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ABSTRACT
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, while 

coronary artery disease (CAD) account for a large part of CVDs. Vascular CXCR4 could 
limit atherosclerosis by maintaining arterial integrity. Here, we conducted a population-
based, case-control study to evaluate the associations of common genetic variation 
within the CXCR4 gene (rs2228014, rs117600832, rs2471859, and rs2322864) with 
CAD risk in a Chinese population. We found that  CXCR4 rs2228014 was significantly 
associated with 1.29-fold increased risk of CAD (A vs G: OR = 1.29; 95% CI = 1.07–1.55; 
P = 0.007). The subjects with genotype AA (OR = 1.98; 95% CI = 1.03–3.81; P = 0.041) 
and AG (OR = 1.27; 95% CI = 1.02–1.58; P = 0.030) have higher risk of CAD, compared 
with those with genotype GG. Furthermore, both in the CAD patients with diabetes and 
those without diabetes, rs2228014 was significantly associated with increased risk of 
CAD (P < 0.05). Additionally, we also validated the significant association for rs2322864 
(C vs T: OR = 1.20; 95% CI = 1.00–1.44; P = 0.046). Knockout of CXCR4 gene could 
significantly impair the capacity of cholesterol efflux (P < 0.01). These findings strongly 
suggest that CXCR4 polymorphisms might contribute to CAD susceptibility, and the 
exact biological mechanism awaits further research.

INTRODUCTION

Coronary artery disease (CAD), also known as 
ischemic heart disease (IHD) and coronary heart disease 
(CHD), was the leading cause of death globally [1]. 
Although CAD mortality has gradually declined over the 
last decades in western countries, it still causes about one-
third of all deaths in people older than 35 years worldwide 
[2]. Although traditional risk factors, such as age, male 
gender, smoking, alcohol drinking, obesity, hypertension, 
hypercholesterolemia, and diabetes mellitus have been 
identified to contribute to the pathogenesis of CAD, 
genetic factor also accounted for 30%~60% of the risk of 
CAD [3–6]. Genome-wide association studies (GWASs) 

have identified many susceptibility loci for CAD, 
although large part of genetic etiology of CAD could 
not be explained until now [7–10]. These also included 
the contribution of the famous Framingham Heart Study, 
which was established in 1948 by the US Public Health 
Service [11]. 

Recently, Doring et al [12] reported that vascular 
CXCR4 could limit atherosclerosis through maintaining 
arterial integrity, preserving endothelial barrier function. 
This means enhancing arterial CXCR4 might open 
novel therapeutic options in atherosclerosis. CXCR4-
deficiency favored a synthetic phenotype, the occurrence 
of macrophage-like SMCs in the lesions, and impaired 
cholesterol efflux [12]. The CXCL12/CXCR4 axis have 
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been found to play a critical role in coronary artery 
development [13]. A nested case-control study  found that 
increased CXCR4 level in peripheral CD34+ cells was 
associated with good coronary collateralization in patients 
with chronic total coronary occlusion [14]. Genetic 
variations of CXCR4 have been linked to susceptibility of 
many phenotypes, including HIV/SIV infection, multiple 
cancers, and so on [15–18]. In this study, we performed a 
candidate gene study of CAD using a tag single-nucleotide 
polymorphism (tagSNP) approach for interrogating 
common genetic variation within the CXCR4 gene in a 
Chinese population. 

RESULTS

Characteristics of study subjects

The characteristics of the study participants 
were summarized in Table 1. We totally included 1,200 
unrelated CAD patients and 1,200 geographical-matched 
healthy controls in this study. No significant differences 
were found between cases and controls for age, gender, 
hypertension, and alcohol status. However, significant 
associations were detected for smoking status, family 
history of CAD, diabetes status, body-mass index, TC, 
TG and HDL-C (P < 0.005). When included in a logistic 
regression model, smoking status, family history of CAD, 
diabetes status, TC, TG and HDL-C were determine as the 
risk predictors of CAD.

Genotype analyses

Table 2 summarized the genotypic frequencies 
of the four tagSNPs of the CXCR4 gene (rs2228014, 
rs117600832, rs2471859, and rs2322864) in Chinese 
CAD patients and healthy controls. The distribution of all 
the four CXCR4 variants in the controls was compatible 
with HWE (P > 0.05). After adjusted for age, gender, 
smoking status, drinking status, diabetes, hypertension, 
smoking status, family history of CAD, body-mass index, 
TC, TG and HDL-C, SNP rs2228014 showed significant 
association with increased CAD risk (A vs G: OR = 
1.29; 95% CI = 1.07–1.55; P = 0.007). The subjects with 
genotype AA (OR = 1.98; 95% CI = 1.03–3.81; P = 0.041) 
and AG (OR = 1.27; 95% CI = 1.02–1.58; P = 0.030) have 
higher risk of CAD, compared with those with genotype 
GG. For rs2322864, we also detected a significant 
association (C vs T: OR = 1.20; 95% CI = 1.00–1.44; 
P = 0.046). No significant association was detected for 
CXCR4 rs117600832 and rs2471859.

Stratified analyses

To further evaluate the potential effect modification 
of the diabetes status, stratified analyses were conducted 
for rs2228014 (Table 3). Both in the CAD patients with 
diabetes and those without diabetes, rs2228014 was 

significantly associated with increased risk of CAD, which 
confirmed the robustness of the findings.

Cholesterol efflux evaluation

Furthermore, we evaluated the effect of knockout 
of the CXCR4 gene on the lesional cholesterol efflux. 
As shown in Figure 1, cholesterol efflux capacity was 
significantly lower in the CXCR4 knockout group 
(P < 0.01). 

DISCUSSION

The current study explored the associations between 
four genetic variants of the CXCR4 gene and risk of CAD 
in a population-based, case-control study. We found that  
CXCR4 rs2228014 was significantly associated with 
1.29-fold increased risk of CAD. Furthermore, both in the 
CAD patients with diabetes and those without diabetes, 
rs2228014 was significantly associated with increased risk 
of CAD. We also validated the significant association for 
rs2322864 in CAD patients. 

CXCR4 gene was located at 2q22.1. This gene 
encodes a CXC chemokine receptor specific for stromal 
cell-derived factor-1, while the encoded protein has 7 
transmembrane regions and is located on the cell surface 
[19]. CXCR4 was first found to mediate CD4-independent 
infection by HIV-2 in 1996 [20]. Since, there is increasing 
evidence that abnormal expression and genetic variation 
of CXCR4 is involved in several pathological conditions, 
including immune diseases, viral infections, multiple 
cancers, and cardiovascular diseases [21–35]. Recently, 
vascular CXCR4 was identified to limits atherosclerosis 
by maintaining arterial integrity, and rs2322864, a 
SNP located within the CXCR4 locus, was detected 
to be associated with increased risk for CAD [12]. The 
mechanism referred that CXCL12/CXCR4 chemokine 
ligand/receptor axis promoted endothelial barrier function 
through VE-cadherin expression and the stabilization of 
junctional VE-cadherin complexes [12].

With this background, we evaluated the genetic 
variants of the CXCR4 gene with risk of CAD, which 
identified a significant association for rs2228014 and 
validated the significant association for rs2322864 in 
CAD patients. Combinational polymorphisms of seven 
CXCL12-related genes, including rs2228014, were found 
to be protective against breast cancer in Taiwan first [36]. 
A meta-analysis including  3684 cancer patients and 5114 
healthy controls participating in 11 studies also showed 
that rs2228014 polymorphism was associated with a 
significantly increased risk of cancer in homozygote 
model (OR = 2.01, 95% CI: 1.22–3.33) and in recessive 
model (OR = 1.97, 95% CI: 1.23–3.16) [37]. In current 
study, our results indicated that SNP rs2228014 showed 
significant association with increased CAD risk (A vs G: 
OR = 1.28; 95% CI = 1.07–1.54; P = 0.007). 
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Table 1: Clinical demographic characteristics of CAD cases and controls
Variables Cases (n = 1200) Controls (n = 1200) P value
Age
    ≥ 60 564 (47.0%) 596 (49.7%) 0.191
  < 60 636 (53.0%) 604 (50.3%)
Gender
  Male 877 (73.1%) 859 (71.6%) 0.411
  female 323 (26.9%) 341 (28.4%)
Smoking status
  Smokers 422 (35.2%) 241 (20.1%) P < 0.001
  Non-Smokers 778 (64.8%) 959 (79.9%)
Alcohol status
  drinkers 269 (22.4%) 250 (20.8%) 0.346
  Non-drinkers 931 (67.6%) 950 (79.2%)
Diabetes
  Yes 449 (37.4%) 97 (8.1%) P < 0.001
  No 751 (62.6%) 1103 (91.9%)
Hypertension
  Yes 412 (34.3%) 433 (36.1%) 0.369
  No 788 (65.7%) 767 (63.9%)
Family history of CAD
  Yes 127 (10.6%) 302 (25.2%) P < 0.001
  No 1073 (89.4%) 898 (74.8%)
Body-mass index 24.1 ± 2.4 23.9 ± 2.2 0.033
  TC (mmol/L) 4.55 ± 0.65 4.09 ± 0.55 P < 0.001
  TG (mmol/L) 1.68 ± 0.19 1.58 ± 0.18 P < 0.001
  HDL-C (mmol/L) 1.55 ± 0.26 1.44 ± 0.24 P < 0.001

Figure 1: Cholesterol efflux capacity in the knockout and control group. Data are expressed as mean ± SD.
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This study also has several strength. First, the 
genetic background of cases and controls was well 
matched. To avoid false-positive associations caused 
by differences in age, gender and other covariates, we 
selected cases and controls that are well matched for age 
and gender, and ensured that the associations remained 
significant after adjustment for potential confounding 
bias; Second, the sample size were adequate; Third, 
results of rs2228014 remained significant after 
Bonferroni correction for multiple comparisons (0.007*4 
= 0.028, Bonferroni-adjusted). Also, several limitations 
of our study should be considered. First, inherent 
selection bias for case-control study; second, lack of 
replication in an independent population; third, we 

didn’t reach a Bonferroni-adjusted statistical significance 
for rs2322864, although our sample size was moderate 
for a common variant; fourth, some other confounding 
factors may potentially mediate the effect of selected 
polymorphisms on CAD risk such as physical activity, 
diet habit, family history of other cardiovascular diseases 
and so on. However, these limitations do not detract from 
the main conclusions. 

In conclusion, our study provided evidence that 
CXCR4 rs2228014 and rs2322864 were significantly 
associated with increased risk of CAD. The replications 
of our studies in other populations as well as further 
systematic investigations are needed to clarify the 
molecular mechanisms underlying CXCR4 regulation.

Table 2: Association between genetic variations of CXCR4 and risk of CAD
CAD cases Controls OR (95% CIs)* P value

rs2228014
GG 844 896 1.00 (Reference)
AG 331 290 1.27 (1.02–1.58) 0.030
AA 25 14 1.98 (1.03–3.81) 0.041
A vs G 1.29 (1.07–1.55) 0.007
AA+AG vs GG 356/844 304/896 1.29 (1.06–1.58) 0.013
AA vs AG+GG 25/1175 14/1186 1.87 (0.97–3.63) 0.063
rs117600832
GG 1036 1045 1.00 (Reference)
CG 151 145 1.09 (0.71–1.67) 0.691
CC 13 10 1.35 (0.55–3.30) 0.511
C vs G 1.11 (0.82–1.49) 0.492
CC+CG vs GG 164/1036 155/1045 1.11 (0.77–1.59) 0.570
CC vs CG+GG 13/1187 10/1190 1.35 (0.55–3.35) 0.510
rs2471859
AA 1049 1051 1.00 (Reference)
AG 139 140 1.03 (0.61–1.73) 0.911
GG 12 9 1.38 (0.54–3.53) 0.501
G vs A 1.07 (0.84–1.38) 0.600
GG+AG vs AA 151/1049 149/1051 1.06 (0.46–2.40) 0.897
GG vs AA+AG 12/1188 9/1191 1.39 (0.54–3.54) 0.490
rs2322864
TT 789 830 1.00 (Reference)
CT 376 341 1.21 (0.99–1.48) 0.061
CC 35 29 1.31 (0.80–2.15) 0.288
C vs T 1.20 (1.00–1.44) 0.046
CC+CT vs TT 411/789 370/830 1.22 (1.01–1.47) 0.040
CC vs CT+TT 35/1165 29/1171 1.30 (0.78–2.16) 0.312

* Adjusted for age, gender, smoking status, drinking status, diabetes, hypertension, smoking status, family history of CAD, 
body-mass index, TC, TG and HDL-C.
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MATERIALS AND METHODS

Study subjects

In current study, we included a total of 1,200 
unrelated patients with CAD  which were recruited 
between before Oct 2016. The diagnosis of CAD was 
certified by coronary angiography performed via a 
quantitative coronary angiographic system. CAD was 
defined as luminal narrowing of more than 50% in one or 
more main coronary arteries. Control subjects comprised 
1,200 healthy subjects from the same geographical area who 
were undergoing a routine check-up. All the participants 
were Chinese-Han population. A face to face interview 
and a review of the medical records were implemented to 
collect the demographic and clinical characteristics data. 
After the interview, five milliliter peripheral venous blood 
was collected in tubes containing disodium-EDTA as an 
anticoagulant and then stored at −80°C until genomic DNA 
extraction. All the subjects included in this case-control study 
were given an informed consent and also the study protocol.

Variable definition

Diabetes was diagnosed with at least one of the 
following criteria: 1) a random venous plasma glucose 
concentration ≥ 11.1 mmol/l; 2) a fasting plasma glucose 
concentration ≥ 7.0 mmol/l; 3) two hour plasma glucose 
concentration  ≥  11.1  mmol/l  (two  hours  afer  75  g 
anhydrous glucose in an oral glucose tolerance test). 
A diagnosis of hypertension was based on the presence 
of elevated systolic (≥ 140 mmHg) and/or diastolic (≥ 90 
mmHg) blood pressure, or current use of antihypertensive 

medications. Smoking was defined as the non-casual 
current or ever inhalation of the smoke of burning tobacco 
encased in cigarettes, pipes, and cigars. While alcohol 
status was defined as frequent alcohol consumption. 

TagSNP selection, DNA extraction, and genotyping

The TagSNPs were selected using the pairwise LD 
function of the SNAP (https://www.broadinstitute.org/
mpg/snap/) web server [38]. These resulted three tagSNPs 
of  the CXCR4 gene were selected, including rs2228014, 
rs117600832, and rs2471859. We also including the SNP 
rs2322864, which was located in the flanking region of the 
CXCR4 gene and detected previously [12]. Genomic DNA 
used for SNPs genotyping was extracted from peripheral 
blood lymphocytes using a DNA extraction kit (TianGen, 
Beijing, China). The genotyping was conducted using 
SEQUENOM Mass-ARRAY system. For quality control, 
genotyping was performed without knowledge of the case 
or control status. One hundred random-selected samples 
were tested in duplicate, and the reproducibility was 100%.

CRISPR/Cas9-mediated knockout of the CXCR4 
gene

The guide RNAs were designed to recognize the 
CXCR4 Gene using the CRISPR Design Tool (http://
crispr.mit.edu/). The guide RNA with the highest score was 
selected, and cloned into the PGL3 plasmid. Precise genome 
editing in mice was performed using the 3-component 
CRISRP-Cas9 system, while the knockout of CXCR4 
gene was confirmed by sequencing. Then we analyzed the 
effect of CRISPR/Cas9-mediated knockout of the CXCR4 

Table 3: Association between CXCR4 rs2228014 and Risk of CAD stratified by diabetes
CAD cases Controls OR (95% CIs) * P value

CAD with diabetes
GG 315 896 1.00 (Reference)
AG 124 290 1.27 (0.96–1.68) 0.095
AA 10 14 2.12 (0.97–4.65) 0.061
A vs G 1.31 (1.03–1.66) 0.026
AA+AG vs GG 134/315 304/896 1.30 (1.00–1.69) 0.049
AA vs AG+GG 10/339 14/1186 2.60 (1.18–5.72) 0.018
CAD without diabetes
GG 529 896 1.00 (Reference)
AG 207 290 1.27 (0.99–1.62) 0.055
AA 15 14 1.89 (0.91–3.93) 0.088
A vs G 1.29 (1.05–1.59) 0.017
AA+AG vs GG 222/529 304/896 1.29 (1.02–1.62) 0.032
AA vs AG+GG 15/736 14/1186 1.79 (0.85–3.77) 0.122

* Adjusted for age, gender, smoking status, drinking status, hypertension, smoking status, family history of CAD, body-mass 
index, TC, TG and HDL-C.
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gene on the lesional cholesterol efflux. Efflux is given as 
the percentage of counts recovered from the medium in 
relation to the total counts present on the plate. All efflux 
experiments were performed in duplicate for each sample.

Statistical analysis

The statistical analysis on the characteristics of 
the subjects was performed with Student’s t-test for the 
continuous variables, while Pearson x2 test was used 
for the categorical variables. The genotypes were tested 
for Hardy–Weinberg equilibrium (HWE) using Fisher’s 
exact test in controls. The logistic regression models 
were performed to calculate the odds ratios (ORs) and 
95% confidence intervals (CIs) and adjust the potential 
confounding factors by including these factors in the 
regression models. Statistical analysis was performed on 
SPSS v. 19.0 software (SPSS, Chicago, IL). A P value 
< 0.05 was considered statistically significant.
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