes and reveal the molecular mechanisms 
of HPC [21]. Generally, high-throughput data have the 
features of high variability, low reproducibility and non-
specific noise. The subgroups of genes within the dataset 
may be associated with a generalized response to a given 
stimulus [22]. This effect can be ameliorated using 
comprehensive bioinformatics approaches including gene 
analysis, GO analysis, gene network and pathway analysis 
to enrich the relevant and responsive genes for HPC.

In our study, the oxygen content of mice exposed 
to hypoxia was determined via the pHOxCO-Oximeter 
methods [5]. The results indicated a marked relationship 
between the number of hypoxia exposures and the 
remained oxygen concentration or oxygen content. 
The values of oxygen content, oxygen saturation and 
oxyhemoglobin were markedly decreased in the HPC 
groups. Significant differences were evident between 
these groups (p < 0.05 or p < 0.01), indicating that the 
oxygen content was markedly decreased in successive 
HPC groups. Our data indicated that the HPC model was 
successful and the brain samples could be used to the 
hypoxic experiments [7, 8]. 

The approaches provide a comprehensive overview 
for thousands of HPC related genes, and enormously 
expand our view of molecular and metabolic changes in 
hypoxia and HPC responses. The two most important 
gene discovery techniques available to gene hunter are the 
DNA microarray screening and cDNA library screening. 
We have used them to successfully analyze the diverse 
animal models of hypoxia and HPC. To comprehensively 
understand the processes of HPC in mice, the whole 
brain was subjected to HPC to identify the differentially 
expressed genes. In our study, the differentially expressed 
genes in HPC brains were found to be involved in 
ion transport, neurotransmitter transport, synapse 
transduction, neuropeptide signal conduction, and cranial 
nerve development. Bioinformatics combined with gene 
network analysis has been effectively used to identify the 
hub genes that may be as therapeutic targets of hypoxia 
related diseases [21]. 

In our study, 1175 HPC-related differentially 
expressed genes have been identified. By filtering 
significant differential genes and building co-expression 
networks, a variety of methods are available to provide a 
more systemic and intuitive insight into the HPC process 
[23]. Of the 1175 differentially expressed genes, 113 were 
up-regulated and 138 were down-regulated in the HPC 
mice brains compared with those the sham-HPC controls 
(Supplementary Table 1 and Supplementary Table 2). 

The GO analysis of 1175 differentially expressed genes 
suggested that the cellular signaling processes, especially, 
the electron transport rate of the respiratory chains, were 
the most important. The GO terms for the response of 
brain cells to hypoxic stimuli were confirmed by the 
GO map analysis. The high correlation between the 
HPC and the constructed gene networks reflected the 
high sensitivity of differentially expressed genes Plcb1, 
Cacna2d1, Atp2b4, Grin2a, Grin2b, and Glra1 to HPC. 
Meantime, the pathway network showed that these genes 
also participated in hub pathways. Combined the results 
of pathway network and gene co-expression network (see 
Supplementary Table 3 and Supplementary Table 4), we 
defined Plcb1, Cacna2d1, Atp2b4, Grin2a, Grin2b and 
Glra1 as the main hub genes tightly associated with HPC.

Our results indicated that Plcb1 had the largest 
betweenness centrality and more interactions with other 
differential genes, suggesting that Plcb1 is a main key 
gene in the HPC networks. Plcb1 participated in eleven 
significant down-regulated pathways, including calcium 
signaling pathway, Wnt signaling pathway, vascular 
smooth muscle contraction and so forth. Plcb1 encodes 
a phospholipase that belongs to the PLC family [24]. 
The main function of Plcb1 is to produce the second 
messengers such as inositol triphosphate (IP3) and 
diacylglycerol (DAG). After binding to the receptors on 
endoplasmic reticulum, IP3 can open calcium ion channels 
in the membrane, which allows calcium ions to cross into 
the cytoplasm [25]. Plcb1 was markedly down-regulated 
in the H6 mice brains, indicating that calcium levels in 
the cytoplasm may decline to avoid calcium overload 
and prevent hypoxia damage. Interestingly, the isogeny 
both Plcd4 and Plce1 were markedly up-regulated in 
the H6 mice, inferring that these two genes also play an 
important role in HPC. In addition, Pip5k1a encoded 
phosphatidylinositol-4-phosphate 5-kinase type 1 alpha, 
markedly down-regulated and had the larger betweenness 
centrality and interactions, suggesting that Pip5k1a was a 
key gene in the HPC networks. 

Cacna2d1 and Cacna2d3 encoded the subunits 
α2δ1 and α2δ3, is a protein complex in voltage-
dependent L-type calcium channel that maintains 
intracellular calcium level [26, 27]. Cacna2d1 was 
down-regulated by at least two fold in the HPC 
mice brains. The pathway analyses indicated that 
Cacna2d1 was responsible for ion transport in 
the MAPK pathway. MAPK is a serine-threonine 
kinase that regulates multiple cellular functions 
such as mitogens, proinflammatory cytokines, gene 
expression, and cell survival or apoptosis. Further, 
MAPK is a major component in a series of cascade 
reactions and an important factor in extra-cellular 
stimuli. During the HPC, these reactions in the cells 
could be initiated by activating the MAPK pathway 
to prevent hypoxia damage [28]. In addition, the co-
expression network showed that the expression levels 
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of Cacna2d1 had markedly difference between the H6 
mice and sham-HPC mice. In the sham-HPC mice, 
Cacna2d1 expression was positively correlated with 
the expression of the gene Dusp1, Gabre and Fos, and 
negatively correlated with Idil. While in the H6 mice, 
Cacna2d1 expression was positively correlated with 
the gene Atp2b4, Ppp1r1a, Cacna2d3 and Grin2a, and 
negatively correlated with Tph2. The co-expression 
results indicated that the expression levels of both 
Cacna2d1 and Cacna2d3 decreased in the HPC. These 
findings suggested that inhibition of calcium influx 
by down-regulation of Cacna2d1 may be one of the 
protection mechanisms of HPC. 

The gene Atp2b4, encoded a membrane calcium 
transporter, i.e., adenosine triphosphatase (ATPase) [29], 

was down-regulated 2.1 times and was co-expressed 
with Cacna2d1 in the H6 mice brains. The GO analysis 
showed that the main function of Atp24 was to transport 
calcium. The pathway analysis indicated that Atp2b4 also 
participated in the calcium signaling pathway. The protein 
encoded by Atp2b4 belongs to the family of P-type primary 
ion transport ATPases. The main function of the enzyme is 
to remove the bivalent calcium ions from eukaryotic cell 
against high concentration gradients, and plays a crucial 
role in maintaining intracellular calcium homeostasis. The 
ATPase uses an energy-consuming process to promote 
calcium outflow or storage in organelles, resulted in 
decline of intracellular calcium [30]. The down-regulation 
of Atp2b4 in HPC mice may lead to a decrease in the 
ATPase in cell membrane, implying that calcium may be 

Figure 5: The co-expression network of genes formed from the control group. The genes contained in the significant GO 
terms were analyzed and identified by the gene co-expression network with the k-core algorithm. The node represents the gene, the red 
nodes mean the up-regulated genes, the blue nodes mean the down-regulated, and all the nodes were marked with the k-core values. The 
genes with higher k-core values are more centralized in the network and have a stronger capacity of modulating adjacent genes. The line 
represents the regulatory relationship, the solid line means the positive regulation and the dotted line means the negative regulation. 
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transported by low energy-consuming processes related 
to Cacna2d1 and Cacna2d3. Thus, the HPC tissues could 
use an endogenous mechanism to reduce the energy 
consumption and contribute to the protective effect of 
HPC.

Grin2a and Grin2b were also significant differential 
genes that had markedly different co-expression levels 
between the HPC and the control group [31]. The pathway 
network showed that these two genes involved in calcium 
signaling pathway, neuroactive ligand-receptor interaction 
and long-term potentiation. Grin2a and Grin2b encoded 
the ionotropic glutamate receptor N-methyl-D-aspartate 

NMDA2A and NMDA2B subtypes, respectively. This 
receptor was a member of ionotropic glutamate receptor 
and involved in long-term potentiation. This receptor was 
linked to the ion channel that Mg2+ can block Ca2+ influx 
into the cell via the NMDA channel in resting state. When 
the NMDA receptors activated, the membrane channels 
open, Mg2+ released from the cell and Ca2+ influxes into 
the cell, resulting in Ca2+ overload and cellular damage. 
The co-expression network results showed that Grin2a 
and Grin2b were both down-regulated in the HPC mice, 
suggesting that the levels of NMDA2A and NMDA2B 
may decrease in the HPC mice. Our study indicated that 

Figure 6: The co-expression network of genes formed from the HPC experimental group. The genes contained in significant 
GO terms were analyzed and identified by the gene co-expression network with the k-core algorithm. The node represents the gene, the 
red nodes mean the up-regulated genes, the blue nodes mean the down-regulated, and all the nodes were marked with the k-core values. 
Genes with higher k-core values are more centralized in the network and have a stronger capacity of modulating adjacent genes. The line 
represents the regulatory relationship, the solid line means the positive regulation and the dotted line means the negative regulation.
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the level of glutamate in the HPC brain markedly reduced, 
inferring that HPC could protect the cell from hypoxic 
damage via reducing calcium overload. This key process 
can be suppressed by blocking the NMDA receptor 
subtype and reducing glutamate level. 

Glra1 mainly encoded the α1 subunit of a glycine 
receptor that consisted of three α subunits and two β 
subunits [32]. The glycine receptor was a member of 
cys-loop family of ligand-gated ion channels, which 
was responsible for mediating the inhibitory effects of 
glycine. They widely distributed in central nervous system 
and were important inhibitory receptors. Glra1 was up-
regulated at least 47-fold in the HPC mice, the biggest fold 
change among the up-regulated genes. The GO analysis 
showed that the functions of Glra1 included the ion 
transport, synaptic transmission, neuropeptide signaling 
pathway, chloride transport, membrane potential and 
action potential. The pathway analysis indicated that Glra1 
may play a role in neuroactive ligand-receptor interaction. 
The high levels of glycine could exert neuroprotective 
effects by activating the glycine receptor and increasing 
the NMDA subunit component [33]. The evidence 
suggested that glycine could protect cells from hypoxia 
damage via up-regulating the α1 subunit and inhibiting the 
activation of membrane voltage-dependent Ca2+ channels 
to block Ca2+ influx into the cell. 

All eukaryotic cells require oxygen for oxidative 
phosphorylation to generate high-energy phosphates 
adenosine triphosphate (ATP). The energy-rich molecules 
are used to maintain the normal cellular functions such as 
proliferation, membrane transport and metbolic reactions 
[34]. Significant changes in the metabolic responses as 

a result of adaptation to hypoxia can be observed in the 
cells of HPC animals. More importantly, the metabolic 
rate depression is achieved by targeting and coordinating 
the rates of energy-producing pathways and energy-
utilizing functions, and reorganizing the priorities for ATP 
expenditure [35]. Currently, some novel biomarkers and 
metabolic pathways in HPC are being investigated using 
modern analytical technologies to obtain global omic 
profiles in the cell/organ of interests in our laboratory. 
The modern omics allow us to make major advances in 
understanding of how organisms adapt their metabolism 
to endure hypoxia. Especially, the “global view” is critical 
in showing both the breadth of cellular responses and 
commonalities of molecular mechanisms that underlie 
organismal adaptation to hypoxia. In previous work, 
we have seen some crucial changes in corresponding 
endogenous metabolites such as peptides, amino acids, 
sphingolipids, and spermidine, etc, and these metabolites 
had important roles in providing ATP and maintaining 
cell survival. Some of the metabolites had been identified 
with HPLC-HRMS and the standard compounds [8]. 
The functions and pathways of these metabolites need to 
further study.

The gene expression profiles in brain of HPC 
mice were generated and integrated using a multi-step 
bioinformatics strategy to determine the HPC-related 
hub genes, pathways, network and biological processes. 
Our results indicated that the expression profiles of the 
key genes in the HPC mice were markedly different from 
that in the sham-HPC mice. Several critical hub genes, 
as the key members of significant pathways or gene 
networks, were identified by this comprehensive analysis. 

Figure 7: The relative signal intensity of genes between the control and HPC group.
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Combined the results of pathway network and gene co-
expression network, (see Supplementary Table 3 and 
Supplementary Table 4), we defined Plcb1, Cacna2d1, 
Atp2b4, Grin2a, Grin2b and Glra1 as the main hub genes 
tightly related with HPC. The results showed that the up-
regulated genes were mainly involved in the ion transport, 
neurotransmitter transport, synapse transduction, signal 
conduction, cranial nerve development and neuropeptide 
signal path, while the down-regulated genes were mainly 
involved in the calcium ion transport, nerve phylogenies, 
brain development, neuron migration and neuron 
differentiation. During the HPC, the cells may use several 
molecular mechanisms to change the metabolic pathways, 
respiratory chain and electron transport for decreasing 
the energy requirement and intracellular Ca2+ level to 
prevent calcium overload and protect the organism from 
hypoxia damage. To summarize, we firstly found that the 
global gene expression profiles in mice brain tissues were 
significantly different between the HPC and the sham-
HPC control mice. The findings of the hub genes and 
integrated gene networks may provide pivotal and useful 
information for exploring the molecular mechanisms in 
HPC, cerebral ischemic injury and neuroprotection.

MATERIALS AND METHODS 

Drug and reagents

RNA extract kit included Qiagen Rneasy Mini Kit 
(number 217004, Qiagen Co., Ltd., Germany), Qiagen 
Rnase-free Dnase I (number 79254, Qiagen Co., Ltd., 
Germany), Ambion WT Expression Kit (Ambion Co., 
Ltd., USA), Affymetrix gragmentation and labelling kit 
(Gene Chip 2 WT Terminal Labeling Kit and Controls Kit 
30 times, Affymetrix Co., Ltd., USA). Affymetrix reagents 
were the eneChip2 Hybridization, Wash and Stain Kit 
(Affymetrix Co., Ltd., USA).

Animals and HPC experiments

Adult male Imprinting Control Region (ICR) mice, 
body weight 18–20 g, were obtained from the Laboratory 
Animals Center of Capital Medical University. The 
experiments were carried out in accordance with the current 
guidelines for the care of laboratory animals and ethical 
guidelines for investigations of experiments in conscious 
animals [36, 37]. In addition, the experimental protocols 
employed were approved by the Animal Care and Use 
Committee of Capital Medical University and consistent with 
the NIH Guide for the Care and Use of Laboratory Animals 
(NIH Publications No. 80-23). The six mice were allocated 
randomly to the HPC group and the sham-HPC group as the 
control. A “power test” based on the standard deviation of 
the mean have been carried out to determine the number of 
animals required. All mice were bred in isolated cages.

Acute repetitive hypoxia models were constructed 

at room temperature (20 ± 1°C), and used to identify the 
main differentially expressed genes related to HPC. The 
acute repetitive hypoxia mice were treated as reported 
previously [5–8, 38]. Briefly, a mouse was placed in a 
125 ml airtight jar containing air and the bottom of jar 
with Ca(OH)2 to absorb CO2. The jar was immediately 
sealed with a rubber stopper and smeared with Vaseline. 
Simultaneously, the tolerance time and behavior of the 
mouse were observed. The mouse was taken out of the 
jar as soon as the asthmoid respiration just appeared. This 
is the first time of hypoxic preconditioning treatment. 
After ten minutes recovery under air condition, the mouse 
was moved to another new jar with same volume fresh 
air and the jar was hermetically sealed with rubber plug 
immediately, and to duplicate a progressive hypoxia 
environment. The control mice placed in open jars for the 
same amount of time were used as the normoxic sham-
HPC control group. These mice had just transferred to 
another open jar with same volume fresh air, but did not 
be sealed with rubber plug. The procedure was performed 
repeated six times (H6) for the experimental HPC mice 
and sham-HPC control mice [7]. After the experiment the 
animals were decapitated, and their whole brain tissues 
were collected on ice and saved in liquid nitrogen for use.

Microarray experiment

The procedures of microarray experiments mainly 
included: isolation and validation of the total RNA from 
the mouse brain, the reverse transcription and in vitro 
transcription of RNA (i.e. the first and second strand 
synthesis of first-cDNA, synthesis and purification of 
cRNA, synthesis and purification of 2nd-cDNA), and 
then label and hybridization of the samples (including 
gragmentation of 2nd-cDNA, label of gragmentated 2nd-
cDNA, chip hybridization, and scrubbing and scanning of 
array) [39–41].

For the Affymetrix microarray profiling, total RNA 
was isolated with TRIzol reagent (Invitrogen, Canada) 
from whole brain and purified using a RNeasy Mini 
Kit (Qiagen, German), including a DNase digestion 
treatment. The RNA concentration was determined by 
absorbance at 260 nm. The quality control standards of 
A260/A280 were 1.8–2.1 using the Nano Drop 2000 
(Thermo, America). The cDNA from the repeated six 
times HPC group and the sham-HPC control group was 
hybridized to Mouse Gene 1.0 ST GeneChip arrays 
(Affymetrix, USA) according to the manufacturer’s 
instructions. The Affymetrix Expression Console software 
(version 1.2.1) was used for microarray analysis. Raw 
data (CEL files) were normalized at transcription level 
using the robust multi-average method (RMA workflow). 
The median summarization of transcript expression levels 
was calculated. The gene-level data were then filtered to 
include only the probe sets in the ‘core’ meta-probe list, 
which represents the RefSeq genes [40].
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For each sample, three biological replicates were 
performed. The Two ClassDif was used to screen and 
analyze the differentially expressed genes in these 
samples, which was the t-test method via an adjustment 
of model for random variance. This method effectively 
improves the accuracy of characteristic screening 
and reduce the false positive rate. All arrays were 
washed, stained, and read by a GeneChip Scanner 3000 
(Affymetrix). The fluorescence signal was excited at 570 
nm, and the data were collected on a confocal scanner at 
3 lm resolution. The data were analyzed by the GeneChip 
Operating Software 1.4.

Differential gene analysis

Significant differential genes between the 
experimental group and control group were screened using 
the relative variance method (RVM) from the t-test [41]. 
The threshold of truly significant genes was taken to be 
p-value < 0.05 and the false discovery rate (FDR) < 0.05. 

Gene ontology and pathway analysis

Gene Ontology (GO) analysis was applied 
to analyze the main functions of the differentially 
expressed genes [42]. GO annotations are the main 
functional classification used by the National Center 
for Biotechnology Information (NCBI). A total of 1175 
genes in the significant differential gene group were 
classified and analyzed based on their GO functional 
annotations. The GO terms assigned to these genes were 
obtained and examined using the Fisher’s exact test and 
chi-square (χ2) test to calculate the level of significance. 
The threshold was taken to be p-value < 0.05 and the 
FDR value < 0.05. For the functions in significant 
category, the enrichment (Re) was calculated as Re = 
(nf/n)/(Nf/N), where nf is the number of differential genes 
within a GO category of interest, n is the total number 
of genes in the category, Nf is the number of differential 
genes in the entire microarray, and N is the total number 
of genes in the microarray.

Pathway analysis of significant differential genes 
was based on the KEGG (Kyoto Encyclopedia of Genes 
and Genomes), BioCarta and Reactome databases [42]. 
The Fisher’s exact test and χ2 test were used to classify 
the enrichment of pathway categories and the threshold of 
significance was defined by p-value < 0.05) and the FDR 
value < 0.05. For the pathways in the significant category, 
the enrichment (Re) was calculated as Re = (i/m)/(k/N), 
where the i is the number of differential genes within a 
pathway category of interest, m is the total number of 
genes in that category, k is the number of differential 
genes in the entire microarray, and N is the total number 
of genes detected in the microarray. 

The PathNet program was constructed based on 
the interactions among the pathways of KEGG database 

to find the interactions among significant pathways 
directly and systemically [12]. Here, we used the PathNet 
R package to build an interaction network of significant 
pathways from the differential expression genes to identify 
differential networks that might help explain why certain 
pathways were activated in HPC. 

Gene co-expression network analysis

The signal intensities of differentially expressed 
genes were used to build the gene co-expression 
networks [43]. Pearson’s correlations (R) for each 
pair of genes were calculated and used to select 
the significant correlation gene pairs. A gene-gene 
interaction network was established according to the 
correlations between the genes. The network nodes 
represent the genes, and the edges between the genes 
indicate the interaction between these genes. All the 
nodes were marked with degrees, defined as the number 
of links that one node with the all the other nodes in the 
network. The genes with the higher degrees occupied 
more of the central positions in the network and had a 
stronger capacity to modulate adjacent genes than the 
genes with the lower degrees. In addition, the k-core 
model was applied to describe the characteristics of 
the network including the centrality of genes within 
the network and the complexity of the sub-networks. 
Based on the relationships between the genes, they were 
divided into several sub-networks and marked red (up-
regulated) or blue (down-regulated). 

RT-PCR confirmation of differentially expressed 
genes

Real-time RT-PCR was conducted to confirm 
the differential expression of 14 selected key genes, 
namely, Cacna2d1, Grin2a, Npy1r, Mef2c, Epha4, 
Rxfp1, Chrm3, Pde1a, Atp2b4, Glra1, Idi1, Fgf, Grin2b 
and Cda. Total RNA was obtained from mice exposed 
to hypoxia conditions that were the same as those used 
in the microarray assay [44, 45]. Real-time RT-PCR 
was conducted in 20 μl reaction mixtures, including 
10 μl Power SYBR Green PCR Master Mix (Applied 
Biosystems), 1 μl primers, 1 μl template cDNA, and 8 
μl nuclease-free water. The cycling program consisted of 
a single cycle of 5 min at 95°C, followed by 40 cycles 
of 15 s at 95°C, and 1 min at 60°C (see Table 3). The 
optimized 2−ΔΔCt method was used to calculate the relative 
gene expression. Cacna2d1 was used as the internal 
control gene to normalize the amount of RNA added to 
the PCR reactions [15].
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