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ABSTRACT
Background: After surgery and radiation, treatment options for ependymoma are 

few making recurrence a challenging issue. Specifically, the efficacy of chemotherapy 
at recurrence is limited. We performed molecular profiling on a cohort of ependymoma 
cases in order to uncover therapeutic targets and to elucidate the molecular 
mechanisms contributing to treatment resistance. 

Results: This ependymoma cohort showed minimal alterations in gene 
amplifications and mutations but had high expression rates of DNA synthesis and 
repair enzymes such as RRM1 (47%), ERCC1 (48%), TOPO1 (62%) and class III 
β-tublin (TUBB3) (57%), which are also all associated with chemoresistance. This 
cohort also had high expression rates of transporter proteins that mediate multi-drug 
resistance including BCRP (71%) and MRP1 (43%). Subgroup analyses showed that 
cranial ependymomas expressed the DNA synthesis enzyme TS significantly more 
frequently than spinal lesions did (57% versus 15%; p = 0.0328) and that increased 
TS expression was correlated with increased tumor grade (p = 0.0009). High-grade 
lesions were also significantly associated with elevated expression of TOP2A (p = 
0.0092) and TUBB3 (p = 0.0157). 

Materials and Methods: We reviewed the characteristics of 41 ependymomas (21 
cranial, 20 spinal; 8 grade I, 11 grade II, 22 grade III) that underwent multiplatform 
profiling with immunohistochemistry, next-generation sequencing, and in situ 
hybridization.

Conclusions: Ependymomas are enriched with proteins involved in 
chemoresistance and in DNA synthesis and repair, which is consistent with the 
meager clinical effectiveness of conventional systemic therapy in ependymoma. 
Adjuvant therapies that combine conventional chemotherapy with the inhibition of 
chemoresistance-related proteins may represent a novel treatment paradigm for this 
difficult disease. 
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INTRODUCTION

Ependymomas are glial tumors that can arise 
anywhere in the neuroaxis and account for approximately 
4% of all malignant tumors in the central nervous 
system (CNS) [1]. They are postulated to originate 
from radial glia cells in the subventricular zone [2] 
and result in the development of tumors in three major 
anatomic compartments: the supratentorial cranium, the 
infratentorial cranium, and the spine. Ependymomas, 
which are more common in pediatric patients than in adult 
patients, constitute 6–12% of all childhood CNS neoplasms 
(1). The anatomical location of ependymomas largely 
depends on patient age, with 90% of pediatric patients 
having cranial lesions [3] and 60% of adult patients having 
tumors in the spine [4, 5]. Although ependymal tumors 
from different locations are histologically indistinct, their 
clinical behaviors are highly variable [6, 7]. Recent studies 
have identified ependymoma molecular subtypes that 
contribute to observed differences in clinical outcome [3, 
8, 9]. 

Regardless of their subtype or location, the 
cornerstone of treatment for all ependymomas is surgery. 
Gross total resection (GTR) is well established to be 
associated with improved patient survival [7, 10], and 
spinal ependymomas can often be cured with complete 
resection alone [3, 11]. The GTR of cranial tumors 
located near eloquent structures (e.g., the fourth ventricle, 
the brainstem) can be challenging, and the potential 
for devastating neurological outcomes may preclude 
GTR in such cases [11, 12]. In both adult and pediatric 
ependymoma patients, maximal safe resection followed by 
adjuvant focal radiation is the standard of care. However, 
the role of adjuvant chemotherapy in the treatment of 
ependymal tumors is less established, and its overall 
benefit is controversial [13, 14]. 

Owing to insufficient adjuvant treatment options, 
patients with recurrent ependymoma face a devastating 
clinical scenario and poor survival [15–17]. 
Ependymomas are notoriously chemoresistant, which 
greatly limits options for salvage therapy. Only a few 
studies have investigated the mechanisms governing 
this chemoresistance [18–20]. Although recent 
breakthroughs have improved our understanding of the 
genetic and molecular characteristics of ependymomas 
[3, 8, 9, 21], the mediators of chemoresistance in 
ependymomas remain largely unknown [20, 22].  The 
purpose of the present study was to determine the 
distribution of chemoresistance-related proteins in 
ependymoma. We performed multi-platform profiling 
on a cohort of these tumors and found ependymomas 
are enriched with proteins critical for DNA synthesis 
and repair. These findings suggest new potential 
treatment approaches and may help guide the 
stratification of ependymoma patients in clinical trials 
of chemotherapy.

RESULTS

Patient and tumor characteristics

Patient and tumor characteristics observed were 
consistent with those in previous reports [11, 23]. Of the 
41 ependymomas included in our analysis (20 [49%]) 
from males and 21 [51%] from females), 33 (80%) were 
adult and 8 (20%) were pediatric. Most ependymomas (26 
[63%]) were cranial; 15 (37%) were spinal. Among the 
adult ependymomas, 19 (58%) were cranial and 14 (42%) 
were spinal; whereas among pediatric ependymomas, 
7 (88%) were cranial and only 1 (13%) was spinal. The 
patient population was equally dichotomized based on 
gender with 49% being male (n = 20). Cranial tumors 
were more frequent in female patients (16/21 [76%]) 
than in male patients (10/20 [50%]). Tumor location was 
significantly correlated with patient age. Overall, the 
median age at which cranial tumors occurred (28 years) 
was significantly lower than that at which spinal tumors 
occurred (47 years; p = 0.008).

Eight patients (19%) had grade I tumors, 11 (27%) 
had grade II tumors, and 22 (54%) had grade III tumors. 
Tumor grade and patient age were significantly associated 
(Figure 1), which is consistent with a previous study’s 
findings [24]. The median ages of patients with grade I, II, 
and III tumors (46, 38, and 29 years, respectively) differed 
significantly (p = 0.0213). There was also a relationship 
between tumor grade and location. Most grade I tumors 
were spinal (7/8 [88%]), whereas most grade II and III 
tumors were cranial (18/22 [82%]). All grade I spinal 
lesions were myxopapillary tumors. The percentages of 
cranial tumors that were grade I, II, or III (4% [1/26], 
27% [7/26], and 69% [18/26], respectively) and those of 
spinal tumors that were grade I, II, or III (46% [7/15], 27% 
[4/15], and 27% [4/15], respectively) differed significantly 
(p = 0.0009).

Chemoresistance proteins are highly expressed 
in ependymomas

The rates of cancer-associated protein 
overexpression among ependymomas are given in 
Figure 2. Of the investigated proteins, PTEN was 
the most frequently expressed; specifically, 33 of 39 
specimens (85%) showed PTEN overexpression. Five 
of 24 ependymomas (21%) had MGMT overexpression. 
Notably, ependymomas frequently overexpressed proteins 
implicated in DNA synthesis, transcription, and repair 
and/or drug resistance, including BCRP (5/7 [71%]), 
RRM1 (14/30 [47%]), ERCC1 (13/25 [48%]), TUBB3 
(12/21 [57%]), TOPO1 (23/37 [62%]), and MRP1 (8/14 
[43%]) [25–30].  Overall, 83% of the ependymomas 
overexpressed at least one DNA synthesis or repair protein 
or multi-drug resistance protein, and 80% overexpressed 
2 or more.
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Chemoresistance protein expression depends on 
ependymoma grade and location 

The protein expression profiles of this ependymoma 
cohort by location, grade, and patient age are displayed 
in Figure 3. An analysis of the protein expression of 
21 cranial and 15 spinal tumors revealed a significant 
association between TS expression and tumor 
location. The proportion of cranial ependymomas that 
overexpressed TS (57%) was significantly higher than 
that of spinal ependymomas that overexpressed the protein 
(15%; p = 0.0328) (Figure 3A). The proportion of cranial 
tumors that expressed EGFR and MRP1 was higher than 
that of spinal lesions; however, this difference was not 
statistically significant. In addition to its association with 
tumor location, TS overexpression was also correlated 
with tumor grade (Figure 3B). The frequency of TS 
overexpression among grade III tumors (65% [11/17]) 
was significantly higher than that among grade II tumors 
(18% [2/11]) and grade I tumors (0% [0/9]; p = 0.0009). 
Tumor grade was correlated with the overexpression of 
several additional proteins, including EGFR, which was 
overexpressed in 100%, 50%, and 0% of grade I, II, and 
III tumors, respectively (p = 0.0283); TOP2A, which was 
overexpressed in 47%, 10%, and 0% of grade I, II, and III 
tumors, respectively (p = 0.0092); and TUBB3, which was 
overexpressed in 80%, 50%, and 0% of grade I, II, and III 
tumors, respectively (p = 0.0157). Differences in protein 
expression between adult and pediatric cases did not differ 
significantly (Figure 3C). 

Cranial and spinal ependymomas have 
differential expression of chemoresistance 
proteins

A subgroup analysis of cranial ependymomas 
revealed that the biomarker profiles of adult and pediatric 
tumors did not differ significantly (Figure 4A). However, 
tumor grade and TS expression were significantly 
correlated, with 69% of grade III tumors displaying TS 
overexpression compared with 0% of grade I lesions (p 
= 0.042) (Figure 4B). In a subgroup analysis of spinal 
ependymomas, high tumor grade was associated with 
increased TS and TOP2A expression (Figure 5). TS 
was exclusively overexpressed in grade III tumors, with 
no TS expression detected in grade I or II tumors (p = 
0.0286). TOP2A expression was observed in 50% of 
grade III spinal tumors and 0% of grade II or I tumors 
(p = 0.0361).

DISCUSSION

We found that proteins involved in DNA synthesis 
(e.g. RRM1), transcription (TOPO1), and repair 
(ERCC1) are enriched in ependymoma. As these proteins 
affect DNA metabolism, several are key mediators of 
chemoresistance in other solid malignancies [26, 27, 
29]. Specifically, the expressions of RRM1, ERCC1, and 
TUBB3 are inversely correlated with tumor responses 
to anti-metabolites such as gemcitabine, platinum-based 
agents, and spindle poisons, respectively, which may 

Figure 1: Scatterplot displaying the relationship between patient age and tumor grade.
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help explain why these drugs have shown little efficacy 
in vivo [31] or in clinical studies [32, 33]. We also found 
transporter proteins such as BCRP and MRP1, which 
have roles in multidrug resistance, to be elevated in our 
ependymoma cohort. BCRP (also referred to as ABCG2) 
belongs to the ATP-binding cassette  transporter family 
and reduces the intracellular concentrations of multiple 
chemotherapeutic agents, including doxorubicin, 

topotecan, and mitoxantrone [34]. Our findings are 
consistent with those of a smaller study that reported 
that the BCRP and MRP1 genes are expressed in 
ependymomas [35]. BCRP-mediated multi-drug resistance 
may be reversed by EGFR tyrosine kinase inhibitors, 
and several preclinical studies (utilizing breast, colon 
and small cell lung cancer cell lines) have demonstrated 
this phenomenon [36–38].  Thus, the combination of 

Figure 2: Bar graph displaying rates of cancer-associated protein overexpression among ependymomas.
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transporter inhibition plus chemotherapy may be a novel 
treatment paradigm for refractory ependymoma [39].

Our subgroup analyses of cranial tumors and 
of spinal tumors demonstrated that ependymomas at 
different locations have differential protein expression. 
For example, although ependymomas had an overall 
low expression rate of TS, a key enzyme in DNA 
biosynthesis and a known marker of cell proliferation 
and poor prognosis in other malignancies [40], cranial 

ependymomas had a significantly higher expression 
rate of TS than spinal ependymomas did. This was not 
unexpected as cranial lesions are known to display 
more aggressive clinical behavior. Low TS expression 
is correlated with response to 5-fluorouracil [41], which 
indicates that that 5-fluorouracil–based therapy might be 
efficacious in a select cohort of ependymoma patients. 
In addition, commercially available direct TS inhibitors 
such as pemetrexed have shown efficacy in other solid 

Figure 3: Bar graphs showing differential protein expression in ependymomas by (A) tumor location, (B) tumor grade, and (C) patient 
age. Asterisks indicate significant differences (p < 0.05)
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malignances [42] and have yielded favorable results in 
patients with non–small cell lung cancer brain metastases 
in phase II trials [43, 44] and may hold promise for 
ependymoma patients [45]. 

We also found that the expression of TS, TUBB3, 
and TOP2A were associated with tumor grade. These 
proteins are associated with aggressive behavior, 
poor patient prognosis, and chemoresistance in other 
malignancies [27, 40, 46], and our results indicate a similar 
pattern in ependymoma. Elevated TOP2A expression in 
ependymoma has not been reported previously; however, 

etoposide, a TOP2A inhibitor, has been used to treat 
recurrent ependymoma with very modest clinical results, 
likely because the agent has meager CNS penetration 
[47–49]. WP744 (berubicin), another TOP2A inhibitor 
able to penetrate the blood-brain barrier, has been tested in 
primary CNS malignancies with some success; however, 
additional studies of this agent in ependymoma may be 
warranted [50].

Even though this study is strengthened by a wide 
array of biomarkers analyzed, it is limited by the fact that 
it is commercial database, hence clinical data regarding 

Figure 4: Bar graphs showing differential protein expression in cranial ependymomas by (A) patient age and (B) tumor grade. Asterisk 
indicates a significant difference (p < 0.05).

Figure 5: Bar graph showing differential protein expression in spinal ependymomas by tumor grade. Asterisks indicate 
significant differences (p < 0.05).
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patient outcome is not available. In addition, data 
regarding the molecular subtype (i.e. RELA and/or YAP1 
fusion) of these ependymoma samples was unavailable 
for the majority of cases as physicians rarely requested 
this specific testing.  Moreover, the effect of previous 
treatments on protein expression cannot be analyzed. 

MATERIALS AND METHODS

Study population

We reviewed the Caris Life Sciences database and 
identified 41 ependymal tumors submitted to the company 
between 2009 and 2015 for multiplatform analysis 
(including mutational analysis, in situ hybridization, and 
immunohistochemistry) for biomarker profiling.  WHO 
criteria were used to grade tumors.  Because Caris Life 
Sciences maintains a commercial database, specimens 
are not clinically annotated; thus, outcome (e.g., survival) 
and prior treatment data were not available for the present 
study. Biomarkers analyzed varied by case owing to the 
preference of the ordering physician, tissue availability, 
and variation in technology over the study period. This 
study was exempt from Institutional Review Board 
approval as per 45 CFR 46.101(b), as the data analyzed 
were from an existing commercial repository and patients’ 
protected health information was de-identified. 

Mutational analysis

Genomic DNA isolated from formalin-fixed, 
paraffin-embedded tumor tissue was sequenced with 
the Illumina MiSeq platform. The specific regions of 47 
pan-cancer genes considered to be of interest and related 
to cancer genomics on the basis of current literature 
were amplified using the customized Illumina TruSeq 
Amplicon Cancer Hotspot panel. The hotspot regions of 
the following genes were sequenced: ABL1, AKT1, ALK, 
APC, ATM, BRAF, BRCA1, BRCA2, CDH1, cKIT, 
cMET, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, 
FBXW7, FGFR1, FGFR2, FLT3, GNA11, GNAS, GNAQ, 
HNF1A, HRAS, IDH1, JAK2, JAK3, KDR (VEGFR2), 
KRAS, MLH1, MPL, NOTCH1, NPM1, NRAS, 
PDGFRα, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, 
SMARCB1, SMO, STK11, TP53, and VHL. All variants 
reported were detected with > 99% confidence based on 
the mutation frequency. 

In situ hybridization

Fluorescence in situ hybridization (FISH) and 
chromogenic in situ hybridization were used to detect 
amplification of cMET (with the cMET/CEP7 probe and 
a Ventana kit) and HER2 (with the HER-2/CEP17 probe 
and INFORM HER-2 Dual ISH DNA Probe Cocktail). 
FISH was also used to detect EGFR amplification (with 

the EGFR/CEP7 probe). cMET was considered to be 
amplified if ≥ 5 copies per tumor cell were detected on 
average. A HER-2/CEP17 ratio of ≥ 2 was considered 
to indicate amplified HER2. EGFR amplification was 
defined by the presence of an EGFR/CEP7 ratio of ≥ 2 
or ≥ 15 EGFR copies per cell in ≥ 10% of analyzed cells.

Immunohistochemistry

Formalin-fixed, paraffin-embedded tumor 
specimens were used for the immunohistochemical 
analysis. Antibodies against the following proteins were 
used: androgen receptor (AR), cMET, cKIT, epidermal 
growth factor receptor (EGFR), estrogen receptor 
(ER), excision repair cross-complementation group 
1 (ERCC1), human epidermal growth factor receptor 
2 (HER2), O(6)-methylguanine-methyltransferase 
(MGMT), p-glycoprotein (PGP), programmed cell death 
protein 1 (PD-1), programmed death-ligand 1 (PD-L1), 
platelet-derived growth factor receptor alpha (PDGFR), 
phosphatase and tensin homolog (PTEN), progesterone 
receptor (PR), ribonucleotide reductase M1 (RRM1), 
SPARC (monoclonal and polyclonal), thymidylate 
synthase (TS), topoisomerases 1 and 2 (TOPO1, TOP2A), 
transducin-like enhancer of split 3 (TLE3), and tubulin 
beta-3 chain (TUBB3). The primary antibody clones 
are listed in Supplementary Table 1. The conditions for 
staining were implemented using automated staining 
techniques and in accordance with the manufacturer’s 
instructions. Staining conditions were validated 
following the requirements of the Clinical Laboratory 
Improvement Amendments/Compliance Assistance 
Office and International Organization for Standardization. 
Immunohistochemical staining scores were based on 
staining percentage (0–100%) and intensity (0 = no 
staining; 1+ =  weak staining; 2+ = moderate staining; 
3+ = strong staining). Independent board-certified 
pathologists confirmed the results. PD-L1 staining was 
specific to membranous tumor cells, and PD-1 staining 
was specific to tumor-infiltrating lymphocytes.

Statistical analysis

Fisher’s exact test, Cochran-Mantel-Haenszel chi-
squared test and Cochran Armitage test were used to 
assess differences in biomarker expression rates between 
groups. All analyses were exploratory, performed with R 
v3.3.1 with package DescTools v0.99.16. P values ≤0.05 
were defined as significant.

CONCLUSIONS

Our findings demonstrate that chemoresistance-related 
proteins are markedly upregulated in ependymomas, and large-
scale studies are needed to determine the extent to which this 
expression pattern is related to patient outcomes. However, 
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our data suggest that a more tailored treatment approach based 
on biomarker expression may be warranted to better stratify 
ependymoma patients for specific therapies and clinical trials. 
Furthermore, an adjuvant treatment that combines conventional 
chemotherapy with drugs that inhibit DNA repair–related 
proteins or ATP-binding cassette transporter proteins may have 
enhanced clinical efficacy in appropriately selected patients.
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