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PM2.5 inhalation induces intracranial atherosclerosis which may 
be ameliorated by omega 3 fatty acids
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ABSTRACT

Background: Intracranial atherosclerosis (ICA) a major health problem. This study 
investigated whether inhalation of fine airborne particulate matters (PM2.5) causes 
ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA.

Results: Twelve but not 6 week exposure significantly increased triglycerides 
(TG)  in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low 
density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure 
with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly 
induced middle cerebral artery (MCA)  narrowing and thickening, in association 
with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), 
tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), 
interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1)  and inducible 
nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even 
without favorable changes in lipid profiles, in association with reduced expression of 
IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels.

Conclusions: PM2.5 exposure for 12 weeks aggravates ICA in a dietary model 
(HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA 
dietary supplementation prevents ICA development and inflammatory reaction in 
cerebral vessels.

Methods: Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 
exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with 
O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester 
(L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation 
in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein 
(HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter 
and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 
and iNOS were assessed by real-time PCR for mRNA and Western blot for protein 
expression.
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INTRODUCTION

Airborne fine particulate matter (aerodynamic 
diameter <2.5 µm, PM2.5), a component of air 
pollution, has been epidemiologically associated with 
respiratory and cardiovascular diseases [1–5]. Among 
them, atherosclerosis is one of the major public health 
concerns. Intracranial atherosclerosis (ICA), involving 
major cerebral arteries such as the internal carotid, 
middle cerebral, vertebral, and basilar arteries, is a 
highly prevalent cause of ischemic stroke [6–9]. The 
etiology of atherosclerosis is very complicated; the risk 
factors include genetic defects, smoking, hyperlipidemia, 
hypertension, lack of exercise, etc. A recent study in 
China demonstrated that elevated PM2.5 concentration 
was associated with first hospital admissions for ischemic 
stroke [10]. Moreover, epidemiological and experimental 
studies demonstrated that PM2.5 exposure contributes to 
the development of atherosclerosis [11–13].

PM2.5-induced inflammation is considered a key 
molecular mechanism of PM2.5-mediated toxicity [13]. 
Many studies indicated that the inflammatory response is 
also critical for the development of atherosclerosis [12, 13]. 
Sun et al. used whole body exposure to concentrate 
ambient PM2.5 and demonstrated that long-term exposure 
to PM2.5 can potentiate plaque development and vascular 
inflammation in apoE-deficient mice [13, 14]. The 
atherosclerotic plaque development consists of lesion 
initiation, foam cell formation and fibrous plaque formation 
[15], all of which have been well-demonstrated by animal 
studies [23]. Endothelial dysfunction is also recognized 
as the crucial step in atherogenesis. Many studies have 
confirmed the involvement of various inflammatory 
mediators in the initial proatherogenic processes, such as 
the upregulation of adhesion molecules on endothelial cells, 
binding of low density lipoproteins to the endothelium, 
activation of macrophages and proliferation of vascular 
smooth muscle cells [16].

Numerous epidemiology studies and clinical 
trials indicated that omega-3 fatty acids (O3FA) 
prevent atherosclerotic disease development in humans  
[17–19]. Studies of Mediterranean populations showed 
that regular consumption of dietary O3FA is associated 
with a lower incidence of cardiovascular disease [20].  
A recent cohort study showed that higher circulating levels 
of docosahexaenoic acid (DHA) were inversely associated 
with the incidence of atherothrombotic stroke and 
docosapentaenoic acid (DPA) with cardioembolic stroke 
[21]. Among the therapeutic modalities for cardiovascular 
atherosclerosis, the effects of O3FA have received 
considerable attention, but their efficacy as secondary 
prevention remains controversial [22, 23]. Despite the 
vast majority of studies attempting to elucidate O3FA’s 
mechanistic effects on atherosclerosis, very few studies 
on O3FA and its effects on intracranial atherosclerotic 
stenosis (ICAS) have been carried out [20, 24, 25].

Recently, our group effectively developed a rat 
model of intracranial atherosclerosis by high-cholesterol 
diet (HCD) and NG-nitro-L-arginine methyl ester 
(L-NAME, 3 mg/mL) administration. This clinically-
relevant model would be beneficial for studying ICAS 
[26]. In this work, we focused on the impact of “real-
world” PM2.5 exposure and O3FA supplement on ICA 
and explored the underlying mechanism.

RESULTS

PM2.5 concentrations in “real world”

Animals were exposed to either ambient PM2.5 or 
FA for 24 h/day, 7 days/week for 6 (from August 9, 2016 
to September 19, 2016) or 12 weeks (from August 9, 2016 
to October 31, 2016) in a “real-world” airborne PM2.5 
exposure system in Tongzhou District, Beijing, China 
[27]. During exposure, the mean daily concentration of 
ambient PM2.5 was monitored using an individual particle 
monitor (pDR1500, Thermo, USA). The average daily 
concentration variation of PM2.5 is displayed in Figure 1. 
The mean daily PM2.5 concentration during the 6-week 
exposure was 27 µg/m3 (the red dotted line in Figure 1A), 
while the PM2.5 concentration for the 12 week exposure 
was 44 µg/m3 (Figure 1B), which is approximately 3-fold 
higher than the 15 µg/m3 annual average PM2.5 National 
Ambient Air Quality Standard (NAAQS) in China and 
4.4-fold higher than the 10 µg/m3 annual average PM2.5 
WHO Air Quality Guidelines [4].

Effects of PM2.5 exposure on blood lipids

During the exposure, body weight was recorded 
every week. As shown in Figure 2, PM2.5 exposure for 6 or 
12 weeks significantly decreased body weight in either diet 
(Figure 2A, 2B). HCD significantly increased body weight 
compared to normal chow diet, while O3FA decreased body 
weight, especially under PM2.5. As shown in Table 1, both 
6 and 12 weeks of HCD significantly elevated the levels 
of triglycerides (TG), cholesterol (CHO) and low-density 
lipoprotein (LDL), and decreased high-density lipoprotein 
(HDL) level in both FA and PM2.5 group. Meanwhile, 
O3FA significantly ameliorated TG and CHO elevation 
in 6 weeks and TG, CHO and LDL in 12 weeks. PM2.5 
exposure for 6 weeks, however, did not alter plasma lipids 
in either diet, except HDL in the HCD group (Figure 3D). 
With the extension of exposure time, compared to the FA 
group, PM2.5 exposure for 12 weeks significantly increased 
TG, CHO and LDL levels, and decreased HDL level, 
especially in the HCD group (Figure 3A–3C, 3E).

Effects of PM2.5 on MCA morphology

To determine the severity of atherosclerosis, middle 
cerebral artery (MCA) media thickness and lumen diameter 
were measured. Figure 4A–4D demonstrates that 6 weeks of 
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Figure 1: PM2.5 concentration during the exposure periods. The mean daily PM2.5 concentration during the 6 week (A) and 
12 week (B) exposure is displayed. The red dotted line indicates the average PM2.5 concentration during the exposure period and the green 
dotted line indicates the annual average PM2.5 National Ambient Air Quality Standard (NAAQS) of 15 µg/m3 in China. The mean daily 
PM2.5 concentration during the 6 week and 12 week exposure was 27 µg/m3 and 44 µg/m3, respectively (as the red dotted line indicated).

Figure 2: Body weight changes of rats during the exposure period. Body weight in the normal chow diet (NCD), high-
cholesterol diet (HCD) and O3FA group after 6 weeks (A) and 12 weeks (B) of PM2.5 exposure is shown. Data are presented as mean  
±  SE; n = 9 rats/group. *p < 0.05, ***p < 0.001 compared to the filtered air group; p < 0.05, p < 0.01 compared to the normal chow diet 
group; #p < 0.05, ##p < 0.01 as compared to the high-cholesterol diet group.
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PM2.5 exposure did not change the MCA media thickness and 
lumen diameter as compared to the FA group, but 6 weeks 
of HCD did significantly increase the media thickness and 
decrease the lumen diameter, consistent with our previous 
study [28]. After 12 weeks of exposure, MCA thickness in the 
PM2.5 group with normal chow diet (NCD)  (13.4 ± 0.6 µm) 
or HCD (21.8 ± 0.8 µm) clearly showed a significant increase 
when compared to the FA group (NCD for 11.8 ± 0.4 µm and 
HCD for 14.9 ± 0.8 µm) (Figure 4E, 4F). In addition, the MCA 
lumen diameter of the PM2.5 group (NCD for 208.0 ± 14.8 

µm and HCD for 126.5 ± 10.5 µm) significantly decreased 
as compared to the FA group (NCD for 228.9 ± 7.6 µm and 
HCD for 188.4 ± 11.5 µm) (Figure 4E, 4G). Figure 4D and 4H 
show the ratio of media thickness and lumen diameter, further 
suggesting the development of ICA. Consistently, O3FA 
significantly attenuated the decreased MCA lumen diameter 
and increased media thickness, especially after 12 weeks of 
exposure. As for the effects of diet, HCD decreased lumen 
diameter, increased MCA media thickness and increased 
media-lumen ratio as compared to NCD.

Table 1: Effects of HCD and O3FA on blood lipids

Blood lipids (mmol/L)
FA PM2.5

NCD HCD O3FA NCD HCD O3FA

6 week
(Mean ± SEM)

TG 0.51 ± 0.05 1.10 ± 0.18 0.63 ± 0.08# 0.52 ± 0.11 1.20 ± 0.19 0.65 ± 0.09#

LDL 0.52 ± 0.02 0.72 ± 0.04 0.54 ± 0.06# 0.59 ± 0.03 0.78 ± 0.03 0.65 ± 0.03#

CHO 1.50 ± 0.11 2.04 ± 0.15 1.71 ± 0.21 1.78 ± 0.10 2.40 ± 0.09 2.09 ± 0.17
HDL 1.18 ± 0.06 0.84 ± 0.05 1.02 ± 0.08 1.03 ± 0.05 0.56 ± 0.07 0.51 ± 0.05

12 week
(Mean ± SEM)

TG 0.41 ± 0.05 1.35 ± 0.17 0.78 ± 0.09## 0.87 ± 0.07 1.83 ± 0.09 0.87 ± 0.07##

LDL 0.50 ± 0.04 0.73 ± 0.04 0.41 ± 0.05## 0.53 ± 0.04 0.88 ± 0.05 0.63 ± 0.04##

CHO 1.91 ± 0.12 2.60 ± 0.08 2.08 ± 0.17# 2.05 ± 0.06 3.03 ± 0.21 2.25 ± 0.15##

HDL 1.22 ± 0.09 0.77 ± 0.06 0.81 ± 0.06 1.11 ± 0.05 0.69 ± 0.05 0.82 ± 0.04

Values are mean ± SE (n = 9). p < 0.05 and p < 0.01 compared to the normal chow diet (NCD) group; #p < 0.05 and 
##p < 0.01 as compared to the high-cholesterol diet (HCD) group. O3FA: Omega-3 fatty acids.

Figure 3: Effects of PM2.5 exposure on blood lipids. TG (A), LDL (B), CHO (C) levels after 12 weeks of PM2.5 exposure, and 
HDL level after 6 (D) or 12 (E) weeks of PM2.5 exposure are shown. The level of TG was significantly elevated after 12 weeks of PM2.5 
exposure as compared to the FA group in both normal chow diet and high-cholesterol diet group (A). Twelve weeks of PM2.5 exposure 
significantly elevated the levels of LDL and CHO in the high-cholesterol diet group (B, C). Both 6 and 12 weeks of PM2.5 exposure 
decreased the level of HDL in the high-cholesterol diet group (D, E). Values are mean ± SE (n = 9). *p < 0.05, **p < 0.01 and ***p < 0.001 
as compared to the FA group.
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Effects of PM2.5 on vascular inflammation in the 
brain

To determine the molecular basis underlying 
the effects of PM2.5 exposure on ICA, the expression 
of inflammation cytokines were examined in brain 

microvessels only after 12 weeks of PM2.5 exposure 
since the 6-week exposure did not change the brain MCA 
media. HCD significantly increased mRNA expression of 
the inflammatory cytokines TNF-α and IL-6 as compared 
to NCD, and O3FA significantly reversed the elevated 
expression (Figure 5A and 5B). Western blot analyses 

Figure 4: Representative photomicrographs of hematoxylin-eosin staining of middle cerebral artery sections. MCA 
media thickness and lumen diameter as compared to the filtered air group after 6 week (A) or 12 week exposure (E). Quantitative 
analyses show media thickness (µm), lumen diameter (µm) and media-lumen ratio (%) (B–D) represents 6 week PM2.5 exposure and  
(F–H) represents 12 week PM2.5 exposure values). (n = 9 for each group). Values are represented as mean ± SE.*p < 0.05, **p < 0.01 and  
***p < 0.001 as compared to the FA group; p < 0.05, p < 0.01 and p < 0.001 as compared to the normal chow diet group; #p < 0.05, 
##p < 0.01 and ###p < 0.001 as compared to the high-cholesterol diet group.
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in Figure 5C and 5D displayed the same trend as its 
mRNA expression. Among the high cholesterol group, 
PM2.5 further increased mRNA and protein expression of 
TNF-α and IL-6. Messenger RNA expression of MCP-1  
(Figure 6A) was increased by 54% (p < 0.05) after 12 
weeks of HCD, and PM2.5 exposure further enhanced 
MCP-1 mRNA expression to 495% (p < 0.01). HCD 
also significantly increased mRNA expression of IFN-γ 
as compared to the normal chow diet group (Figure 6B). 
Western blot analyses in Figure 6C and 6D displayed the 
same trend as its mRNA expression. PM2.5 exposure 
further significantly increased MCP-1 protein (Figure 6C)  
and IFN-γ levels with HCD (Figure 6D). Treatment with 
O3FA significantly attenuated MCP-1 and IFN-γ up-
regulation at both mRNA and protein levels. 

Effects of PM2.5 exposure on VCAM-1 and 
iNOS

We further investigated the effect of PM2.5 exposure 
on the expression of VCAM-1 and iNOS. We first found 

that HCD significantly increased the mRNA expression of 
iNOS (Figure 7A) and VCAM-1 (Figure 7B) as compared 
to NCD. Again, O3FA significantly decreased the mRNA 
expression of iNOS (Figure 7A) and VCAM-1 (Figure 7B).  
Western blot analyses in Figure 7C and 7D displayed the 
same trend in protein expression as its mRNA expression. 
Similarly, PM2.5 exposure further increased mRNA and 
protein expression of both iNOS and VCAM-1 with HCD. 
Treatment with O3FA significantly reversed the increased 
levels of mRNA and protein expression of iNOS and 
VCAM-1. 

Taken together, these results indicate that PM2.5 
exposure can induce brain vascular endothelium 
dysfunction, especially under HCD, whereas O3FA can 
ameliorate the endothelium dysfunction.

DISCUSSION

In the present study, we used a “real-world” 
exposure system to perform ambient inhalation exposure 
of experimental animals to environmental PM2.5. To our 

Figure 5: Effects of PM2.5 exposure on the expression of TNF-α and IL-6 in brain microvessels. The mRNA expression 
of TNF-α (A) and IL-6 (B), and protein levels of TNF-α (C) and IL-6 (D) after 12 week PM2.5 exposure were detected by Real-time PCR 
and Western blot analyses, respectively. Data are presented as mean ± SE (n = 6). *p < 0.05, **p < 0.01 and ***p < 0.001 as compared to the 
FA group; p < 0.05, p < 0.001 as compared to the normal chow diet group; #p < 0.05, ##p < 0.01 and ###p < 0.001 as compared to the 
high-cholesterol diet group.
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knowledge, this is the first study to investigate the effects 
of real-world PM2.5 exposure on ICA. Our major findings 
include: 1) Inhalation exposure to PM2.5 for 12 weeks 
(not 6 weeks) can induce ICA as evidenced by MCA 
thickening and MCA lumen narrowing; 2) HCD induced 
ICA in rats, and PM2.5 enhanced the HCD-induced 
atherosclerosis; 3) PM2.5-induced vascular inflammation 
(the elevated expression of TNF-α, IL-6, MCP-1 and  
IFN-γ) and vascular dysfunction (the increased 
expression of VCAM-1 and iNOS) may be the underlying 
mechanisms for atherosclerosis; 4) Oral supplementation 
of O3FA for 12 weeks ameliorated the detrimental effects 
of PM2.5 (as shown in Figure 8). These findings not only 
have important implications on the understanding of the 
complex effects of airborne PM2.5 pollution on ICA, 
but also provide a promising preventative strategy for 
ICAS by oral supplementation of the inexpensive, widely 
available O3FA.

Epidemiological studies have found an association 
between PM2.5 exposure and hospital admissions for stroke 
[10, 29]. Both in vivo and in vitro studies demonstrated 

the pro-atherosclerotic properties of PM2.5 exposure 
and reveal underlying mechanistic pathways [13, 30]. 
Atherosclerosis is a progressive disease characterized by the 
accumulation of lipids and fibrous plaques in the arteries. 
ICA is responsible for a significant number of strokes [31] 
and notably carries a high risk for recurrent stroke [32]. 
Currently, research using animal models of atherosclerosis 
have mainly focused on the vasculature around the heart, 
but very few study has been conducted intracranially 
[33, 34]. Given the lack of studies on ICA, we recently 
developed a new and complex intracranial atherosclerosis 
model in rats that consistently alters the morphometry of the 
major cerebral arteries by combining 6 weeks of HCD and 
an initial concurrent 2 weeks of L-NAME treatment [26]. 
In atherosclerosis research, the establishment of consistent 
and reliable methods for the elucidation of molecular 
mechanisms and testing of drugs for therapeutic efficiency 
is very important [35].

Previous studies have demonstrated that PM2.5 is 
associated with the development of systemic diseases, 
such as atherosclerosis [13]. In vitro studies typically 

Figure 6: Effects of PM2.5 exposure on the expression of MCP-1 and IFN-γ in brain microvessels. The mRNA expression 
of MCP-1 (A) and IFN-γ (B), and protein levels of MCP-1 (C) and IFN-γ (D) after 12 week PM2.5 exposure were detected by Real-time 
PCR and Western blot analyses, respectively. Values are represented as mean ± SE (n = 6). *p < 0.05, **p < 0.01 as compared to the FA 
group; p < 0.05 as compared to the normal chow diet group; #p < 0.05, ##p < 0.01 as compared to the high-cholesterol diet group.
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used PM2.5 particles collected from the air to expose to 
cultured cells, thus mimicking PM2.5’s effects on human 
health [30, 36]. For animal studies, intranasal instillation 
or tracheal drip was often used as an in vivo exposure 
mode to study PM2.5’s effects [37, 38]. These exposure 
methods may determine the underlying molecular 
mechanisms by which PM2.5 may play a role on diseases. 
However, they do not reflect the effects of PM2.5 
exposure in real-world. Considering this drawback, Sun 
et al. used a versatile aerosol concentration enrichment 
system to mimic the inhalation exposure of PM2.5 to 
animals. Using more physiologically-relevant whole body 
exposure to concentrated ambient PM2.5, Sun et al. and 
others demonstrated that long-term exposure to PM2.5 can 
potentiate plaque development and vascular inflammation 
in apoE-deficient mice [13, 14]. Due to the low PM2.5 
concentrations at the study site, the mice were exposed 
to concentrated ambient PM2.5 at nominal 10× ambient 

concentrations. In the present study, we further used a 
“real-world” PM2.5 exposure system which was modified 
from the “versatile aerosol concentration enrichment 
system” (VACES) in the Sun et al. study [13]. Thus, 
the results can more accurately reflect the physiological 
significance of whole body exposure.

Many studies demonstrated that atherosclerosis is an 
inflammatory disease and that inflammation plays a pivotal 
role in the development of atherosclerosis [39]. Recent 
epidemiological and experimental studies demonstrated that 
PM2.5 air pollution is a risk factor that contributes to the 
development of atherosclerosis [11–13]. Pro-inflammatory 
cytokines released from alveolar macrophages (e.g. TNF-α, 
IL-6 and IFN-γ) can induce systemic inflammation and 
activate vascular inflammation. Blockade of inflammatory 
pathways has been shown to attenuate atherosclerosis after 
PM2.5 exposure. Studies on TLR4-deficient mice showed 
reduced vascular constriction and normal cytokine profile 

Figure 7: Effects of PM2.5 exposure on the expression of VCAM-1 and iNOS in brain microvessels. The mRNA expression 
of iNOS (A) and VCAM-1 (B) and protein levels of iNOS (C) and VCAM-1 (D) after 12 week PM2.5 exposure were detected by Real-
time PCR and Western blot analyses, respectively. Values are represented as mean ± SE (n = 6). *p < 0.05 as compared to the FA group;  
p < 0.05, p < 0.001 as compared to the normal chow diet group; #p < 0.05, ##p < 0.01 and ###p < 0.001 as compared to the high-
cholesterol diet group.
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after chronic PM2.5 exposure [40]. Atherosclerosis is 
primarily triggered in response to activation of the arterial 
endothelium which stimulates the release of monocyte 
and T-lymphocyte-attracting chemokines, such as MCP-1 
and IFN-γ, expressed highly in atherosclerotic regions and 
exhibit atherogenic actions [41].

VCAM-1, an important cell adhesion molecule, is 
a member of the immunoglobulin superfamily of proteins 
and crucially mediates the adhesion of lymphocytes, 
monocytes, eosinophils, and basophils to the vascular 
endothelium [42, 43]. Studies have shown that VCAM-1 
plays a dominant role in the initiation of atherosclerosis 
[44]. Nitric oxide synthases (NOS) are a family of 
isoforms responsible for the synthesis of the potent 
dilator nitric oxide (NO). Expression of inducible NOS 
(iNOS) occurs in conditions of inflammation and produces 
large amounts of NO. In pathological conditions, iNOS 
is regarded as a harmful enzyme and is proposed to be 
a major contributor to diseases of the cardiovascular 
system such as atherosclerosis [45]. Our previous in vitro 
study suggests that PM2.5-induced ROS may function 
as signaling molecules, triggering VCAM-1 expression 
and further promoting monocyte adhesion to endothelial 
cells [30]. A previous study detected increased inducible 

NOS expression in the plaques of mice exposed to PM2.5 
in both high-fat and normal chow groups [13], which is 
consistent with our results.

It is not clear yet how body weight was reduced 
by PM2.5. Previously, many studies demonstrated that 
chronic exposure to PM2.5 can induce insulin resistance 
and metabolic syndrome [46–48]. PM2.5 can also induce 
systemic inflammation by elevating the circulating TNF-α 
and IL-6 [49]. In our model, we examined the circulating 
inflammatory cytokines (TNF-α and IL-6), which were 
consistent with the previous study. We therefore suggest that 
chronic exposure to PM2.5 can upregulate the circulating 
inflammatory cytokines and induce insulin resistance. 
Further study is needed to demonstrate whether body weight 
loss is associated with insulin resistance and diabetes.

In the present study, we found that 12-week PM2.5 
exposure can increase vascular inflammatory factors, thus 
induce vascular endothelium dysfunction and intracranial 
atherosclerosis. Many in vitro studies have indicated 
that PM2.5 exposure can decrease cell viability [30, 50]. 
Also, PM2.5 exposure downregulated the expression of 
HDL. Other studies showed that PM2.5 could decrease 
the antioxidant enzymes SOD and CAT [51]. In our future 
study, we will compare the effects of PM2.5 on both 

Figure 8: A schematic diagram depicting Intracranial Atherosclerosis induced by PM2.5 in a high-cholesterol diet rat 
model. Blood lipids are induced by HCD, PM2.5 exposure or their combination, as evidenced by elevations in blood TG, LDL and CHO, 
with reduction in HDL expression. Subsequently, brain inflammation is also induced with elevations in TNF-α, IL-6, MCP-1, INF-ɣ, iNOS 
and VCAM-1. The resulting consequence is the development of intracranial atherosclerosis, with increased media thickness and narrowing 
of lumen diameter. The effects of HCD and PM2.5 can be attenuated with O3FA supplementation.
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cell viability in neural cell cultures and cell injury/death 
in brain tissue. We will also determine what molecules 
are downregulated by PM2.5, and expand our efforts to 
confirm the mechanisms underlying the detrimental effects 
of PM2.5 and beneficial effects of omega-3 fatty acids.

In summary, our data shows that PM2.5 exposure 
for 12 weeks caused ICA, especially with HCD. This 
effect appears to be mediated by inducing brain vascular 
inflammation and endothelium dysfunction. In addition, 
long-term O3FA dietary supplementation prevented the 
development of intracranial atherosclerosis.

MATERIALS AND METHODS

Animal model

The animal protocol was approved by the Animal 
Care and Use Committee of Capital Medical University 
and was consistent with the NIH Guide for the Care 
and Use of Laboratory Animals. Six-week old male 
Sprague-Dawley rats were purchased from Charles River 
Laboratories and randomly grouped into PM2.5 (n = 54) 
or filtered air (FA) group (n = 54), with each group further 
divided into normal chow diet (NCD) (n = 18) and HCD 
with O3FA (n = 18) or without (n = 18) O3FA treatment. 
The normal chow group was placed on a maintenance 
diet, while the high-cholesterol group was fed a daily 1% 
cholesterol diet for up to 6 or 12 weeks. This cholesterol 
diet is similar to what has been given in other studies on 
atherosclerosis in rats [52, 53]. During the first two weeks, 
L-NAME (3 mg/ml) was added to the high-cholesterol 
group’s drinking water to induce intimal changes, making 
the rats susceptible to atherosclerosis since nitric oxide 
(NO) in the blood vessels prevent vascular inflammation 
[52, 53]. A total of 600 mg L-NAME per rat was 
administered over two weeks as supplementation.

Exposure to PM2.5

Animals were exposed to PM2.5 or FA using a “real-
world” PM2.5 exposure system modified from “versatile 
aerosol concentration enrichment system” (VACES) 
developed by Sioutas [54] and modified by Chen and 
Nadziejko [14]. The rats were exposed to PM2.5 or FA for 
a total of 6 (from August 9, 2016 to September 19, 2016) 
or 12 weeks (from August 9, 2016 to October 31, 2016). 
The control (FA) rats in the experiment were exposed to an 
identical protocol with the exception of a high efficiency 
particulate-air filter positioned in the inlet valve position 
to remove all of the PM2.5 in the filtered air stream. 
The rats in the exposure chamber were fed commercial 
mouse chow and distilled water, and were housed under 
controlled temperature (22 ± 2°C) and relative humidity 
(40–60%) conditions with a 12 h light/dark cycle. On the 
final day of the exposure, all rats were euthanized and 
tissue samples were collected for further studies.

O3FA administration

The O3FA treatment group received supplementation 
of O3FA (5 mg/kg/per day) by oral gavages. O3FA (62160 
Sigma-Aldrich, St. Louis, MO, USA) is called α-Lnn, 
cis,cis,cis-9,12,15-Octadecatrienoic acid, and serves as 
a precursor to eicosapentaenoic acid (EPA) but not to 
docosahexaenoic acid (DHA). DHA is formed from EPA. 
The O3FA polyunsaturated fatty acids are cis-5,8,11,14,17-
EPA and cis-4,7,10,13,16,19-DHA.

Body weight and blood lipids

During the exposure, body weight was recorded 
every week. To evaluate the impact of inhalation 
exposure to PM2.5 on lipid homeostasis in animals fed 
with NCD or HCD, we examined lipid profiles with 
the blood samples of rats exposed to PM2.5 or FA for 
6 or 12 weeks. Systemic blood samples (3.0 ml) were 
collected before animal sacrifice for the determination 
of triglycerides (TG), high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), and cholesterol (CHO) 
at 6 or 12 weeks. Blood was centrifuged at 2000 r/min, 
and the plasma was taken for analysis with an automatic 
biochemistry analyzer (COBAS INTEGRA800).

Vessel morphometry

Animals were deeply anesthetized with Nembutal 
(60 mg/kg, i.p.) and sacrificed by cardiac perfusion 
with saline followed by 4% paraformaldehyde in 
0.1 M phosphate buffer (PB) at pH 7.4. Morphometric 
atherosclerosis in the MCA at 6 or 12 weeks was determined 
by the ratio of the vessel’s lumen to its wall area. Transverse 
6 µm-thick sections of the MCA, cut at the level just above 
the inferior horn of the lateral ventricles, were stained with 
hematoxylin-eosin [55]. Two consecutive sections from 
each animal were measured in both hemispheres with the 
assistance of image analysis software. Lumen-to-wall ratio 
from three to five levels of MCA per section was averaged 
in each animal. All measurements were made in a blinded 
manner.

Isolation of brain microvessels

As described previously by us [28], after cardiac 
perfusion with saline as described above, brains were 
removed and homogenized in 3 vol. ice-cold sucrose 
buffer with a Dounce homogenizer provided with a tightly 
fitting pestle, followed by centrifugation at 4°C for 10 min 
at 1000 g. After discarding the supernatant, the dense 
white layer of myelin in the upper part of the pellet was 
removed and the pellet re-suspended again in 3 vol. of cold 
sucrose buffer on ice, followed by homogenization and 
centrifugation at 4°C for 10 min at 1000 g. The sediment 
was then re-suspended in sucrose buffer and centrifuged 
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twice for 30 s at 100 g. The supernatants were pooled and 
washed twice with sucrose buffer and once with phosphate-
buffered saline+0.1% bovine plasma albumin at 200 g. 
The final pellet was suspended in 1.0 ml of phosphate-
buffered saline+0.1% bovine plasma albumin, centrifuged 
at 14,000 g and the precipitate was stored at –70°C.

Real-time PCR

The isolated cerebral microvessels were 
homogenized and RNA was isolated using Trizol reagent 
(Invitrogen, Carlsbad, CA) according to the manufacturer’s 
instructions. Total RNA was then converted into cDNA 
using the High Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems, Foster City, CA). The quantification 
of gene expression was determined by Prism 7500 real-
time PCR (Applied Biosystems, CA, USA). All reactions 
were performed under the following conditions: 95°C 
for 15 minutes, 40 cycles of 95°C for 10 seconds, and 
60°C for 30 seconds. The primers for rat interleukin 6 
(IL-6), tumor necrosis factor alpha (TNF-α), monocyte 
chemoattractant protein-1 (MCP-1), interferon gamma 
(IFN-γ), vascular cell adhesion molecule 1 (VCAM-1), 
inducible nitric oxide synthase (iNOS) and β-actin are 
shown in Table 2. Beta-actin was used as the control gene 
and all data are represented as relative mRNA expression 
on gene expression.

Western blotting

Cerebral microvessels at 6 or 12 weeks were 
processed and analyzed with Western blot as described 
previously by us [28, 56]. Briefly, the isolated brain 
microvessels as described above were homogenized 
and processed for Western blotting. Primary antibodies, 
including anti-TNF-α (1:1000, ab6671, Abcam, Cambridge, 
MA, USA), anti-IL-6 (1:1000, ab9324, Abcam, Cambridge, 
MA, USA), anti-MCP-1 (1:2000, ab25124, Abcam, 
Cambridge, MA, USA), anti-INF-γ (1:1000, ab7740, 
Abcam, Cambridge, MA, USA), anti-iNOS (1:2000, 
ab15323, Abcam, Cambridge, MA, USA), anti-VCAM-1 
(1:5000, ab134047, Abcam, Cambridge, MA, USA), and 
anti-β-actin (1:5000, A5060, Sigma-Aldrich, St. Louis, MO, 

USA), were incubated on the membrane at 4°C overnight. 
Protein expression was detected using an enhanced 
chemiluminescence kit (Millipore, Billerica, MA, USA).

Statistical analyses

Data are expressed as mean ± SE unless otherwise 
indicated. The differences between the mean values of two 
groups were determined by Student’s t-test. Associations 
between the different variables were examined by one-
way ANOVA, followed by post hoc comparisons using 
the Tukey’s multiple paired comparison test. All analyses 
were performed using Graphpad Prism v5.0 (Graphpad 
Software, San Diego, CA). In all cases, a p value of < 0.05 
was considered as statistically significant.
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