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ABSTRACT
Identification of reliable predictive biomarkers and new therapeutic targets is 

a critical step for significant improvement in patient outcomes. Here, we developed 
a multi-step bioinformatics analytic strategy to mine large omics and clinical data 
to build a prognostic scoring system for predicting the overall survival (OS) of lung 
adenocarcinoma (LuADC) patients. In latter we first identified 1327 significantly and 
robustly deregulated genes, 600 of which were significantly associated with the OS of 
LuADC patients. Gene co-expression network analysis revealed the biological functions 
of these 600 genes in normal lung and LuADCs, which were found to be enriched 
for cell cycle-related processes, blood vessel development, cell-matrix adhesion and 
metabolic processes. Finally, we implemented a multiple resampling method combined 
with Cox regression analysis to identify a 27-gene signature associated with OS, 
and then created a prognostic scoring system based on this signature. This scoring 
system robustly predicted OS of LuADC patients in 100 sampling test sets and was 
further validated in four independent LuADC cohorts. In addition, in comparison to 
other existing prognostic gene signatures published in the literature, our signature 
was significantly superior in predicting OS of LuADC patients. In summary, our multi-
omics and clinical data integration study created a 27-gene prognostic risk score that 
can predict OS of LuADC patients independent of age, gender and clinical stage. This 
score could guide therapeutic selection and allow stratification in clinical trials.

INTRODUCTION

Lung cancer is the leading cause of cancer-
related death worldwide [1], where non-small cell lung 
cancer (NSCLC) is the most common type of cancer 
affecting the lungs with adenocarcinoma being the 
most common subtype. Microarray and next generation 
sequencing technologies have become invaluable tools 

to deconvolute the genetic heterogeneity and complexity 
of NSCLC, providing tremendous information to define 
new biomarkers for diagnosis, prognosis and prediction 
of therapeutic response, and to identify new potential 
therapeutic targets. Despite the advances in our knowledge 
of the genetic factors underlying this disease, the five-year 
survival rate for NSCLC patients is approximately 21% 
[2]. Lung cancer treatment is therefore moving rapidly 
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towards an era of personalized medicine, where the 
molecular characteristics of an individual patient’s tumor 
will dictate the optimal treatment modalities. For example, 
NSCLC patients with EGFR mutations show significantly 
improved responses to treatment with tyrosine kinase 
inhibitors, e.g., gefitinib or erlotinib, that target this 
protein [3].

Patient stratification based on histopathological 
markers, immunohistochemistry and other molecular 
factors has been evaluated to improve treatment decisions 
in lung adenocarcinoma (LuADC) patients [4–6]. The 
availability of large cancer genomic data sets allows for 
unbiased approaches to identify multi-gene signatures 
important in tumor progression. Gene transcript based 
signatures that predict prognosis have successfully been 
developed for many different tumor types [7–10]. A 
number of gene signatures using microarray analysis show 
promise for prognosis or prediction of response to therapy 
in NSCLC [11–14]. However, these signatures were 
either based on incomplete genome annotation or were 
based solely on existing knowledge. Therefore, a new 
comprehensive and unbiased genome-wide screening for 
genes associated with lung cancer prognosis is warranted.

Here we developed a multi-step bioinformatics 
analytic strategy to mine large omics data together 
with clinical information to develop a gene expression-
based prognostic risk score for LuADCs. We employed 
a resampling method by splitting the LuADCs TCGA 
dataset into training and testing sets and then used 
repeated cross-validation to identify critical genes for 
prognostic classification. Based on these analyses, we 
created a 27-gene expression prognostic scoring system 
and successfully applied it to predict overall survival 
(OS) in multiple validation datasets. Our study raises the 
prospect that the practicality of LuADC patient prognosis 
may be assessed by this prognostic scoring system.

RESULTS

Identification of consistently deregulated genes 
in human LuADCs

A meta-analysis of three publically available 
LuADC transcriptome datasets (GSE31210, GSE19188 
and GSE19804) was conducted to identify genes that are 
consistently deregulated in human LuADCs compared to 
normal lung tissues (Figure 1). The significant differential 
expression of genes was assessed by a fold change cut-
off of 5 and adjusted p-value < 0.0001 (Supporing 
Information Supplementary Table 1). This resulted in a 
set of 1982 probe IDs (1374 down-regulated and 608 up-
regulated) represented by 1327 unique genes (884 down-
regulated and 543 up-regulated), which were consistently 
deregulated in all three datasets (Figure 1; Supporing 
Information Supplementary Table 1). 

Impact of the deregulated genes on overall 
survival in human LuADCs 

To assess the importance of the 1327 deregulated 
genes in LuADC development, we evaluated their 
prognostic value for LuADC patients in a large public 
database combining tumor gene expression and patient 
survival [17] (Figure 2A). The LuADC patient cohort was 
divided into two equal groups based on median expression 
for each gene. Subsequently, the effects of high or low 
expression levels on OS were examined using the Kaplan-
Meier survival curve and log-rank test. This analysis 
identified 600 out of 1327 genes that were significantly 
associated with OS (adjusted p-value < 0.05; Figure 2B, 
Supporing Information Supplementary Table 2). 406 
genes had a hazard ratio (HR) < 1 (higher gene expression 
associated with good prognosis) and 194 genes had a HR > 
1 (higher gene expression associated with poor prognosis) 
(Supporing Information Supplementary Table 2).

To reveal the molecular mechanism underlying 
LuADC development, we determined which Gene 
Ontology (GO) categories are statistically overrepresented 
in the 600 gene set. ClueGo was used to integrate GO 
terms and create a functionally organized GO network 
(Figure 3) [18]. We observed significant enrichment for 
cell cycle, adhesion, cell death, angiogenesis, metabolism 
and kinase activity (Figure 3), all of which are hallmarks 
of cancer. 

Expression architecture of prognostic genes in 
normal lung and LuADCs

Co-expression network analysis has been used 
to identify clusters of genes with common biological 
functionality important in normal or tumor tissues. 
We used data obtained from the GTEx database of 320 
normal human lung tissues and the TCGA database of 
517 LuADC samples to reveal the expression architecture 
of 600 OS-associated genes in normal lung and LuADC 
tissues. We first calculated correlation coefficients among 
600 genes in both normal and LuADC tissue samples, 
and then constructed a gene co-expression network 
where nodes represent individual genes and edges 
connecting genes represent a significant correlation in 
expression (R ≥ |0.7|; adjusted p-value < 0.001; Supporing 
Information Supplementary Figure 1). We then performed 
a comparison analysis between these two correlation 
networks by generating a composite network highlighting 
nodes and edges that were found exclusively in normal 
lung (red), exclusively in LuADC (green) or present in 
both (white) (Figure 4A). This analysis revealed a shared 
co-expression clique enriched for cell cycle and mitosis 
genes and a second, larger, clique containing a sub-clique 
of genes co-expressed in normal lung (red) and genes co-
expressed in LuADC (green). Gene Ontology analysis 
of these subcliques revealed significant enrichment for 



Oncotarget6864www.impactjournals.com/oncotarget

muscle growth, metabolism and cell-matrix adhesion 
in normal lung and endothelial cell differentiation and 
angiogenesis in LuADC (Figure 4B).

Development of a gene expression signature-
based prognostic risk score in LuADC

We designed a strategy to develop a prognostic 
scoring system (Figure 5A). We first used a resample 
method to split the TCGA dataset (total 517 patients) into 
100 training (350 patients) and 100 testing (167 patients) 
datasets. We then performed a multivariate Cox regression 
analysis on all 100 training sets to discover statistically 
significant independent genes within the 600-gene set 
for predicting OS. The genes that recurred in at least 
30% of 100 training sets were included in our final 27-
gene signature (Supporing Information Supplementary 
Table 3). A prognostic score for a patient was used to 
assess a patient’s risk of death and was defined as the 
linear combination of logarithmically transformed gene 
expression levels weighted by average Cox regression co-
efficient obtained from 100 training data sets (Supporing 
Information Supplementary Table 4). The prognostic 
scores were assigned for all patients in both training 
and testing sets. In each training set, the patients were 
then divided into tertiles based on their prognostic score 

(good, intermediate and poor) and the prognostic score 
at the cut-points was recorded. Kaplan-Meier analysis 
was performed and a log-rank test was used to determine 
significant differences in OS among different groups 
for all training sets (Figure 5B). The hazard ratio (HR) 
was calculated for each testing set for the “intermediate” 
and “poor” groups in comparison to the “good” group 
(Figure 5C). In all test sets, patients in the “poor” group 
had a significant shorter OS than those in “good” group 
(HR confidence interval above “1”) (Figure 5C, bottom 
panel), where in more than 70% of the test sets, patients in 
the “intermediate” group had a significant shorter OS than 
those in “good” group (Figure 5C, top panel), indicating 
that this prognostic scoring system has discriminative 
ability to distinguish patients with good prognosis from 
patients with worse prognosis.

27-gene expression signature-based prognostic 
risk score independently predicts overall survival 
in LuADC patients

We then tested our 27-gene prognostic signature in 
four independent datasets of LuADC patients. Prognostic 
scores for all patients were calculated and patients 
were ranked based on their score and divided into three 
equal sized cohorts. Kaplan-Meier analysis revealed a 

Figure 1: Human lung tissue data sets used in this study. Three independent gene transcript data sets containing LuADC and 
normal lung tissue samples were used. Differential expression of tumor versus normal using a fold-change cut-off of 5.0 and adjusted 
p-value < 0.0001 identified the 1982 common probe IDs consistently deregulated in all three datasets.
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significant difference among three patient cohorts. Patients 
with a high prognostic score had a significantly shorter 
OS compared to patients with a low prognostic score (p < 
0.001) in all datasets (Figure 6A). Finally, we investigated 
whether our prognostic score was an independent 
prognostic factor over clinical information (age, gender 
and stage) using Cox regression. We conclude that our 
prognostic scores are independently and significantly 
associated with OS (Figure 6B).

Comparison of 27-gene expression signature 
with existing prognostic signatures

There are a number of prognostic signatures for 
NSCLC prognosis in the literature. We compared the 
performance of three published signatures [12–14] with our 
27-gene signature. For each of the published signatures, we 
performed a multivariate Cox regression analysis on the 
same 100 training sets, averaged the Cox regression co-

efficient and calculated prognostic scores for all patients. 
For each signature, the patients were then divided into 
tertiles based on their prognostic scores and the prognostic 
scores at the cut-points were recorded. Finally, the HR 
was calculated for each testing set for the “intermediate” 
and “poor” groups in comparison to the “good” group 
(Supporing Information Supplementary Figure 2). The 
median HR of our 27-gene signature was on average 2.2-
fold higher in the “intermediate” vs. “good” group and 
5.0-fold higher in the “poor” vs “good” group compared 
to each of the three published signatures (Figure 5D). We 
conclude that our signature was significantly superior in 
predicting OS of the LuADC patients.

DISCUSSION

Lung cancer is the most common cancer and the 
leading cause of cancer death among in men worldwide 
[1, 20]. NSCLC, like many other cancers, exhibits 

Figure 2: Flow diagram for identifying and validating a prognostic biomarker panel for LuADC. (A) The 1982 robustly 
deregulated probe IDs represented 1327 genes of which 600 were significantly associated with LuADC overall survival used for functional 
analysis. (B) Kaplan-Meier survival curves for individual genes significantly associated with overall survival in LuADC patients. The 
LuADC patient cohort was divided into two equal groups based on median expression for each gene and compared by a Kaplan-Meier 
survival analysis. The estimate of the hazard ratio (HR) and log-rank p-value of the curve comparison between the groups is shown.
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considerable complexity and heterogeneity in biology, 
drug response and survival [21], which represents a major 
obstacle to effective personalized treatment. This work 
aimed to identify reliable predictive biomarkers and build 
a prognostic scoring system for predicting OS of LuADC 
patients. 

There are several prognostic signatures for NSCLC 
prognosis in the literature [12–14]. While these signatures 
have been shown to predict lung cancer survival, they 
were developed based on a subset of all genes in the 
genome or were assembled based on existing knowledge 
on the role of genes in cancer. With the availability of lung 
cancer transcriptome data sets covering many additional 
genes it seemed plausible that that novel gene signatures 
better able to predict LuADC patient survival could 
exist. To this end, we embarked on a comprehensive and 
unbiased genome-wide screen for genes associated with 
lung cancer prognosis. We show that our 27-gene scoring 
system has robust discriminative ability to distinguish 
patients with good versus bad prognosis in multiple 
datasets independent of clinical characteristics including 
age, gender and pathological stage. A direct performance 

comparison of our signature with the three published 
signatures mentioned above in terms of predicting patient 
survival showed that, while all signatures were able to 
predict survival, our 27-gene signature was much more 
robust. To translate such findings into clinical practice, a 
multigene assay should be developed for further validation 
of this gene signature in assessment of LuADC survival. 
Such information will assist treatment decision-making in 
a way similar to that used for the Oncotype DX breast 
cancer assay developed by Genomic Health [9] and 
Mammaprint 70-gene breast cancer recurrence assay by 
Agendia [7]. Randomized prospective clinical trials to 
further validate the accuracy and clinical value of this 
novel prognostic test for LuADC patients will need to be 
conducted. 

In conclusion, lung cancer remains the leading 
cause of cancer-related disease burden. We developed 
a multi-step unbiased bioinformatics analytic approach 
to identify reliable predictive biomarkers and new 
therapeutic targets for LuADCs. We discovered that 
the expression of 600 genes are consistently altered in 
LUADCs and are significantly associated with OS of 

Figure 3: Visual representation of Gene Ontology enrichment analysis of genes significantly associated with OS in 
LuADC. Functional enrichment analysis of the 600 genes significantly associated with OS was performed using ClueGo based on Gene 
Ontology categories (p < 0.001). Non-redundant biological terms for our 600-gene set were visualized in a functionally grouped network 
and related processes were colored by function.
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Figure 4: Comparison network of gene correlations in normal lung and LuADC. (A) Gene co-expression correlation networks 
for normal lung and LuADC were generated based on correlation coefficients (R ≥| 0.7|; adjusted p-value < 0.001) among 600 genes in 
normal and LuADC tissue samples and then merged using DyNet. Differences between the two merged networks based on node and edge 
presence were highlighted. Nodes and/or edges present in both normal and tumor correlation networks are represented in white and gray, 
respectively. Nodes and/or edges present in either normal or tumor networks alone are represented in red and green, respectively. (B) 
Functional enrichment analysis of genes uniquely present in the normal lung correlation network (left) or the LuADC correlation network 
(red) based on Gene Ontology.
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LuADC patients. Our study created a robust 27-gene 
prognostic signature that could predict patient overall 
survival independent of age, gender and clinical stage. 
This signature could guide adjuvant therapy for LuADC 
patients and include novel potential molecular targets for 
therapy. 

MATERIALS AND METHODS

Data sets used in this study

Gene transcript data of normal and LuADC tissues 
was obtained from NCBI Gene Expression Omnibus 
(GEO) accession numbers: GSE31210, GSE19188 and 
GSE19804. Normal lung gene transcript data used for 
generating gene expression correlation networks were 
obtained from GTEx (http://www.gtexportal.org/home/
datasets) using the RPKM normalized gene transcript 
counts table [15, 16].

Statistical analysis

GEO2R was used to calculate the differential 
expression of tumor versus normal using a fold-change 
cut-off of 5 and adjusted p-value < 0.0001. Association of 
differentially expressed genes and OS in LuADC patients 
was assessed using Kaplan-Meier plotter (http://kmplot.
com) including KM survival analysis, hazard ratio (HR) 
with 95% confidence intervals and logrank p-value for 
each gene [17]. The cytoscape plugin ClueGO was used 
to assess overrepresentation of Gene Ontology categories 
in biological networks (adjusted p < 0.001 was used as a 
threshold for significance) [18]. 

Gene co-expression network construction

Gene expression Spearman correlation coefficients 
were calculated in “R” for 600 genes that were 
differentially expressed between LuADC and normal 

Figure 5: A 27-gene signature is associated with OS in LuADC patients. (A) Cox regression was run on 100 random tumor 
samples for 600 genes significantly associated with OS to generate the 27-gene signature. The 27-gene signature was used to generate a 
prognostic scoring system, which was validated using 100 random test sets. (B) Kaplan-Meier overall survival curves for two representative 
test-cohorts separated into tertiles according to the prognostic score using the 27-gene signature. (C) For each of 100 test sets the HR and 
the 95% confidence interval was calculated using a Cox model based on the prognostic score with groups (good vs. poor: top; intermediate 
vs. poor: bottom). The red dotted line indicates a HR value of 1, or the null hypothesis. (D) Comparison of the HR for each of 100 test sets 
between the 27-gene signature and three existing gene signatures reported in the literature [12–14].
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tissues samples and significantly associated with OS of 
LuADC patients. A gene network was generated where 
nodes represent individual genes and edges connecting 
nodes were drawn when the correlation coefficient 
exceeded R ≥ |0.7| (adjusted p-value ≤ 0.001). Gene co-
expression networks were generated for normal lung 
gene expression data (GTEx) and lung adenocarcinoma 
(TCGA) and visualized using Cytoscape 3.4.0. (http://
www.cytoscape.org). Dynet was used to highlight 
differences between two networks based on node and 
edge presence, ClueGO was used to identify significantly 
enriched biological pathways [18, 19].

Gene expression signature-based prognostic risk 
score

100 random selections of 350 patients with LuADC 
were extracted from TCGA dataset and used as a training 
set to isolate a biomarker panel associated with OS. The 
remaining 167 patients for each selection were used as 
a test set to validate the prognostic significance of the 
biomarker panel. A forward-conditional Cox regression 
using all 600 genes as covariates was performed using 
SPSS on each of the training sets in order to isolate the 
biomarker panel. The results of each test were recorded 
and the genes that appeared in more than half of the 
training sets were included in our biomarker panel. 

Cox regression was repeated on all 100 training sets 
using our 27-gene signature as covariates using the forced-

entry (enter) method to obtain the co-efficient values for 
each biomarker. The resulting 100 co-efficient values of 
each biomarker were averaged to estimate the true co-
efficient value of each gene. A prognostic scoring system 
was created based on this formula:

The patients were ranked by their prognostic scores 
and divided into three equal sized cohorts. Kaplan-Meier 
plots were constructed and a long-rank test was used to 
determine differences in OS of LuADC patients.

Prognostic scores for each of the test set samples 
were then calculated using the same set of mean co-
efficient values developed in the training set. Patients 
were ranked based on their prognostic scores and divided 
into three cohorts based on the average prognostic score 
at cut-point in the training sets. Kaplan-Meier plots were 
constructed and a long-rank test was used to determine 
differences among OS in all testing sets.

To further validate our biomarker panel, mRNA 
expression levels for the 27-gene signature were obtained 
from four additional datasets (GSE42127, GSE31210, 
GSE37745 and GSE30219). New coefficients for 27 genes 
were obtained from Cox regression. Prognostic scores for 
all patients were calculated and patients were ranked based 
on their scores and divided into three equal sized cohorts. 
Kaplan-Meier analysis and a long-rank test were used to 
determine differences in survival.

( ) ( )gene i co efficient x gene i ression level
i

−
=

∑ exp
1

27

Figure 6: Independent validation of 27-gene signature. Kaplan-Meier overall survival curves were generated for four independent 
LuADC patient cohorts according to the prognostic score using the 27-gene signature. The patient cohort was divided into tertiles based 
on the prognostic score and the log-rank p-value of the curve comparison between the groups is shown. The hazard ratio and the 95% 
confidence interval was calculated using a Cox model based on tumor stage (I–IV), gender, age at diagnosis and prognostic score as 
covariates. Significant factors are highlighted in red.
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