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ABSTRACT

We hypothesize that distinct cell phenotypes are governed by different sets 
of gene master regulators (GMRs) whose strongly protected (by the homeostatic 
mechanisms) abundance modulates most cell processes by coordinating the expression 
of numerous genes from the corresponding functional pathways. Gene Commanding 
Height (GCH), a composite measure of gene expression control and coordination, is 
introduced to establish the gene hierarchy in each phenotype. If the hypothesis is 
true, than one can selectively destroy cancer nodules from a heterogeneous tissue by 
altering the expression of genes whose GCHs are high in cancer but low in normal cell 
phenotype. Here, we test the hypothesis and show its utility for the thyroid cancer 
(TC) gene therapy. First, we prove that malignant and cancer free surrounding areas 
of a surgically removed papillary TC (PTC) tumor are governed by different GMRs. 
Second, we show that stable transfection of a gene induces larger transcriptomic 
alterations in the cells where it has higher GCH than in other cells. For this, we 
profiled the transcriptomes of the papillary BCPAP and anaplastic 8505C TC cell lines 
before and after stable transfection with NEMP1, DDX19B, PANK2 or UBALD1. The 
four genes were selected to have similar expression levels but significantly different 
GCH scores in the two cell lines before transfection. Indeed, each of the four genes 
triggered larger alterations in the cells where they had larger GCH. Our results prove 
the feasibility of a personalized gene therapy approach that selectively targets the 
cancer cells from a tissue.

INTRODUCTION

Thyroid cancer (TC) is the most common endocrine 
malignancy in United States with rapidly rising incidence. 
The American Cancer Society estimates 56,850 new 
cases of thyroid cancer in 2017. Morphologically, the 
thyroid cancers are classified as papillary, follicular, 
medullary and anaplastic. Differentiated papillary 

(PTC) and follicular forms comprise 90-95% of thyroid 
cancers and are treatable, whereas anaplastic thyroid 
cancer (ATC) is the rarest but the most fatal and 
incurable form of the disease, with a median survival of 
5 months [1]. ATC is an undifferentiated cancer arising 
presumably from pluripotent thyroid progenitor cells 
and accumulating genetic lesions. ATC is aneuploid 
with several chromosomal abnormalities and loss of 
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heterozygosity. ATC can range from poorly differentiated 
TC characterized by high mitotic index to squamaous TC 
where its thyroid origin is difficult to ascertain.

For most ATCs, mutation of BRAF (v-raf murine 
sarcoma viral oncogene homolog B) or in rare cases, 
detection of RET/PTC and PAX8/PPAR fusions suggests 
thyroid origin of cells [2–4]. Presence of the tumor 
protein TP53 and β-catenin commonly found in ATCs but 
occasionally seen in poorly differentiated carcinoma also 
suggests tumor dedifferentiation [5–10]. ATC etiology 
is not completely understood; however several premises 
indicate that it originates from thyroid stem cells to 
manifest an undifferentiated, but aggressive phenotype 
[11, 12]. It is believed that both the papillary and follicular 
thyroid cancers result from a similar differentiation 
program coupled with the development of mutations 
most notably RET/PTC, RAS and BRAF for PTC and/or 
PAX8/PPARΎ [13–17]. However, genetic lesions are not 
uniformly distributed and no single or group of mutations 
define ATC [12, 13, 18–20]. The heterogeneity of tumor 
cell differentiation and the repertoire of genetic lesions 
(although TC has the least numbers of genetic lesions 
as compared to other TCs) makes difficult the task of 
developing a universal therapy with demonstrated clinical 
efficacy [21, 22].

There are several interactive open-access dbases of 
cancer transcriptomic signatures and even an Atlas of the 
Human Cancer Transcriptome [23] presenting favorable 
and unfavorable prognostic genes with associated Kaplan-
Mayer surviving diagrams. In previous papers [24–28], 
we have analyzed the significance and utility of several 
potential TC biomarkers and therapeutic targets and their 
dependence on sex hormones [29–32]. However, being 
selected from the most frequently altered (as sequence 
or/and expression) genes in large population cohorts, the 
biomarkers appeared as less protected by the homeostatic 
mechanisms like low players in cell life. Therefore, 
restoration of the structure/expression of the altered 
biomarkers has most likely little therapeutic value. This 
explains why so far, no TC gene biomarker [33, 34] 
proved therapeutically efficient. Moreover, not only the 
biomarker(s) but thousands other genes are altered in 
TC, in (although partially overlapping) never repeatable 
combinations and nobody knows whether the neglected 
contributions of the other gene alterations are really 
negligible.

If cancer and normal cells are governed by 
distinct gene master regulators (GMRs) than “smart” 
manipulation of GMRs would selectively destroy the 
cancer nodules without much damage to the surrounding 
healthy tissue. The idea of master regulators has been 
around for almost four decades, most authors looking for 
transcription factors occupying the top of the regulatory 
hierarchy that determines cell fate and differentiation. 
Sophisticated algorithms using reverse engineering 
of transcriptional networks have been proposed and 

validated for use in therapeutic decision making [35]. 
KEGG (http://www.genome.jp), GenMapp (http://
genmapp.org), IPA (http://ingenuity.com), DAVID (http://
david.abcc.ncifcrf.gov) and other popular software have 
been developed to ensemble the biomarkers and other 
genes in functional pathways. Regardless of the method 
(Pearson correlation, Boolean, Bayesian, differential 
equations or just knowledge-based) to network the genes 
with respect to their co-regulation in different conditions 
[36, 37], such algorithms implicitly assumes ironclad 
functional pathways. This is a major weakness given the 
evident morphological and physiological changes during 
cancerization and in response to chemo-, radio and cell 
therapy. Although manually curated by genomic experts, 
the functional pathways constructed by these (actually) 
text miners are also “too” universal, lacking specificity 
with respect to race/strain, sex, age, and risk factors. 
Moreover, they are deterministic (unique network) in spite 
of the stochastic nature of the chemical reactions leading 
to an environmentally depending spectrum of possible 
“wirings” of the same subset of genes.

We consider as GMR a gene whose highly protected 
expression by the homeostatic mechanisms governs 
the phenotype by regulating the transcription of genes 
involved in major functional pathways through expression 
coordination. The high protection (indicating the critical 
importance for cell life) confines expression oscillations 
of GMRs in narrow intervals. Therefore, GMRs are rarely 
found spontaneously regulated and by consequence not 
selected as biomarkers. We estimate the protection of 
GMR from the reduced expression variability and its 
power to modulate a pathway from the Pearson correlation 
with expression oscillations of the pathway genes in 
biological replicas (obtained by splitting in four the malign 
and normal regions of the removed tumor).

Our approach, consistent with the Genomic 
Fabric Paradigm (GFP, [38, 39], does not provide novel 
biomarkers for TC diagnostic in ALL patients but a 
revolutionary way to cure the TC of the ACTUAL patient. 
The genomic fabric is defined as the transcriptome 
associated with the most interconnected and stably 
expressed network of genes responsible for a particular 
functional pathway. The fabric exhibits specificity with 
respect to race/strain, sex and sex hormones, age, tissue/
cell type, and life style and environmental factors. It 
remodels during development, progression of a disease 
and in response to external stimuli and treatments.

Recently [40], we tested the hypothesis that cancer 
and normal cells are governed by different GMRs in 
the normal cortex and two primary tumor regions of a 
surgically removed clear cell renal cell carcinoma from 
a 74y old male. Here, we test again this hypothesis in 
a papillary cancer and cancer free surrounding tissue 
from the left thyroid lobectomy of a 33y old female. The 
efficacy of GMR targeting was checked by determining 
the transcriptomic effects of stable transfection of genes 
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with different GCHs in the papillary BCPAP [41] and 
anaplastic 8505C [42] human TC cells that we used in 
previous studies [25, 27–29].

RESULTS

Experimental methods and raw and normalized 
gene expression data complying with the “Minimum 
Information about Microarray Experiments” (MIAME, 
[43]) were deposited in https://www.ncbi.nlm.nih.gov/gds/ 
and are publically accessible as GSE97001, GSE97002, 
GSE97028, GSE97030, GSE97031 and GSE97427.

Cancer alters expression and coordination of 
numerous genes

Compared to the normal tissue, expression of 
5.1%% of the quantified unigenes was up-regulated and of 
2.7% was down-regulated in the malignant region of the 
excised thyroid tumor. When comparison was extended to 
the papillary BCPAP cells, 17.10% of the genes were up-
regulated and 15.53 down-regulated, while in the anaplastic 
8505C cells, 17.09% of the genes were up- and 18.79% were 
down-regulated. Table 1  lists the fold-change (negative for 
down-regulation) and the p-value of the regulation, and 
Figure 1A the interconnection of the genes included in the 
KEGG1-determined pathway of thyroid cancer with respect 
to the surrounding unaffected tissue of thyroid.

We found a significant overexpression of members of 
the Ras oncogene family HRAS and KRAS (known for their 
prominent roles in various types of cancer (e.g. [44, 45]. 
MAP2K1 (mitogen-activated kinase 1), part of the RAS/
MAPK pathways, which informs the cell nucleus about the 
extracellular chemical environment was also up-regulated. 
Expression of TP53 was not affected, indicating lack of ATC 
development [46, 47]. Figure 1B presents the percentages of 
up- and down regulated genes in several well-defined groups 
of genes. Interestingly, out of the investigated groups of genes, 
the biomarkers selected from [48] formed the second most 
regulated group (after the thyroid cancer genes), confirming 
their value for TC diagnosis. In contrast, the transcription 
factors (TRF) formed the least regulated group (0.0% up and 
2.3% down). With 16.5% up and 9.6% down-regulated genes 
(listed in Table 2) apoptosis is also a major pathway with 
substantial alteration in thyroid cancer.

We found also substantial remodeling of the 
transcriptomic networks by which the long intergenic 
non-protein coding RNAs (LI ncRNA) modulate major 
functional pathways through expression coordination 
(principle in Figure 1C) with pathway genes. Thus, 
Figure 1D presents the remodeling of part of the 
transcriptomic networks that LI ncRNAs form with 
apoptotic genes (coordination values in Table 3). 
Notably, some synergistically expressed gene pairs in

normal tissue became independently expressed in cancer 
(ANKRD36BP2-BCL2, PMS2L2-TNFRSF10D, PMS2L2-
TNFRSF1A) or an independently expressed pair (HCG11-
PPP3CB) in normal became antagonistically expressed 
in cancer. H19 strong antagonism with expression of 
apoptotic genes in normal tissue is practically cancelled 
in cancer, confirming its important role in cancer 
proliferation revealed by several authors [49]. Our 
coordination analysis revealed that LI ncRNAs can 
modulate expression of genes located not only on the 
same but also on other chromosomes. For instance, in the 
normal tissue, H19 from Chr 11 antagonizes apoptosis 
genes from Chr 1 (AKT3, CAPN2, DFFA, DFFB, 
PIK3CD), Chr 3 (PRKAR2A), Chr 4 (CASP6, PPP3CA), 
Chr 6 (RIPK1), Chr 7 (PRKAR1B). Chr 8 (IKBKB, 
PPP3CC, TNFRSF10B TNFRSF10D), Chr 9 (ENDOG), 
Chr 10 (CASP7, CHUCK, FAS), Chr 11 (BIRC2, CAPN1, 
FADD), Chr 12 (TNFRSF1A). Chr 14 (AKT1, NFKBIA), 
Chr 17 (MAPK3K14, PRKAR1A), Chr 19 (BAX, PIK3R2), 
Chr 20 (BCL2L1) and Chr X (XIAP). In the malign region, 
the (p < 0.05) significant expression coordination of H19 
is limited to a single apoptosis gene, BCL2 (Chr 18) that, 
interestingly, is not coordinately expressed with H19 in 
normal tissue. Supplementary Table 1  lists all regulated 
genes in the cancer nodule with respect to the surrounding 
normal tissue.

Cancer and normal cells have different gene 
hierarchies in the thyroid

Like our previous finding in a case of clear cell 
renal cell carcinoma [40] the microarray experiment on 
the left thyroid lobectomy proved existence of genes 
with large GCH differences between the cancer and the 
normal part of the tumor. Figure 2 presents the gene 
commanding heights (GCH) in normal and malign regions 
of the analyzed thyroid tumor for several TC biomarkers, 
oncogenes, apoptosis genes and ncRNAs. Note that no 
biomarker has high GCH, explaining why none of them 
proved therapeutically efficient for TC. However, with 
GCH = 26.14 in the malign part and 1.41 (18.5x smaller) 
in the normal tissue, the 2.71x significantly up-regulated 
member of the RAS oncogene family RAB15 may be 
therapeutically actionable for this person as reported for 
other cancer cases (e.g. [50]).

Anaplastic and papillary TC phenotypes have 
major differences in cell-cycle pathway and gene 
networking

The transcriptomic profiles of the anaplastic (8505C) 
and papillary (BCPAP) TC cell lines were largely different, 
with the largest differences (61% = 45% up- and 16% 
down) in the expression of cell-cycle pathway genes (Figure 
3A). This finding explains the accelerated progression to 
the undifferentiated form of the TC in 8505C cells [51]. 1modified from map05216, Kanehisa Laboratories,  
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Significant expression differences were noticed in both 
DNA replication (S phase) and mitosis (M phase) phases of 
the mitotic cell cycle progression as well as in the temporal 
gaps known as G1 and G2 phases. Such differences between 

the two TC cell lines justify some of the therapeutic 
approaches of the ATC. Thus, overexpression of the key 
regulatory cyclin-dependent kinase CDK1 explains the 
choice of dinaciclib, a cyclin-dependent kinase inhibitor 

Figure 1: Papillary cancer of the thyroid regulates numerous genes and remodel transcriptomic networks. (A) Regulation 
of the KEGG-determined pathway of thyroid cancer. Red/green/yellow background of the gene symbol indicates up-/down/no regulation. 
GADD45G|A|B indicates the three growth arrest and DNA-damage-inducible genes: gamma, alpha and beta. (B) Percentages of up- and 
down regulated genes in various groups. APOPT = apoptosis, B-MARKS = biomarkers, CANCER = thyroid cancer, HORMONES = 
thyroid hormones, LI ncRNAs = long intergenic non-protein coding RNAs, TRF = transcription factors, ALL = the entire transcriptome. 
(C) Examples of genes synergistically (DCPP2 = decapping mRNA 2), antagonistically (CCNJ = cyclin J) and independently (PDCD1 = 
programmed cell death 1) expressed with H19 (= H19, imprinted maternally expressed transcript, long non-coding RNA). Numbers near 
gene symbols are Pearson pair-wise correlation coefficients between the (log2) expression levels of H19 and linked gene. (D) Example 
of remodeling of the transcriptomic networks by which ncRNAs regulate apoptosis. Red/blue line indicates significant (p-val < 0.05) 
synergism/antagonism between the linked gene and ncRNA. Numbers close to genes and ncRNAs’ symbols are their hosting chromosomes 
(Chr).
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Table 1: Regulation of the genes included in the KEGG-determined functional pathway of thyroid cancer

Gene Systematic name Description FC p-val

BAK1 NM_001188 BCL2-antagonist/killer 1 1.05 0.9125

BAX NM_138764 BCL2-associated X protein 2.18 0.0190

BRAF NM_004333 v-raf murine sarcoma viral oncogene homolog B 1.52 0.3870

CCDC6 NM_005436 coiled-coil domain containing 6 -1.28 0.5853

CCND1 NM_053056 cyclin D1 2.90 0.0223

CDH1 NM_004360 cadherin 1, type 1, E-cadherin 1.17 0.8237

CDKN1A NM_078467 cyclin-dependent kinase inhibitor 1A 2.65 0.0205

CTNNB1 NM_001904 catenin 2.59 0.0191

DDB2 NM_000107 damage-specific DNA binding protein 2, 48kDa 2.31 0.0603

GADD45A NM_001924 growth arrest and DNA-damage-inducible, 
alpha -1.52 0.3406

GADD45B NM_015675 growth arrest and DNA-damage-inducible, beta -2.07 0.0895

GADD45G NM_006705 growth arrest and DNA-damage-inducible, 
gamma -2.00 0.0222

HRAS NM_005343 Harvey rat sarcoma viral oncogene homolog 1.80 0.0254

KRAS NM_004985 Kirsten rat sarcoma viral oncogene homolog 2.84 0.0208

LEF1 NM_016269 lymphoid enhancer-binding factor 1 1.91 0.0323

MAP2K1 NM_002755 mitogen-activated protein kinase kinase 1 1.71 0.0150

MAP2K2 NM_030662 mitogen-activated protein kinase kinase 2 1.35 0.5240

MAPK1 NM_138957 mitogen-activated protein kinase 1 1.88 0.0308

MAPK3 NM_002746 mitogen-activated protein kinase 3 1.28 0.6278

MYC NM_002467 v-myc avian myelocytomatosis viral oncogene 
homolog -1.46 0.4439

NCOA4 NM_001145260 nuclear receptor coactivator 4 -1.27 0.5110

NRAS NM_002524 neuroblastoma RAS viral -1.26 0.6097

NTRK1 NM_002529 neurotrophic tyrosine kinase, receptor, type 1 not available

PAX8 NM_003466 paired box 8 -1.99 0.0174

POLK NM_016218 polymerase -1.10 0.8021

PPARG NM_138711 peroxisome proliferator-activated receptor 
gamma -5.00 0.0911

RET NM_020630 ret proto-oncogene 1.10 0.8589

RXRA NM_002957 retinoid X receptor, alpha -1.66 0.2898

RXRB NM_021976 retinoid X receptor, beta -1.09 0.8583

RXRG NR_033824 retinoid X receptor, gamma not available

TCF7 NM_003202 transcription factor 7 4.26 0.0724

TCF7L1 NM_031283 transcription factor 7-like 1 -4.08 0.0492

TCF7L2 NM_001198531 transcription factor 7-like 2 -1.02 0.9648

(Continued)
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[52], while overexpression of the proto-oncogene MYC 
justifies the use of MYC potent inhibitor JQ1 [53]. CDK6 
is overexpressed and CDK4 under-expressed, while CDK2 
and CDK7 were similarly expressed in the two TC cell 
lines. All mini-chromosome maintenance genes (MCM2, 
MCM3, MCM4, MCM5, MCM6, MCM7), required to 
initiate eukaryotic DNA replication, were overexpressed 
in the 8505C cells, confirming previous reports (e.g. [54]) 
on other human ATC cell lines. Also overexpressed are 
three members of the origin recognition complex (ORC4, 
ORC5, ORC6) that were also previously linked to cancer 
development (e.g. [55]).

The transcriptomes of the two phenotypes also differ 
in the way the genes are networked to accomplish various 
biological processes. For instance, Figure 3B and 3C 
present the apoptosis genes that are significantly (p < 0.05) 
coordinately expressed with CIC (= capicua transcriptional 
repressor) a gene related to the various forms of cancer 
(e.g.: [56, 57]. Of note is that CIC coordinates the 
expression of many more apoptosis genes in the anaplastic 
phenotype and that only synergism with IL1A, PRKACA 
and PRKAR1A is common to both phenotypes.

Predictive value of GCH score: expression 
manipulation of a gene has larger effects on cells 
it commands

We determined and compared the GCH scores 
of individual genes in the BCPAP and 8505C cell lines 
before any transfection (partially illustrated in Figure 4A). 
DDX10, NEMP1, PANK2 and UBALD1 were selected 
because of their availability (through Albert Einstein 
College of Medicine Genomics Facility), significantly 
different GCH-scores but close expression levels (AVE) 
and low coefficient of variation (CV) in the two cell lines 
(Figure 4B). The characteristics of the clones chosen to 
be stably transfected (one at a time) into the two types 
of cells are presented in Figure 4C. The microarray 
experiment validated (p-value = 0.000152) our hypothesis 

that manipulation of a gene’s expression induced larger 
transcriptomic alterations in the cells where it has 
larger GCH (Figure 4D-4G). There is a perfect positive 
Spearman rank correlation between the (% regulated in 
BCPAP, % regulated in 8505C) and (GCH in BCPAP, 
GCH in 8505C) for all four transfected genes. Moreover, 
the strong positive Pearson product-momentum correlation 
with the percentage of regulated genes (Figure 4H) for 
each cell line validated the predictive value of GCH score.

DISCUSSION

The main methodological contribution of our report 
is the introduction and validation of the Gene Commanding 
Height (GCH) as a new measure of how influential the 
expression of a gene is for the phenotypic expression of a 
cell. With this measure one can establish the gene hierarchy 
and identify the Gene Master Regulators (GMRs) of cancer 
nodules and unaffected surrounding tissue. Thus, GCH 
analysis opens a novel cancer gene-therapy avenue by 
selecting the targets with high differences in favor of the 
malign region from the affected tissue.

Owing to the cancer dependence on race, sex, 
age, genetic heritage, medical history, environmental 
and life-style associated risk factors, each patient most 
likely has a distinct and dynamic GMR-hierarchy. 
Therefore, an efficient gene-therapy should identify the 
targets separately for each individual. Manipulation of 
a GMR could complement current treatment options by 
making cancer cells more vulnerable and normal ones 
more resistant to chemo-/radiation therapy. It could also 
be used post-surgical removal of the tumor to reduce the 
probability of cancer recurrence.

GMRs are not biomarkers because biomarkers are 
the most alterable while GMRs are the most protected 
genes. GMRs are not selected as the most co-regulated 
with other genes in cancer vs. normal phenotypes because 
gene networks remodel in cancer and co-regulation does 
not necessarily mean gene interaction. Instead, GMRs are 

Gene Systematic name Description FC p-val

TFG NM_006070 TRK-fused gene -1.28 0.5636

TP53 NM_001126118 tumor protein p53 1.37 0.1237

TPM3 NM_001043352 tropomyosin 3 1.34 0.3639

TPR NM_003292 translocated promoter region, nuclear basket 
protein 2.51 0.0196

Gene expression levels in the cancer nodule were compared with the corresponding values in the surrounding unaffected 
tissue of the profiled thyroid.Red/green/yellow background in the original tables the gene symbols had red/green/yellow 
background. Please add the background. For instance, the last gene symbol TPR should be in a red background of the gene 
symbol indicates up-/down-/no regulation, will white background indicates that the expression of the corresponding gene 
was not quantifiable in all 4 samples from the cancer nodule AND all 4 samples from the unaffected surrounding tissue. 
FC = fold-change (negative for down-regulation), p-val = p-value of the heteroscedastic t-test of the equality of the average 
expression level in the tumor side and in the surrounding normal tissue.
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Table 2: Significantly regulated apoptosis genes in the cancer nodule with respect to the surrounding unaffected 
tissue of the profiled thyroid

Gene Systematic name Description FC p-val

BAX NM_138764 BCL2-associated X protein 2.18 0.0190

BBC3 NM_014417 BCL2 binding component 3 2.80 0.0073

BCL2 NM_000633 B-cell CLL/lymphoma 2 -3.34 0.0087

BCL2L11 NM_138621 BCL2-like 11 -3.25 0.0073

BID NM_197966 BH3 interacting domain death agonist 5.77 0.0317

BIRC5 NM_001012271 baculoviral IAP repeat containing 5 4.14 0.0090

CASP3 NM_004346 caspase 3, apoptosis-related cysteine peptidase 4.01 0.0379

CTSH NM_004390 cathepsin H 6.39 0.0044

CTSK NM_000396 cathepsin K -1.88 0.0126

CTSV NM_001333 cathepsin V -1.80 0.0282

CYCS NM_018947 cytochrome c, somatic -2.14 0.0182

DAB2IP NM_032552 DAB2 interacting protein 2.88 0.0099

FAS NM_000043 Fas cell surface death receptor 2.79 0.0075

FOS NM_005252 FBJ murine osteosarcoma viral oncogene homolog -2.15 0.0140

GADD45B NM_015675 growth arrest and DNA-damage-inducible, beta -2.07 0.0089

GADD45G NM_006705 growth arrest and DNA-damage-inducible, gamma -2.00 0.0222

GZMB NM_004131 granzyme B -2.27 0.0081

HRAS NM_005343 Harvey rat sarcoma viral oncogene homolog 1.80 0.0254

HRK ENST00000257572 harakiri, BCL2 interacting protein 3.01 0.0065

ITPR2 NM_002223 inositol 1,4,5-trisphosphate receptor, type 2 3.28 0.0079

JUN NM_002228 jun proto-oncogene -3.38 0.0055

KRAS NM_004985 Kirsten rat sarcoma viral oncogene homolog 2.84 0.0208

LMNA NM_005572 lamin A/C 2.92 0.0053

MAP2K1 NM_002755 mitogen-activated protein kinase kinase 1 1.71 0.0150

MAPK1 NM_138957 mitogen-activated protein kinase 1 1.88 0.0308

NFKB1 NM_003998 nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 1 2.15 0.0069

PARP1 NM_001618 poly (ADP-ribose) polymerase 1 2.50 0.0078

TNFRSF10B NM_003842 tumor necrosis factor receptor superfamily, member 
10b 1.84 0.0080

TNFRSF10C NM_003841 tumor necrosis factor receptor superfamily, member 
10c, decoy without an intracellular domain 7.14 0.0242

TNFSF10 NM_003810 tumor necrosis factor (ligand) superfamily, member 10 -4.11 0.0064

Red/green background of the gene symbol indicates significant up-/down regulation. FC = fold-change (negative for down-
regulation), p-val = p-value of the heteroscedastic t-test of the equality of the average expression level in the tumor side and 
in the surrounding normal tissue.
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Table 3: Expression coordination values between LI ncRNA and apoptosis genes in normal and malign part of the 
tumor

Normal ANKRD36BP2 FAM86B3P H19 HCG11 PMS2L2 Malign ANKRD36BP2 FAM86B3P H19 HCG11 PMS2L2

AKT1 0.680 0.978 -0.908 0.649 0.929 AKT1 0.984 0.749 0.144 0.964 -0.173

AKT2 0.940 0.693 -0.519 0.948 0.591 AKT2 0.858 0.999 0.205 0.834 -0.180

AKT3 0.361 0.983 -0.999 0.313 0.986 AKT3 0.672 0.357 -0.446 0.590 0.399

ATM 0.786 0.934 -0.835 0.756 0.858 ATM 0.953 0.644 0.356 0.967 -0.394

BAD 0.982 0.610 -0.421 0.986 0.483 BAD 0.911 0.952 0.451 0.923 -0.438

BAX 0.599 0.994 -0.945 0.567 0.963 BAX 0.951 0.950 0.122 0.918 -0.118

BCL2 0.921 0.793 -0.652 0.888 0.667 BCL2 0.008 -0.120 -0.939 -0.117 0.913

BCL2L1 0.574 0.952 -0.922 0.509 0.888 BCL2L1 0.794 0.371 -0.074 0.763 0.015

BID 0.362 0.958 -0.979 0.297 0.940 BID 0.993 0.886 0.314 0.989 -0.324

BIRC2 0.099 0.892 -0.952 0.075 0.962 BIRC2 0.942 0.708 0.533 0.978 -0.559

BIRC3 0.981 0.670 -0.494 0.968 0.534 BIRC3 0.952 0.810 0.538 0.983 -0.551

CAPN1 0.195 0.938 -0.991 0.144 0.966 CAPN1 0.808 0.359 0.099 0.801 -0.160

CAPN10 0.871 0.862 -0.730 0.855 0.772 CAPN10 0.994 0.780 0.195 0.979 -0.221

CAPN2 0.332 0.979 -1.000 0.287 0.989 CAPN2 0.920 0.978 0.143 0.888 -0.130

CASP10 0.302 0.809 -0.846 0.210 0.757 CASP10 0.949 0.952 0.122 0.916 -0.118

CASP3 0.806 0.922 -0.816 0.778 0.842 CASP3 0.963 0.868 0.482 0.984 -0.488

CASP6 0.547 0.994 -0.955 0.519 0.978 CASP6 0.932 0.593 0.122 0.917 -0.167

CASP7 0.091 0.899 -0.968 0.055 0.960 CASP7 0.968 0.826 0.490 0.991 -0.503

CASP9 -0.073 0.727 -0.799 -0.065 0.846 CASP9 0.986 0.837 0.410 0.998 -0.425

CFLAR 0.880 0.843 -0.718 0.841 0.726 CFLAR 0.980 0.712 0.283 0.980 -0.316

CHUK 0.327 0.976 -0.992 0.293 0.999 CHUK 0.988 0.753 0.320 0.992 -0.348

CYCS 0.059 0.773 -0.814 0.073 0.875 CYCS 0.793 0.655 0.792 0.868 -0.802

DFFA 0.648 0.954 -0.903 0.590 0.881 DFFA 0.763 0.349 -0.167 0.720 0.108

DFFB 0.503 0.916 -0.905 0.428 0.851 DFFB 0.981 0.720 0.181 0.967 -0.214

ENDOG 0.485 0.995 -0.973 0.455 0.991 ENDOG 0.981 0.887 0.399 0.989 -0.406

FADD 0.691 0.975 -0.903 0.659 0.922 FADD 0.988 0.745 0.207 0.976 -0.237

FAS 0.418 0.993 -0.994 0.373 0.987 FAS 0.871 0.742 0.697 0.928 -0.707

IKBKB 0.089 0.873 -0.930 0.073 0.952 IKBKB 0.930 0.899 0.523 0.954 -0.520

IKBKG 0.377 0.973 -0.989 0.319 0.960 IKBKG 0.999 0.814 0.251 0.990 -0.272

IL1B 0.602 0.918 -0.881 0.531 0.838 IL1B 0.810 0.900 0.618 0.848 -0.597

IL1RAP -0.476 0.427 -0.571 -0.466 0.595 IL1RAP 0.725 0.316 -0.239 0.674 0.181

IRAK1 0.683 0.919 -0.860 0.620 0.829 IRAK1 0.857 0.464 -0.003 0.831 -0.051

MAP3K14 0.342 0.970 -0.994 0.285 0.967 MAP3K14 0.993 0.767 0.254 0.987 -0.281

MYD88 0.865 0.856 -0.722 0.855 0.772 MYD88 0.982 0.868 0.415 0.993 -0.425

NFKB1 0.372 0.915 -0.899 0.374 0.956 NFKB1 0.647 0.870 0.620 0.687 -0.580

NFKBIA -0.048 0.830 -0.925 -0.083 0.912 NFKBIA 0.665 0.748 0.808 0.737 -0.787

PIK3CA 0.957 0.544 -0.348 0.977 0.431 PIK3CA 0.753 0.283 0.018 0.739 -0.083

PIK3CB 0.706 0.866 -0.760 0.718 0.839 PIK3CB 0.723 0.226 0.206 0.738 -0.273

PIK3CD 0.566 0.998 -0.960 0.529 0.970 PIK3CD 0.983 0.769 0.403 0.997 -0.427

PIK3R1 0.423 0.907 -0.875 0.429 0.940 PIK3R1 0.893 0.505 0.311 0.908 -0.361

PIK3R2 0.328 0.974 -0.998 0.276 0.978 PIK3R2 0.876 0.549 -0.110 0.831 0.065

PPP3CA 0.106 0.872 -0.922 0.094 0.950 PPP3CA 0.788 0.329 0.077 0.779 -0.140

(Continued)



Oncotarget2418www.impactjournals.com/oncotarget

Normal ANKRD36BP2 FAM86B3P H19 HCG11 PMS2L2 Malign ANKRD36BP2 FAM86B3P H19 HCG11 PMS2L2

PPP3CB 0.049 0.829 -0.886 0.044 0.921 PPP3CB 0.880 0.579 0.592 0.930 -0.627

PPP3CC 0.512 1.000 -0.977 0.470 0.978 PPP3CC 0.949 0.621 0.232 0.947 -0.274

PRKACA 0.912 0.778 -0.641 0.872 0.644 PRKACA 0.749 0.316 -0.143 0.710 0.082

PRKACB 0.649 0.764 -0.709 0.566 0.641 PRKACB 0.680 0.238 -0.227 0.635 0.163

PRKAR1A 0.109 0.865 -0.913 0.100 0.946 PRKAR1A 0.935 0.671 0.520 0.971 -0.550

PRKAR1B 0.491 0.994 -0.980 0.441 0.968 PRKAR1B 0.984 0.733 0.188 0.970 -0.219

PRKAR2A 0.442 0.993 -0.981 0.411 0.996 PRKAR2A 0.982 0.771 0.408 0.997 -0.432

PRKAR2B 0.450 0.856 -0.858 0.364 0.785 PRKAR2B 0.968 0.672 0.224 0.962 -0.262

RELA -0.152 0.750 -0.876 -0.213 0.818 RELA 0.805 0.382 -0.050 0.776 -0.009

RIPK1 0.433 0.994 -0.992 0.387 0.984 RIPK1 0.989 0.792 0.126 0.964 -0.150

TNFRSF10B 0.302 0.945 -0.956 0.287 0.988 TNFRSF10B 0.725 0.782 0.775 0.791 -0.758

TNFRSF10D 0.568 0.994 -0.952 0.539 0.973 TNFRSF10D 0.935 0.896 -0.038 0.882 0.036

TNFRSF1A 0.562 0.984 -0.954 0.508 0.937 TNFRSF1A 0.764 0.317 -0.063 0.737 0.001

TRAF2 -0.186 0.737 -0.867 -0.241 0.817 TRAF2 0.927 0.676 -0.079 0.880 0.045

XIAP 0.409 0.990 -0.995 0.361 0.984 XIAP 0.505 0.228 -0.630 0.405 0.587

Red/blue/yellow background of the coordination value indicates that the paired genes were significantly (p-val < 0.05) 
synergistically/antagonistically/ independently expressed in the indicated region. Note the differences between the two 
regions.

Figure 2: Gene commanding height (GCH) of selected TC biomarkers (A, B) oncogenes (B, C) apoptosis genes (D) and non-coding RNAs 
(E, F) in the normal and malign part of the surgically removed TC tumor. Note the differences between the GCH scores in the two regions.
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the most coordinately (synergistically or antagonistically) 
expressed with other genes in one phenotype at a time, 
dictating the transcriptomic stoichiometry [58] of gene 
networks.

In summary, we verified that cancer nodules and 
surrounding normal tissue are governed by different 
GMRs, and that manipulating the expression of a gene has 
larger effects on cells in which it has larger GCH.

Figure 3: Major differences between anaplastic 8505C and papillary BCPAP TC cells include expression of cell-cycle pathway genes (A) 
and transcriptomic networks by which CIC (= capicua transcriptional repressor) coordinates expression of apoptotic genes (B–C). In B 
and C a red/blue line indicates that CIC and the other gene are (p-val < 0.1) synergistically/antagonistically expressed. In order to visualize 
the strength of the expression coordination, the length of the line is proportional to ρ3 (ρ = Pearson pair-wise correlation coefficient). Thus, 
longer distances to CIC (as for PRKAR1B, IRAK2 and CYCS in the 8505C network) indicate stronger expression coordination and by 
consequence stronger downstream influence. Note the differences between the two networks.
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Figure 4: Validation of the gene commanding height (GCH) predictive value. (A) Examples of genes (including known 
TC biomarkers) with large GCH differences in the two cell lines. (B) Average expression level (AVE), coefficient of variation (CV) and 
GCH of the selected genes in the two cell lines before any transfection. X = expression ratio, CUT = absolute fold-change cut-off for 
significantly differentially expressed genes, P-VAL = p-value of the differential expression. (C) Characteristics of the transfected clones. 
In all transfections, we used the same lentiviral vector pLX304. (D-G) GCH vs % regulated genes for each transfection experiment. Note 
that always, higher GCH is associated with larger percentage of regulated genes. (H) GCH increases with GCH in each cell type. Strong 
positive Pearson product-momentum correlations (r = 0.914 for BCPAP and r = 0.873 for 8505C cells) were found between the GCH scores 
and the percentage of significantly regulated genes in both cell lines.
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MATERIALS AND METHODS

Patient sample

Four (2 – 6 mm3) samples were dissected from a 
frozen unilateral, single, 32.0 mm papillary carcinoma, 
pathological stage pT3NOMx (http://emedicine.medscape.
com/article/2006643-overview) collected in 2010 from a 
33y old woman. Four small pieces from the negative for 
malignancy resection margins of the same tumor were 
used as control. The study was approved by New York 
Medical College and Westchester Medical Center (WMC) 
Committees for Protection of Human Subjects, commonly 
known as Institutional Review Boards (IRBs) by L-11,606 
(“Comprehensive molecular analysis of thyroid cancer: 
diagnosis, predictors of progression and targets for directed 
therapy”, PI RK Tiwari) and L-11,376 (“Quantifying 
cancer-associated remodeling of key genomic fabrics”, 
PI. DA Iacobas). The approval granted access to frozen 
cancer specimens from the WMC Pathology Archives 
and depersonalized pathology reports, waiving patient’s 
informed consent. Although the four samples dissected 
from each (malignant and malignant-free) region were 
chosen to be as homogeneous as possible cells of different 
phenotypes were not completely eliminated.

Cell lines

The predictive value of the GCH score was 
tested in papillary thyroid cancer cell line BCPAP and 
anaplastic thyroid cancer line 8505C, purchased from 
DSMZ in Braunschweig, Germany. Cell lines were 
cultured in Rosswell Park Memorial Institute (RPMI)-
1640 supplemented with 10% fetal bovine serum (FBS), 
penicillin 10,000 IU/mL, streptomycin 10 mg/mL, and 
2 mM L-glutamine. Validation of the cell lines was 
performed by the Genomics Core of the Albert Einstein 
College of Medicine (AECOM) of Yeshiva University 
(http://www.einstein.yu.edu/research/shared-facilities/
cores/46/genomics/).

Gene transfection

The stable transfection was performed using 
plasmids in ORF lentiviral plX304 vector produced by 
the AECOM shRNA Core Facility with the characteristics 
indicated in Figure 4C.

Microarrays

We used our standard protocol [59] for extraction 
the total RNA, reverse transcription and fluorescent 
labeling, and hybridization with Agilent (here human) 
4x44k two-color gene expression microarrays in the 
“multiple-yellow” design. Four biological replicas (cell 

culture dishes or tissue samples) were profiled from each 
phenotype/cell type subjected to each condition.

Data analysis

A gene was considered as differentially expressed 
between two types of samples if the absolute expression 
fold-change exceeded the combined effect of microarray 
noise and biological variability and the p-value of the 
means’ equality was below 0.05. All genes were assigned 
to functional pathways using Kyoto Encyclopedia of 
Genes and Genomes (http://www.genome.jp/kegg/
pathway.html).

In previous papers (e.g.: [38, 60, 61]) we have used 
the Relative Expression Variability (REV = median of 
the Bonferroni-corrected chi-square interval estimate of 
the coefficient of variation) as a statistical estimate of 
the expression variability of one gene among biological 
replicas. Expression of individual genes depends on local 
conditions that, although similar, are not identical among 
biological replicas. We assume that expression of key 
genes is kept by the cellular homeostatic mechanisms 
within narrow intervals while that of nonkey genes is 
less restrained to readily adapt to environmental changes. 
REV may shift in pathological conditions, suggesting that 
control mechanisms are also affected. The expression 
variability allows computing the Pearson product-
momentum correlation coefficient between the expression 
levels of any two genes in the same condition. Using the 
coordination analysis, we determined the transcriptomic 
networks (that may cross cell boundaries as shown in [62])

Gene commanding height

Gene Commanding Height (GCH) in sample α 
(= benign, malign, BCPAP, 8505C) was computed for 
each protein-coding and non-coding transcript in each of 
the four conditions as a combined measure of the gene 
expression stability and coordination with each other gene:

GCH WS where
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