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ABSTRACT

It has recently been suggested that pro-tumorigenic host-mediated processes 
induced in response to chemotherapy counteract the anti-tumor activity of therapy, 
and thereby decrease net therapeutic outcome. Here we use experimental data to 
formulate a mathematical model describing the host response to different doses 
of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three 
previously described host-mediated effects are used as readouts for the host 
response to therapy. These include the levels of circulating endothelial progenitor 
cells in peripheral blood and the effect of plasma derived from PTX-treated mice on 
migratory and invasive properties of tumor cells in vitro. A first set of mathematical 
models, based on basic principles of pharmacokinetics/pharmacodynamics, did not 
appropriately describe the dose-dependence and duration of the host response 
regarding the effects on invasion. We therefore provide an alternative mathematical 
model with a dose-dependent threshold, instead of a concentration-dependent one, 
that describes better the data. This model is integrated into a global model defining 
all three host-mediated effects. It not only precisely describes the data, but also 
correctly predicts host-mediated effects at different doses as well as the duration 
of the host response. This mathematical model may serve as a tool to predict the 
host response to chemotherapy in cancer patients, and therefore may be used to 
design chemotherapy regimens with improved therapeutic outcome by minimizing 
host mediated effects.

INTRODUCTION

One of the major obstacles in clinical oncology is that 
tumors acquired resistance to therapy and relapse, despite 
an initial response to therapy. While the main reasons for 
tumor relapse are related to intrinsic and acquired resistance 
mechanisms within tumor cells, a growing body of literature 
suggests that host-mediated effects generated in response to 
therapy may counteract the anti-tumor activity of the drug, 
thereby contributing to decreased net therapeutic outcome. 
The host response to therapy is composed of both molecular 
and cellular changes in peripheral blood circulation [1]. We 

and others have identified several soluble factors induced 
in response to therapy that contribute to tumor regrowth 
and metastasis. These factors include metalloproteinase 
9 (MMP9), IL16, IL1β, SDF-1, Osteopontin, stem cell 
factor, and granulocyte colony stimulating factor among 
others [2]. This storm of cytokines and growth factors 
is followed by acute mobilization of cells from the bone 
marrow compartment and their homing to the tumor 
site, including endothelial progenitor cells [3], Tie-2 
expressing monocyties [4], mesenchymal stem cells [5], 
myeloid derived suppressor cells [6] and tumor associated 
macrophages [7]. Together, the response of the host to anti-
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cancer drug therapy contributes to pro-tumorigenic and 
pro-metastatic activities by promoting angiogenesis and 
inhibiting immunity against tumor cells.

The administration of chemotherapy drugs 
contributes to tumor cell aggressiveness by different 
means. For example, it has been shown that tumor 
cells cultured in the presence of plasma obtained from 
naïve mice 24 hours after treatment with the maximum 
tolerated dose (MTD) of paclitaxel (PTX) or gemcitabine 
chemotherapy exhibit increased migratory and invasive 
potential [8]. In addition, treating tumor-bearing mice 
with cytotoxic agents such as vascular disrupting agents or 
PTX chemotherapy induces a rapid mobilization of bone 
marrow derived circulating endothelial progenitor cells 
(CEPs) that home to the treated tumor site and facilitate 
angiogenesis ultimately leading to tumor cell repopulation 
and re-growth [4, 9]. Indeed, several studies have indicated 
that while cytotoxic anti-cancer drugs induce tumor cell 
killing right after drug administration, during the drug-
free break periods in between successive MTD treatments, 
tumor cells proliferate and repopulate the site [10, 11]. 
This could be explained by the systemic host-mediated 
effects generated in response to the acute administration 
of chemotherapy that induces a variety of pro-angiogenic 
and pro-metastatic mechanisms. In contrast, such host-
mediated effects are minimized with the use of low-dose 
metronomic chemotherapy (LDM), which is administered 
more frequently, and with no extended drug-free break 
periods [12, 13]. This may explain, at least in part, the 
therapeutic benefit reported for LDM [14, 15]. However, 
to date, the host response to different dosages and duration 
of chemotherapy has not been fully characterized.

Quantitative mathematical methods have recently 
emerged in oncology as powerful tools to test mechanistic 
hypotheses against experimental observations and predict 
the effects of varying the scheduling of anti-cancer drug 
regimens [16]. Recent examples include theories and 
methods of prediction for experimental tumor growth [17, 
18] or pre- and post-surgical metastasis [19], as well as 
mathematical models for the rational design of metronomic 
schedules [20, 21] and combination of anti-angiogenics and 
cytotoxic drugs [22].

Here we studied the complexity and dynamics of the 
host response, focusing solely on the effect of the drug 
on the host. To do so, we used non-tumor bearing mice 
treated with PTX chemotherapy. This approach allowed 
us to distinguish between the anti-tumor activity of the 
drug and the pro-tumorigenic activity generated by the 
host in response to the therapy. We used a mathematical 
modeling approach to predict the host responses to PTX 
chemotherapy. It is based on the dose of the drug and the 
duration of the host response after drug administration. 
Our results demonstrate a model that accurately predicts 
host-mediated responses to chemotherapy. Therefore, it 
may serve as a tool to design chemotherapy regimens with 
improved therapeutic outcome.

RESULTS

Differential host response to PTX chemotherapy

To characterize the differential host-mediated 
responses to chemotherapy, we first evaluated specific 
elements previously reported at the host, 24 hours after the 
administration of escalating doses of PTX. We focused on 
levels of viable CEPs [3] as well as migration and invasion 
of tumor cells in the presence of plasma obtained from 
PTX-treated mice [8]. To this end, non-tumor bearing 
BALB/c mice were treated with PTX at doses of 5, 10, 
and 25 mg/kg. After 24 hours, blood was drawn by cardiac 
puncture and the level of viable CEPs was analyzed. 
Figure 1A demonstrates that the level of viable CEPs was 
significantly elevated in response to 10-25 mg/kg, but not 
5 mg/kg PTX. In addition, the migration and invasion 
properties of MDA-MB231, human breast carcinoma 
cells, were enhanced in the presence of plasma from mice 
treated with 10-25 mg/kg PTX, whereas plasma from mice 
treated with 5 mg/kg PTX had no effect (Figure 1B–1C).

We next determined the duration of the host 
response after administering PTX at a dose of 25 mg/kg. 
This represents the MTD, as previously described [3]. 
Specifically, we evaluated to what extent the host effects 
are maintained following drug administration. Levels 
of CEPs peaked at the 24 hour time point, returning to 
baseline within 48 hours (Figure 2A). In addition, the 
migration properties of MDA-MB231 cells were enhanced 
in the presence of plasma derived from mice up to 48 
hours after PTX treatment (Figure 2B). However, plasma 
derived from mice up to 96 hours after PTX treatment 
enhanced the invasive properties of such cells (Figure 2C). 
The differential duration of specific host effects suggests 
that they are regulated by different pathways or factors.

Mathematical modeling rejects an explanation 
of host effect dynamics on invasion, based on 
classical pharmacokinetic/pharmacodynamic 
mechanisms

To quantitatively assess various mechanistic 
models for the dynamics of the processes leading to 
these observed host-mediated effects, we designed 
several mathematical models and tested their descriptive 
properties against the data. Pharmacological drug effects 
can be traditionally modeled in a two-step approach 
(Figure 3A) [23]. First, the dynamics of the drug 
distribution, metabolism and elimination is described 
(pharmacokinetics, PK). Then, the link between the 
concentration of the drug and the effect is modeled 
(pharmacodynamics, PD). For the latter, a saturable 
Emax model (or Hill function) is classically employed 
[23]. When testing this approach against our data – 
using a published model and parameter values for PTX 
pharmacokinetics [24], and separate models for each 
effect - we found that the models with Emax effects that 
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are directly linked to the circulating PTX concentration, 
were unable to correctly describe our data (Supplementary 
Figure 1). Addition of effect compartments was able 
to give a correct description of the CEP and migration 
effects (Figure 3B–3C). However, critically, this 
approach was unable to explain the combined dose-
dependence and dynamics of the invasion effects (Figure 

3D). This counter intuitive finding comes from the 
opposition between two observations on the invasion 
data that are mutually exclusive under the classical PK/
PD paradigm. On one hand, the function of effect versus 
dose (Figure 1C) strongly suggests a saturation of the 
effect above a given threshold (between 5 and 10 mg/
kg). This translates into an Emax PD model. However, 

Figure 1: Host response following PTX chemotherapy is dependent on drug dose. (A-C) Eight-to-ten week old non-tumor 
bearing BALB/c mice were treated with escalating doses of paclitaxel ranging from 0-25 mg/kg. (A) After 24 hours, blood was drawn by 
cardiac puncture, and subsequently assessed for the levels of viable CEPs using flow cytometry. (B-C) In parallel, plasma was separated 
and placed in the bottom compartment of a Boyden chamber to assess MDA-MB-231 cell migration (B) and invasion (C) properties as 
described in Materials and Methods. Representative images are provided for migration and invasion. Percentage of cell coverage was 
calculated using Photoshop. Scale bar=200μm. *p<0.05; **p<0.01; ***p<0.001 using one way ANOVA followed by Tukey post-hoc test.
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Figure 2: Host response following PTX chemotherapy is time-dependent. (A-C) Eight-to-ten week old non-tumor bearing 
BALB/c mice were treated with 25 mg/kg paclitaxel. After 24, 48, 72, 96, and 168 hours blood was drawn by cardiac puncture, and 
subsequently assessed for the levels of viable CEPs using flow cytometry. (B-C) In parallel, plasma was separated and placed in the bottom 
compartment of a Boyden chamber to assess MDA-MB-231 cell migration (B) and invasion (C) properties as described in Materials and 
Methods. Representative images are provided for migration and invasion. Percentage of cell coverage was calculated using Photoshop. 
Scale bar=200μm. *p<0.05; **p<0.01; ***p<0.001 using one way ANOVA followed by Tukey post-hoc test.
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Figure 3: “Pharmacokinetics (PK)-based” versus “Activation-based” models. Mathematical models based on distinct 
mechanisms: PK-based (A-D) versus activation-based (E-H). Schemes of the mathematical models for PK-based (A) versus activation-
based (E) are presented. The mathematical models were formulated for description of the dynamics of host effects characterized by levels 
of viable CEPs (B, F) as well as migration (C, G) and invasion (D, H) assays. Confrontation of the models to the data through likelihood 
maximization supported a standard PK/Emax-based model for the migration and viable CEP effects but rejected it in favor of an activation-
based mechanism for the invasion data. Dots = data, lines = models best-fits (see materials and methods).
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the function of effect versus time is not consistent with 
this assumption, because a saturation should be apparent 
(when the concentration is above the PD threshold), in 
contradiction with the actual observations (Figures 2 
and 3D). Maximization of the data likelihood under two 
models – the classical PK-based model and an alternative, 
“activation-based” model – clearly rejected the former 
in favor of the latter for the invasion data (Akaike 
Information Criterion, AIC = 439 vs 425). This prompted 
us to propose another model based on the assumption that 
the effect is triggered directly by the dose (and not by the 
PK-described concentration of the drug), and then follows 
compartmental kinetics (see Materials and Methods and 
scheme in Figure 3E). While this new model was less 
likely for the host-mediated effects on CEP levels and 
migration assays (Figure 3F–3G, AIC = 71.8 versus 75.3 
and 267 versus 279 in comparing the PK-based model 
versus the activation-based one, respectively for CEP 
levels and migration effects), it offers a more accurate 
description of the dose- and time-dependence of the 
effect on invasion (Figure 3H and Supplementary Figure 
2). Together, these results support different mechanisms 
for the migration and CEP effects on one hand, and the 
invasion effect on the other, and evidenced a counter-
intuitive model for the latter.

A global model for the dynamics of  
host-mediated effects

To further investigate the mechanisms of the 
distinct host-mediated effects in response to PTX, as 
being provoked by either a single or multiple factors, 
we investigated global mathematical models that 
would explain all the data together, i.e., the three 
effects monitored here. Maximization of the likelihood 
was thus performed by pooling all the data from the 
three readouts considered here, instead of independently 
as performed above. Since we had previously identified 
different mechanisms between the effect on invasion and 
the other two variables tested, we focused on different 
possibilities for structural links between only the effects 
on migration and CEP levels. From a restrictive model, 
where the effect on migration and CEP levels would 
be tied to the same factor (model 1, Supplementary 
Figure 3), we considered the following extensions 
with distinct factors for migration and CEP levels and: 
1) same elimination rate from the tissue compartment 
k
20

 but distinct EC
50

 (model 2, Supplementary Figure 
4); 2) same EC

50
 in the PD Emax model but distinct 

k
20

 (model 3, Figure 4); and 3) distinct k
20

 and 
EC

50
 (model 4, Supplementary Figure 5). Results 

of goodness-of-fit statistical metrics are reported in 
Table 1. Likelihood ratio tests, indicating whether 
a model with more parameters – while always having 
better goodness-of-fit by definition – is significantly 

more likely, are shown in Supplementary Table 1. They 
demonstrate that model 1 was clearly outperformed 
by models 2, 3 and 4 (p < 0.0001, likelihood ratio 
tests against models 1-3). Consideration of distinct 
EC

50 (model 2) for factors responsible for the effects 
on migration and CEP levels significantly improved 
the fit (model 2 versus model 1, p < 0.0001). The 
best improvement was provided by distinction in the 
elimination rate k

20
. Indeed, this addition to model 2 

significantly improved the fit further (p < 0.024, model 
4 versus model 2). In fact, this addition alone, model 3, 
despite having less parameters (and thus a larger log-
likelihood), was found to be significantly more likely 
than model 4 (smaller AIC and BIC, Table 1  and non-
significant likelihood ratio test for superiority of model 
4, Supplementary Table 1). Therefore, we selected model 
3 (see scheme in Figure 4A) as the best candidate for 
the description of our data (Figure 4B). Together, these 
results further support a model with distinct quantitative 
dynamics between all the host responses (but equal 
activation threshold for the factor responsible for effects 
on CEP levels and migration), suggesting that distinct 
factors are responsible for these effects.

Validation of the host response mathematical 
prediction and its in vivo outcome

Our mathematical model allowed us to infer the 
dynamics of the hypothesized hidden quantities responsible 
for the measured effects. Simulations of these, based on 
the parameters calibrated from the data reported in the 
Supplementary Table 2, are shown in Figure 5A-5C. Going 
further, the model allowed us to make predictions about 
host effects over all doses and durations, thus extending 
the experimental findings. Figure 5D-5F reports the 
predicted effects on CEP level, migration, and invasion for 
combinations of doses spanning 0-25 mg/kg and 0 – 200 
hours following PTX administration. Structural differences 
between the PK-based models for the migration and CEP 
effects on one hand, and the activation-based models on 
the other, can be observed. For the former, a duration-
dependent dose threshold is apparent (Figure 5A–5B). 
This means that at larger times, similar effects can be 
observed for a larger dose. Conversely, for the latter, a 
duration-independent dose threshold is apparent (Figure 
5C). This means that for each duration, the effect – small 
or large – happens after the same threshold of 7 mg/kg. 
Similarly, in PK-based models the duration of the effect 
is dose-dependent whereas in the activation-based model 
it is not.

To assess whether the model predicting host 
response effects is valid, we next evaluated the host 
response at different time points after administrating two 
concentrations of PTX and compared the experimental 
data with the mathematical model’s prediction. To this 
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Figure 4: A global mathematical model for the combined dynamics of all host-mediated effects. (A) Formulation of a semi-
mechanistic model was able to (B) reproduce the data as function of the dose and post-PTX administration time.
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end, BALB/c mice were treated with either 25 mg/kg 
and blood was drawn after 24 hours or with 15 mg/kg 
and blood was drawn after 72 hours. The levels of viable 
CEPs rose only at the dose of 25 mg/kg after 24 hours, 
whereas no changes were observed at the dose of 15 mg/kg 
at the 72 hour time point (Figure 6A). Furthermore, at the 
25 mg/kg dose at 24 hour time point, both migration and 
invasion were significantly higher compared to baseline 
or to the dose of 15 mg/kg dose at 72 hours. Notably, the 
dose of 15 mg/kg at 72 hours was still significantly higher 
than baseline control only in the invasion assay (Figure 
6B–6C). Model predictions of the effects at the new dose 
of 15 mg/kg and after 72 hours (with baseline values ε εi m,� � 

and ε c adjusted to the mean of the control values for this 
new experiment) were found in excellent agreement with 
the observations (Figure 6D). This result strengthens 
the validity of our model as a useful tool to predict host  
effects for values of dose and duration that were not used 
for calibration of the parameters.

Next, our validation experiment results prompted us 
to further assess whether activation of the host response 
affects survival. Since increased CEP levels in response 
to therapy are associated with angiogenesis [9] and 
enhanced migration and invasion properties of tumor cells 
are associated with tumor cell aggressiveness [10, 25], 
such effects are expected to increase the mortality rate 

Table 1: Goodness-of-fit criteria for the models of host response dynamics

Model Log.lik. AIC BIC #

Model 3 -366.22[2] 750[1] 779[1] 8

Model 4 -366.18[1] 752[2] 784[3] 9

Model 2 -368.73[3] 755[3] 784[2] 8

Model 1 -377.21[4] 770[4] 796[4] 7

Log. Lik. = log-likelihood. AIC = Akaike Information Criterion. BIC = Bayesian Information Criterion.

Figure 5: Simulation-based inference and predictions. (A-C) Simulations of the entire system based on the parameters of viable 
CEP (A), migration (B), and invasion (C) calibrated from the data. (D-F) Predictions of the intensity of host response effects in dose-
duration space, based on the parameters of viable CEP (D), migration (E), and invasion (F). Conc. = concentration.
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Figure 6: Differential host response following paclitaxel chemotherapy results in diverse survival outcome. (A-C) Eight-
to-ten week old non-tumor bearing BALB/c mice were treated with 25 mg/kg or 15 mg/kg paclitaxel. After 24 and 72 hours, respectively, 
blood was drawn by cardiac puncture, and subsequently assessed for the levels of viable CEPs using flow cytometry. (B-C) In parallel, 
plasma was separated and placed in the bottom compartment of a Boyden chamber to assess MDA-MB-231 cell migration (B) and invasion 
(C) properties as described in Materials and Methods. Representative images are provided for migration and invasion. The percentage of 
cell coverage was calculated using Photoshop. Scale bar=200μm. (D) Comparison of experimental data and model predictions for host-
mediated effects 72 hours after injection of 15 mg/kg PTX. Black dots = data. Gray dots = model predictions. (E) Ten week old NOD-SCID 
female mice were treated with 25 mg/kg or 15 mg/kg paclitaxel. After 24 and 72 hours, respectively, MDA-MB-231 cells (2x106 cells/
mouse) were intravenously injected through the tail vein. A Kaplan-Meier survival curve is shown. **p<0.01; ***p<0.001 using one way 
ANOVA followed by Tukey post-hoc test.
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in experimental lung metastasis assays, as previously 
reported [8, 26]. In order to separate the therapeutic 
effect of the treatment from the host-mediated effects, we 
treated NOD-SCID mice with PTX chemotherapy and 
subsequently injected MDA-MB-231 cells (2x106 cells/
mouse) through the tail vein to generate an experimental 
lung metastasis assay. The NOD-SCID mice were either 
treated with 25 mg/kg PTX and injected with tumor cells 
24 hours later or with 15 mg/kg PTX and injected with 
tumor cells 72 hours later. Survival was monitored over 
time. The results in Figure 6E demonstrate that mice from 
the first group succumbed to metastasis earlier than mice 
from the second group. The survival plots of these two 
treated groups were significantly different (p=0.048). 
Importantly, mice from both PTX treated groups exhibited 
an increased mortality rate compared to untreated control 
mice (p=0.002), indicating that the host-mediated effects 
in response to PTX are pro-tumorigenic as previously 
shown [8]. Taken together, our improved mathematical 
model was able to predict the parameters of host-mediated 
effects that were measured. Such host effects were 
correlated with the survival outcome of mice treated with 
different PTX doses and at two time points following drug 
administration.

DISCUSSION

Chemotherapy is one of the main treatment 
modalities for cancer. While treatment benefit is usually 
observed, some patients relapse due to the development of 
therapy resistance. The resistance of tumor cells to therapy 
is the most studied mechanism underlying relapse [27]; 
however, recently, the contribution of the host to therapy 
resistance, especially after chemotherapy, has gained more 
attention [28]. It has been shown that such host effects 
in response to therapy minimize or even negate the anti-
tumor activity of chemotherapy, thereby providing another 
route for resistance mechanisms [1].

Macrophages, fibroblasts and mesenchymal stem 
cells have been shown to contribute to tumor resistance by 
secreting factors, some of which are associated with fatty 
acids and extracellular matrix (ECM) degrading enzymes, 
or by promoting an enrichment of cancer stem cells [5, 
29, 30]. In addition to these mechanisms, we and others 
have demonstrated that various treatment modalities for 
cancer support tumor cell aggressiveness. For example, 
bone marrow derived cells home to the treated tumor site, 
and secrete MMP9 which contributes to the dissemination 
of tumor cells from the primary tumor and induces 
epithelial-to-mesenchymal transmission (EMT) in tumor 
cells, thereby accelerating metastasis. Furthermore, bone 
marrow derived CEPs are acutely mobilized in response 
to high dose chemotherapy, and subsequently home to 
the treated tumor site, leading to rapid angiogenesis and 
subsequent tumor re-growth [3, 9, 31]. Thus, the host 
response to chemotherapy activates a variety of tumor-

supporting processes, leading to increased aggressiveness 
and re-growth.

Several studies have reported a distinct host 
response following MTD chemotherapy, an effect 
that is absent when the same chemotherapy drug 
is administered in LDM regimens. Specifically, the 
increase in levels of CEPs in peripheral blood or the 
number of myeloid derived suppressor cells colonizing 
tumors following MTD regimens is absent when LDM 
regimens are employed [32, 33]. Additionally, tumor 
cells cultured in the presence of plasma from mice 
treated with high-dose capecitabine exhibited distinct 
tumor sphere characteristics, whereas plasma from the 
low-dosage-treated mice had no such effect [15]. These 
collective studies indicate that MTD but not LDM 
chemotherapy regimens generate host pro-tumorigenic 
and pro-metastatic effects. In fact, with respect to LDM 
chemotherapy, not only are there no detectable host pro-
tumorigenic and pro-metastatic effects, such therapy 
may actively contribute to anti-tumor activity by other 
means. For example, it has been suggested that LDM 
therapy induces the immune system to act against cancer 
cells. LDM therapy also depletes T regulatory cells, and 
therefore the combination of LDM chemotherapy with 
immune checkpoint inhibitors has been suggested as an 
effective treatment combination for cancer [34–36]. In 
addition, it has been demonstrated that long exposure of 
tumor cells to chemotherapy drugs at low doses directly 
kills cancer cells, among them cancer stem cells [37, 38]. 
Thus, LDM therapy acts against the tumor via various 
host and tumor dependent mechanisms. It should be noted, 
however, that while our study evaluated the host response 
effects following a range of doses of PTX therapy, we 
have not evaluated the effect of continuous administration 
of a drug as administrated in LDM regimen in comparison 
to a single MTD administration. Future studies should 
assess our mathematical model in this context.

In this study, we have formulated a mechanistic 
mathematical model to solely predict pro-tumorigenic and 
pro-metastatic effects generated by the host in response 
to therapy, while eliminating from the formula the direct 
anti-tumor activity of the drug. As a readout for the 
host response to therapy, we evaluated three previously 
characterized variables [3, 8], namely CEP levels in 
peripheral blood and the effect of plasma derived from 
chemotherapy-treated mice on migratory and invasive 
properties of tumor cells in vitro. The variables were 
tested at different doses of chemotherapy and at specified 
time-points after drug administration. Our results show 
that doses below a specific threshold do not generate a 
host response and therefore are less likely to contribute 
to tumor cell aggressiveness. Above this dose threshold, 
measurements of the host response are saturated to 
maximal values. Classically, such a saturation can be 
modeled by means of Emax models [23], which when 
coupled to pharmacokinetics models for the concentration 
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time course, were indeed found appropriate for the CEP 
and migration variables. Counter-intuitively however, 
when modeling concurrently the time-course of the 
effect and the dose dependence, for the invasion assays, 
a model based on this approach was found unable to 
adequately reproduce the data. Instead, an “activation-
based” model was proposed where the dose (instead of 
the concentration) directly triggers the effect. Predictions 
of these two different models – activation-based versus 
pharmacokinetics-based – differ as follows: in the first 
case, the duration of the effect mostly depends on the 
dose being below or above the threshold, while in the 
second case, the duration increases with increasing 
dosage. Investigating further a global model including 
all the host effects, we found that the migration and CEP 
variables, while relying on the same structural model, had 
different coefficients (and thus different durations). The 
generalizability of this mathematical model to additional 
doses and durations was validated by comparing 
predictions of the model with experimental results at 
a different dose and time point. Importantly, we next 
validated our mathematical model by evaluating tumor cell 
aggressiveness in vivo. To do so, we used an experimental 
lung metastasis model in mice ‘pre-conditioned’ with 
different doses of PTX chemotherapy and injected 
with tumor cells at different time points following drug 
administration. Our previous study indicated that such an 
approach solely evaluates the effect of the host in response 
to chemotherapy [8], as opposed to the tumor-mediated 
response of spontaneously growing tumors treated with 
chemotherapy.

Pharmacokinetic-pharmacodynamic approaches in 
oncology have so far mostly focused on modeling 
hematological toxicities and few of them have been 
dedicated to efficacy [39, 40]. Methods employed for 
modeling the efficacy of cytotoxic drugs have linked 
the effect to the drug concentration by means of well-
established differential equations for description of 
tumor growth [18]. Apart from the classical log-kill 
Skipper-Schabel-Wilcox [41] and Norton-Simon [42] 
models, more recent works include: transit compartments 
modeling damaged cancer cells [43, 44], an interface 
effect compartment [45] or models specific to metronomic 
chemotherapy based on the assumption of an anti-
angiogenic action of the cytotoxic drug [20, 21, 46]. 
Counterintuitively however, when concurrently modeling 
the time-course of the effect and the dose dependence 
for the invasion assays, a model based on this approach 
was unable to adequately reproduce the data. Importantly, 
this inadequacy with the data was structural and not 
merely quantitative. No PK-based model would be able 
to describe this data, as any such model would exhibit 
a plateau phase, which is absent in our data. Therefore, 
despite the fact that our PK-based model uses previously 
published parameter values [24] rather than parameters 
calibrated from actual concentration data, the conclusion 

that a PK-based model does not fit the invasion data 
remains valid. Instead, an ‘activation-based’ model is 
proposed where the dose directly triggers the effect.

While our study only evaluated the host response 
to PTX chemotherapy, it would be of interest to evaluate 
the host response to other chemotherapy drugs or other 
treatment modalities for cancer. For example, a recent 
study demonstrated that breast cancer patients treated with 
neoadjuvant chemotherapy of paclitaxel after doxorubicin 
plus cyclophosphamide exhibit an increased number 
and density of tumor microenvironment of metastasis 
(TMEM), a known prognostic marker of metastasis, 
despite the decrease in tumor size [47]. In another study, 
Brown and colleagues recently demonstrated that high-
dose radiation (6 Gy) leads to colonization of myeloid 
cells in the brain supporting angiogenesis and tumor re-
growth [48, 49]. In addition, we previously reported that 
radiation at doses above 6 Gy resulted in the mobilization 
of CEPs [50]. Furthermore, a study by Bertolini and 
colleagues reported that circulating angiogenic factors 
and bone marrow derived cells are acutely mobilized in 
patients who underwent open surgery when compared to 
minimally invasive surgery, namely, laparoscopy [51]. 
Thus, these aforementioned studies demonstrate that the 
efficacy of various treatment modalities for cancer is 
dependent, in part, on host-generated pro-tumorigenic 
effects. Specifically, we suggest that the anti-tumor effects 
of the drug are, to some extent, counteracted by host-
mediated effects that promote tumor cell aggressiveness, 
ultimately contributing to tumor relapse and metastasis. 
Therefore, measuring such effects, or developing 
mathematical models for these effects, may help predicting 
therapeutic efficacy.

Clinically, several previous studies have investigated 
whether chemotherapy dose adjustment can affect 
therapeutic outcome in cancer patients. The method of 
adjustment was based on personalized tolerability of an 
individual patient to MTD chemotherapy as assessed by 
the degree of toxicity (i.e., side effects) or pharmacokinetic 
measurements. For example, in a retrospective study 
of capecitabine therapy for metastatic breast cancer 
patients, dose adjustment based on adverse events did not 
compromise therapeutic efficacy [52]. In another study 
of methotrexate for the treatment of childhood acute 
lymphoblastic leukemia, a comparison between fixed-
dose chemotherapy and individualized-dose based on 
drug concentration in plasma, resulted in better outcome 
in those patients in the individualized therapy arm [53]. In 
addition, it has also been demonstrated in several clinical 
pharmacokinetic studies that even though LDM therapy 
is administered at low-doses, active drug concentrations 
can be achieved by such therapy owing to the continuous 
administration of the drug [54]. Thus, it is critical to assess 
the optimal dosage of drugs in a personalized manner in 
cancer patients [55]. We propose that the host response to 
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therapy could be used as an additional parameter in order 
to define the optimal dose to enhance therapeutic outcome.

The differential effects on CEP mobilization, and 
tumor cell migration, and invasion at different time points 
following drug administration suggest that expression of 
a diverse range of factors contribute to the host response 
to therapy. Several previous studies reported that G-CSF 
and SDF-1, for example, are factors involved in the acute 
mobilization of CEPs in both patients and mice in response 
to MTD chemotherapy [3, 56]. In addition, intrinsic and 
extrinsic tumor cell expressing factors affect migration 
and invasion properties. MMPs and other ECM proteolytic 
enzymes secreted by tumor and host cells contribute to 
ECM degradation leading to enhanced invasion properties 
of tumor cells [57]. Furthermore, increased levels of 
epidermal growth factor (EGF), insulin growth factor-1 
(IGF1) and lysophophatidic acid (LPA) have been shown 
to promote tumor cell pro-migratory effects [25]. Thus, 
such factors present in the plasma represent candidates 
that are most likely affected by the therapy. The question 
is whether the circulating levels of these different factors 
are altered in response to different doses of therapy or over 
time after drug administration. It would be of interest to 
evaluate the dynamics of some of these factors and assess 
whether they correlate with the dynamics of specific host 
responses assessed in this study.

In summary, our study describes the process of 
identifying a proper mathematical equation to adequately 
formulate various host-mediated effects in response to 
chemotherapy drugs. This model, which is based on three 
specific host-mediated effects, can be applied to other 
chemotherapy drugs. Using this model we were able to 
adequately predict host-mediated effects in response to 
different doses of drugs administered in mice. We propose 
that this mathematical tool may aid in the design of 
appropriate chemotherapy regimens for cancer patients in 
order to improve therapeutic outcome.

MATERIALS AND METHODS

Equations and assumptions

Independent models

These models were designed to describe each of 
the host-mediated effects separately and consisted of 
two classes: pharmacokinetics-based or activation-based 
models.

Pharmacokinetics-based models relied on the 
following assumptions (see scheme in Figure 3A):

(PH1) The PTX concentration follows a one- or two-
compartmental distribution kinetics with the administered 
dose as input [23].

(PH2) The effect is tied to the concentration of PTX 
(in either the plasma or some other tissue compartment) 
through a Hill function (also called Emax) dependence [23].

A one-compartment pharmacokinetics model 
was quickly disregarded (see results) and thus we only 
report on the model with two compartments (plus a usual 
absorption compartment).

The corresponding equations write:
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The variables are:
The time t  (= duration following injection of PTX); 

the dose D, the PTX concentrations in the absorption (C0), 
central (C1) and tissue (C2) compartments; and the effect E.

The parameters of these models (specific to each 
experimentally measured effect) are:

The volume of distribution of the central 
compartment Vd; the compartment transition and 
elimination rates k k

01 10
,  and k

20
; and the Emax model 

effect parameters, baseline effect ε, maximal effect Emax ,� � � 
concentration needed to have half of the maximal effect 
EC

50
 and Hill coefficient γ .
In contrast, activation-based models are based on 

the reverse mechanism (Figure 3E):
(AH1) The effect is triggered directly by the dose (in 

contrast to the concentration), via an Emax dependence.
(AH2) Once activated, the effect follows a two-

compartmental kinetics.
The corresponding equations write:
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The dynamic variables are now E E
0 1
,  and E for 

description of the effect (or the dynamics of systemic 
factors following activation of the host response). The 
parameters have similar interpretation as in the above 
model, except ED

50
, which is now a dose-dependent 

threshold and an additional efficacy parameter e.
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Global model

The global model (Figure 4A) was built on PK-
based models for the migration and CEP effects – 
relying both on the paclitaxel blood concentration – and 
activation-based dynamics for the invasion effect. The 
equations write:
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We found that having the same parameter for the 
absorption, elimination in the two compartments and 
transfer kinetics for the invasion effect, was able to 
adequately describe the data. Consideration of different 
parameters resulted in poor identifiability and thus we 
considered the same transfer rate k2.

Cell lines and tissue culture procedures

MDA-MB-231 human breast carcinoma cell 
line was purchased from the American Type Culture 
Collection (ATCC, USA), and was used within 6 
months of resuscitation. The cell line was authenticated 
by the genomic center at the Biomedical Core Facility, 
Rappaport faculty of medicine (Technion). The cells were 
also tested to be negative for mycoplasma. Cells were 
cultured in Dulbecco’s modified eagle medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS), 1% 
L-glutamine, 1% sodium-pyruvate and 1% Penicillin-
Streptomycin (Biological Industries, Israel), and cultured 
at 37°C in 5% CO2.

Animal tumor model and drugs

The use of animals and experimental protocols were 
approved by the Animal Care and Use Committee at the 
Technion (ethic number IL0890716). Eight-to-ten week 
old non-tumor bearing BALB/c mice (Envigo, Israel) were 
administered intraperitoneally with PTX chemotherapy 
(TEVA pharmaceutical industries, Israel), at the doses 
indicated in the text, ranging from 0-25 mg/kg. Blood was 
drawn after 24-168 hours for the evaluation of viable CEP 
levels by flow cytometry as described below. In addition, 
plasma was separated, and subsequently used in migration 
and invasion assays as described below. In a separate 
experiment, 10 week old NOD-SCID female mice (breed 
in house) were used for experimental lung metastasis 
assay. The mice were injected with PTX at a dose of 25 
mg/kg or 15mg/kg and MDA-MB-231 cells (2x106 cells/
mouse) were then injected through the tail vain at 24 hours 
and 72 hours after initial drug administration, respectively. 
Survival was monitored daily and a Kaplan-Meier survival 
curve was plotted.

Flow cytometry

Viable CEP levels in peripheral blood were 
evaluated by flow cytometry as previously described with 
some modifications [58]. Briefly, blood was collected 
from mice by cardiac puncture. Cells were stained with a 
panel of monoclonal antibodies including anti-CD45 (to 
exclude hematopoietic cells), anti-VEGF2 and anti-CD31 
(endothelial cell markers), and anti-CD117 (a progenitor 
marker). 7-amino actinomycin-D (7AAD) was used to 
distinguish between viable and dead cells as previously 
described [59]. Viable CEPs were defined as CD45-/dim/
CD117+/Flk-1+/CD31+. After red blood cell lysis, cell 
suspensions were evaluated by BD LSR-Fortessa (BD 
Biosciences, San Jose, CA, USA). At least 500,000 events 
were collected in the overall gates, and at least 150 events 
were collected in the viable CEP gate. Flow cytometry 
analysis was performed using FlowJo V10 software 
(Ashland, OR, USA).

Migration and invasion assays

The migration and invasion properties of MDA-
MB-231 cells were assayed in either fibronectin- or 
Matrigel-coated Boyden chambers, respectively, using a 
previously described protocol [8]. Briefly, serum-starved 
cells (2x105 cells in 0.2 ml medium) were added to the 
filter that was coated with either fibronectin (10μg/ml) or 
Matrigel (50μl). The lower chamber was filled with serum-
free DMEM that contained 5% plasma from treated mice. 
After 4 hours (for migration) or overnight (for invasion) 
incubation, the cells that migrated to the bottom filter, 
were fixed and stained with Crystal violet. Images were 
captured using a LEICA DMI 6000B fluorescence inverted 
microscope per x100 objective-field (Leica Microsystems, 
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Germany). At least 10 fields per group were evaluated. 
The percentage of positive pixels (representing cells) 
covering the bottom membrane compartment over the total 
pixels in the field was calculated using Photoshop SC2 
V9.0 (San Jose, CA, USA). Experiments were carried out 
in triplicate, and were independently performed at least 
twice.

Statistical model and fits of the data

Considering a model M t D, ;θ( )  depending on the 
time t, dose D and a vector of parameters θ  on one hand, 
and on the other hand, data Y t Di

j k( , )  with i the index 
of the replicate and j and k the indices of time and dose, 
respectively, we assumed:
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j k j k i j k
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with ηi j k, ,  accounting for the measurement error and 
assumed to be normally distributed. Writing the likelihood 
of all the observations together (i.e. pooling the dose-
dependent effect and duration-dependent effect) gives:
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where Ik  and I j are the number of replicates for dose Dk (at 
fixed time t = 24 hours) and time t j (at fixed dose D = 25 
mg/kg), respectively. Taking the log of this expression 
makes the maximization of the likelihood equivalent to 
maximization of the log-likelihood defined by:
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The apposite of this function was minimized using the 
function fminsearch of the Matlab software (Mathworks 
Inc., version R2015a with optimization toolbox). Statistical 
analysis of the goodness-of-fit of the mathematical models 

was performed using previously reported, internally 
developed, software [20]. Model selection was based on 
the Akaike and Bayesian Information Criteria (respectively 
AIC, and BIC), defined by the following formulae [60]:
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where θ^  and σ̂ are the parameters estimates from 
likelihood maximization and P is the number of 
parameters. These criteria allow balancing the pure 
goodness-of-fit of a model with the number of parameters, 
thus helping to avoid overfitting. Another measure of 
significant superiority of a model with more parameters 
(valid for embedded models) is given by the result of 
a likelihood ratio test which rejects a null model M1 in 
favor of an alternative model M2 (with M1 a submodel of 
M2) if its associated p-value is lower than a significance 
threshold, taken here to 0.05. This p-value is computed 
from the following statistic:

D l M l M= ( ) − ( )( )2
1 2

which follows a chi-square distribution with P P
2 1
−  

degrees of freedom under the null hypothesis [61].

Statistical analysis

Data are expressed as mean+/-standard deviation 
(SD). The statistical significance was performed by one-
way ANOVA for multiple groups followed by Tukey ad 
hoc statistical test using Graphpad prism 5.0 (La Jolla, 
CA). In the in vivo survival study the number of mice 
per group was set at n=7-8 mice/group (as specified in 
the figures). The sample size for each experiment was 
designed to have 80% power at a two-sided α of 0.05. 
For the calculation of mouse survival, a Kaplan-Meier 
Survival Curve statistical analysis was performed in 
which the uncertainty of the fractional survival of 95% 
confidence intervals was calculated. Differences between 
all groups were compared with each other, and were 
considered significant at values below 0.05.
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