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Abstract:
Casitas B-lineage lymphoma (Cbl) family proteins are evolutionarily-conserved attenuators of protein tyrosine 
kinase (PTK) signaling. Biochemical analyses over the past two decades have firmly established that the negative 
regulatory functions of Cbl proteins are mediated through their ability to facilitate ubiquitination and thus 
promote degradation of PTKs. As aberrant activation of PTKs is frequently associated with oncogenesis, it has 
long been postulated that loss of normal Cbl functions may lead to unregulated activation of PTKs and cellular 
transformation. In the last few years, mutations in the CBL gene have been identified in a subset of human 
patients with myeloid malignancies. Here we discuss insights gained from the analyses of Cbl mutants both in 
human patients and in animal models and propose potential mechanisms of oncogenesis through this pathway.

Introduction

While hematological malignancies represent less 
than 10 % of all cancer cases in the United States [1], 
studies into their pathogenesis have led to critical insights 
into the molecular mechanisms of cancer initiation and 
progression including fundamental paradigm shifts such 
as the stem cell hypothesis of cancer [2]. Hematological 
malignancies have also been at the forefront of studies 
that led to the development of molecularly targeted 
therapeutics [3]. Thus, identification of a novel driver 
of oncogenesis in hematological neoplasms is likely to 
shed new light on mechanisms of oncogenesis relevant 
to diverse types of cancer. It is in this context that recent 
identification of mutations in CBL in a small but significant 
proportion of patients with myeloid malignancies provides 
an important milestone. In this article, we review the basic 
functions of Cbl family proteins, survey their mutations 
in human patients and animal models that manifest as 
myeloproliferative/myelodysplastic syndromes and 
propose potential mechanisms of oncogenesis and 

possible strategies to treat patients with CBL mutations.

Cbl Family Proteins

Members of the Casitas B-lineage lymphoma (Cbl) 
protein family are evolutionarily-conserved multi-domain 
regulators of signal transduction (reviewed in [4-6]). 
In mammals, this family includes Cbl (also known as 
c-Cbl), Cbl-b and Cbl-c (also known as Cbl-3 or Cbl-SL 
[7]). Extensive biochemical studies have demonstrated 
that they act primarily as attenuators of cellular signals 
by functioning as E3 ubiquitin ligases directed towards 
protein tyrosine kinase (PTK) pathways [8-10]. The 
N-terminal regions of all Cbl family members are highly 
conserved; these include the tyrosine kinase binding 
(TKB) domain, the RING finger (RF) domain and the 
short linker region between these two domains. Structural 
analyses have shown that the TKB domain is composed 
of a four-helical bundle, a calcium-binding EF hand 
and a variant SH2 domain [11]; together, these domains 
constitute a relatively unique platform that mediates 
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specific binding to cognate phosphotyrosine-containing 
motifs almost exclusively found in activated PTKs. 
The RING finger domain and the linker region together 
mediates binding to E2 ubiquitin-conjugating enzymes 
and both of these motifs are essential for the E3 ubiquitin 
ligase activity of Cbl proteins [12].

The carboxyl regions of Cbl family members are 
more divergent; while Cbl-c possesses a relatively short 
region carboxyl to the RF domain, Cbl and Cbl-b contain 
multiple protein-protein interactions motifs including: 
proline-rich regions that bind to SH3 domains of a number 
of signaling proteins such as Src family kinases and the 
Grb2 adaptor protein; tyrosine residues that become 
phosphorylated upon cellular activation and interact with 
key signaling mediators such as the Vav family guanine 
nucleotide exchange factors, the p85 regulatory subunit 
of phosphatidylinositol 3-kinase (PI3K) and Crk family 
adaptors; and leucine zipper/ubiquitin-associated (LZ/
UBA) domain that is proposed to be involved in homo- 
and hetero-dimerization of Cbl proteins.

Conclusions based on biochemical evidence that 
Cbl proteins function as attenuators of mammalian PTKs 
have been validated by animal models that demonstrated 
enhanced biological responses when Cbl family members 
are genetically ablated. For example, Cbl-null mice show 
increased cellularity in the hematopoietic organs [13-15] 
whereas Cblb-null mice exhibit hyper-responsiveness 
to immunological insults leading to autoimmunity 
[16, 17]; this phenotype was further augmented to a 

fulminant inflammatory disease when Cbl and Cbl-b 
were concurrently deleted in the T cell compartment [18]. 
Given that Cbl proteins associate with a variety of growth 
factor receptors, their negative regulatory roles towards 
PTKs engendered an expectation that Cbl proteins may 
function as tumor suppressors and that their mutations 
and/or deletions could contribute as driving or accessory 
oncogenic mechanisms. This hypothesis was further 
supported by the historical background that Cbl was 
originally identified as a cellular homolog of a murine 
viral oncogene (v-Cbl); this fibroblast-transforming gene 
was a fusion of the Cbl TKB domain with the viral gag 
sequences [19]. Combined with studies on the Cbl linker/
RF domain mutants including a pre-B cell line-derived 
70Z Cbl as well as various engineered mutants [20], 
these data altogether indicated that the linker/RF domains 
were critical for a potential tumor suppressor role of 
Cbl proteins. Yet, a direct role of Cbl proteins in human 
cancers remained elusive until recently.

Mutant Cbl and Myeloid 
Malignancies

In 2007, two groups simultaneously identified CBL 
mutations in acute myeloid leukemia (AML) patient 
samples [21, 22]. Since then, a number of independent 
studies confirmed and extended these observations and a 
consensus has gradually emerged on the nature of CBL 
mutations and their clinical manifestations [23-32].

Schematic representation of mammalian Cbl, alignments of amino acid sequences for various Cbl family proteins, and 
positions of clinically-identified CBL missense mutations. Mutations were compiled from published papers. TKB, tyrosine kinase-
binding domain; 4H, four-helix bundle; EF, EF hand; SH2, Src-homology domain 2; L, linker; RING, “really interesting new gene” finger 
domain; Y, tyrosine residue; LZ/UBA, leucine zipper/ubiquitin associated domain.
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First, CBL mutations are most frequently 
observed in a distinct group of myeloid disorders, 
namely myelodysplastic syndromes-myeloproliferative 
neoplasms (MDS/MPN); this subgroup of hematological 
malignancies includes the chronic myelomonocytic 
leukemia (CMML), atypical chronic myeloid leukemia 
(aCML) and juvenile myelomonocytic leukemia (JMML). 
Notably, these malignancies are often associated with 
hallmark genetic aberrancies that culminate in activation 
of the Ras-MAPK signaling pathway [33, 34]. For 
example, the activating mutations of PTPN11, NRAS 
and KRAS, and loss of Ras GTPase-activating protein 
gene NF1 together account for approximately 75% cases 
of JMML. CBL mutations are now known to account 
for roughly half of the remaining cases. Among CMML 
patients, RAS mutations are reported in 20 to 60 % of the 
cases.

Second, most CBL mutations are missense mutations 
or small deletions around the linker region and within the 
RF domain. Where tested, these mutations have been 
shown to abrogate the E3 ubiquitin ligase activity of Cbl 
[21, 26, 28]. Complete CBL gene deletion, truncation, 
or mutations outside of the linker/RING finger regions 
are rare. These characteristics strongly suggest that the 
expression of mutant Cbl proteins confers growth and/or 
survival advantages over cells expressing wild-type Cbl 
or even those that have lost Cbl expression.

Third, a remarkable feature of patients with Cbl 
mutations is that the wild-type CBL allele is frequently lost 
in leukemic clones and is replaced with the mutant allele 
by acquired uniparental isodisomy (aUPD). Although 
mutations in CBLB and CBLC have also been reported, 
they appear to be rare compared to CBL mutations. In 
this regard, deletion of the wild-type CBL allele and 
acquisition of a second mutant allele may represent a 
defining oncogenic event; this hypothesis is most clearly 
supported by observations in JMML patients, where CBL 
mutations are often inherited as hemizygous germline 
mutations [32]. Apparently, a mutant Cbl protein encoded 
by a hemizygous CBL mutation is not sufficient to counter 
the function of Cbl family proteins encoded by the 
remaining wild-type CBL allele plus two wild-type CBLB 
alleles. This is further backed by experimental data that 
mutant Cbl proteins confer far more growth advantage on 
a Cbl-deficient background compared to a Cbl wild-type 
background [28, 32].

Then, how do the mutant Cbl proteins function? 
Considering the high degree of structural similarity 
between Cbl and Cbl-b (and given the relatively 
epithelial-restricted expression of Cbl-c), it is conceivable 
that mutant Cbl proteins function as a dominant-negative 
mutant towards Cbl-b (or, as seen in some patients, 
towards both Cbl and Cbl-b if aUPD has not occurred) 
in hematopoietic cells. Phenotypic differences between 
mice deficient in Cbl alone or both Cbl and Cbl-b in the 
hematopoietic compartment are also consistent with the 

notion that complete loss of Cbl functions is necessary 
to promote myeloid malignancy. While bone marrows 
showed an expansion of the hematopoietic stem/progenitor 
compartments in both genetic backgrounds, rapidly 
fatal myeloproliferative disorder with peripheral organ 
involvement was seen only in Cbl, Cblb double-deficient 
mice but not in Cbl-null mice even at an advanced age 
[15, 35, 36].

Additionally, mutant Cbl proteins may function as 
gain-of-function oncogenes. Considering that essentially 
all leukemia-associated Cbl mutants possess an intact 
TKB and C-terminal motifs that mediate interactions 
with a variety of signaling proteins, it is logical to 
hypothesize that these E3-defective proteins will be 
recruited to activated PTKs (via the TKB domain) 
and that this will lead to the formation of a signaling 
complex that lacks the negative regulatory function of 
wild-type Cbl. In this scenario, mutant Cbl proteins will 
associate more persistently with signaling intermediates 
through phosphotyrosine-containing motifs, proline-rich 
regions and other potential motifs. Thus, mutant Cbl 
proteins are likely to serve as supramolecular scaffolds 
to assemble aberrant signaling complexes that can 
promote hyperactivation of signaling pathways normally 
attenuated by E3-competent wild-type Cbl. This idea 
is compatible with more robust transforming ability of 
70Z Cbl compared to v-Cbl-equivalent sequences when 
expressed in fibroblasts [20] and a stronger biochemical 
activation of PDGFR signaling cascade by 70Z Cbl and 
other full-length Cbl mutants compared to v-Cbl [37].

Further support for this idea comes from analyses of a 
mutant Cbl knock-in mouse model developed by Langdon 
and colleagues in which a Cbl RING finger mutant 
(C379A, equivalent to C381 in human) is expressed from 
the endogenous Cbl promoter [38]. While homozygous 
mutant mice show early lethality, heterozygous mutant mice 
with one wild-type Cbl allele do not show hematopoietic 
abnormalities. However, mice with one C379A mutant 
allele on a Cbl-null background (with wild-type Cblb) 
succumb to myeloid malignancies with a median survival 
time of 47 weeks [36]; although the disease in these mice 
develops later than in Cbl, Cblb double-deficient mice 
[35], the overall features of the disease are remarkably 
similar. Interestingly, Akt was constitutively activated in 
the C379A mutant hematopoietic cells but not in control 
or Cbl-null mutant cells [36]. This was accompanied by 
the enhanced phosphorylation of Y737 (corresponding to 
Y731 in human) of Cbl, an experimentally-proven binding 
site for the p85 regulatory subunit of PI3K. These findings 
in an in vivo model that phenocopies critical features of 
human diseases support the premise that an E3-deficient 
oncogenic Cbl mutant is capable of hyperactivating a key 
pathway through an associated signaling partner whose 
function would have been attenuated by wild-type Cbl. 
Thus, it will be highly pertinent in future studies to use 
this and other mouse models to identify and evaluate 
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the activation status of PTKs that serve as physiological 
targets of Cbl proteins in hematopoietic stem cells, and to 
assess which signaling pathways are rendered hyperactive 
as a result of the expression of a gain-of-function Cbl 
mutant. Clearly, to distinguish between the dominant-
negative and gain-of-function mechanisms of mutant 
Cbl-dependent oncogenesis, it is imperative to test their 
activities in cellular environments completely free of 
endogenous Cbl proteins. Cbl, Cblb double-deficient mice 
[35] as well as cells derived from these animals should be 
valuable research tools for this purpose.

Considering Cbl’s interaction with various signaling 
molecules, mutant Cbl is likely to affect a multitude of 
downstream pathways. We discussed the constitutive 
activation of the Akt-PI3K pathway above [36]. Because 
CBL mutations are seen in a sizable fraction of JMML 
cases, a disease entity strongly linked to hyperactivation of 
the Ras-Raf-MAPK pathway [34], activity of this pathway 
needs to be carefully evaluated. Indeed, Erk activation of 
LSK (Lin-Sca-1+c-Kit+) cells in response to Flt3 ligand 
stimulation is prolonged in C379A mice [36], suggesting 
that this is another potential pathway affected by CBL 
mutation. Molecular basis of Cbl-mediated regulation of 
the MAPK pathway has been proposed previously [6]. 
Furthermore, mutant Cbl proteins may also influence 
cytoskeletal reorganization and cell motility through their 
interaction with the Rac1 and Cdc42 pathways [39, 40]. 
Comprehensive structure-function analyses using ectopic 
expression of mutant Cbl proteins in hematopoietic stem 
cells and, in the long run, from its endogenous promoter 
through knock-in approaches should help directly test 
these potential mechanisms in leukemogenesis and disease 
progression. Finally, aberrations of other pathways such 
as RUNX1, JAK2, and FLT3 are found in human patients 
with CBL mutations [28, 41, 42]. Therefore, modeling 
these additional oncogenic events in cellular and animal 
models should help provide a fuller picture of mutant Cbl-
driven leukemogenic process.

Importantly, many of the signaling pathways that 
appear to be linked to mutant Cbl-driven oncogenesis 
are also known to be hyperactive in other cancer, and are 
currently being pursued actively as potential therapeutic 
targets. Therefore, a better understanding of the spectrum 
of signaling alterations provoked by mutant Cbl proteins 
is likely to reveal logical therapeutic strategies for patients 
with CBL mutations. Because mutant Cbl proteins may 
unleash pathways that are distinct from those engaged by 
its normal counterpart, unbiased genomic and proteomic 
approaches may help identify potential therapeutic 
targets. Finally, it may be possible to develop therapeutics 
that directly target mutant Cbl. Existing biochemical 
data indicate that mutant Cbl proteins need to interact 
with their PTK targets through the TKB domain to exert 
their transforming activity. Therefore, it is conceivable 
that interruption of this interaction can block mutant 
Cbl-driven oncogenesis. While not as widely pursued as 

inhibitors that target specific catalytically active sites in 
enzymes (such as protein tyrosine kinases), successful 
development of small molecule inhibitors of protein-
protein interaction has begun to emerge, validating it 
as a practical approach [43]. The interaction interfaces 
that mediate the Cbl TKB domain binding to cognate 
phospho-peptide motifs on target PTKs have been 
structurally characterized and should be useful for a 
peptidomimetic approach to design small molecule 
inhibitors. This approach can be complemented with more 
unbiased chemical library screens. Our laboratories have 
established high throughput assays that are suitable for 
screening small molecules as well as for characterization 
of rationally-designed inhibitors of Cbl interaction with 
PTKs [44].

In conclusion, recent identification of mutations 
of Cbl in MDS/MPN and development of models that 
recapitulate features of these diseases in mice have 
opened exciting new avenues to translate what we have 
learned over the last two decades about the multi-faceted 
roles of Cbl family proteins as negative regulators of PTK 
signaling. These new findings also pose new questions 
about the functional roles of Cbl proteins, mechanisms 
by which these proteins regulate hematopoietic (and 
potentially other) stem cell programs, and how these 
new findings can be channeled into new diagnostic and 
therapeutic opportunities.
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