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ABSTRACT

Identification of prognostic biomarkers helps facilitate the prediction of patient 
outcomes as well as guide treatments. Accumulating evidence now suggests that 
long non-coding RNAs (lncRNAs) play key roles in tumor progression with diagnostic 
and prognostic values. However, little is known about the biological functions 
of lncRNAs and how they contribute to the pathogenesis of cancer. Herein, we 
performed weighted correlation network analysis (WGCNA) on 380 RNA-seq samples 
from prostate cancer patients to create networks comprising of microRNAs, lncRNAs, 
and protein-coding genes. Our analysis revealed expression modules that associated 
with pathological parameters. More importantly, we identified a gene module that 
is involved in protein translation and is associated with patient survival. In this 
gene module, we explored the regulation axis involving GAS5, ZFAS1, and miR-
940. We show that GAS5, ZFAS1, and miR-940 are up-regulated in tumors relative 
to normal prostate tissues, and high expression of either lncRNA is an indicator of 
poor patient outcome. Finally, we constructed a co-expression network involving 
GAS5, ZFAS1, and miR-940, as well as the targets of miR-940. Our results show that 
GAS5 and ZFAS1 are targeted by miR-940 via NAA10 and RPL28. Taken together, 
co-expression analysis of gene expression profiling from RNA-seq can accelerate 
the identification and functional characterization of novel prognostic markers in 
prostate cancer.

INTRODUCTION

Prostate cancer (PCa) is one of the leading causes 
of cancer-related death for men in North America and 
Europe [1]. Prostate-specific antigen (PSA) analysis, 
biopsy, as well as the Gleason score, are diagnostic tools 
that have improved the diagnosis and management of PCa 
[2]. Among treated PCa patients, pathological parameters 
can predict the outcome of patients. For example, serum 
PSA, biopsy, and the Gleason score are well-known 
predictors of biological outcome following primary 

therapy for PCa. However, outcome prediction has shifted 
from pathological parameters to biological molecules. 
Molecular biomarkers, such as the expression of specific 
protein-coding and non-coding genes have now greatly 
improved the accuracy of outcome prediction for patients 
after treatment [3].

Specific functions are correlated or predictive of 
pathological parameters that are characteristic of tumor 
progression. For example, adhesion-related genes are 
correlated with Gleason score. Specifically, in human 
prostate adenocarcinomas, the down-regulation of the 
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adhesion molecule CD44 standard (CD44s) [4] and 
E-cadherin (CDH1) [5, 6] was reported to be associated 
with metastasis and high Gleason score. Cell cycle 
genes are also biomarkers that can predict the risk of 
clinicopathological outcomes [7] such as biochemical 
recurrence rate after prostatectomy therapy [8, 9]. More 
recently, the deregulation of ncRNAs has been associated 
with cell proliferation and survival of PCa [10]. Therefore, 
it is of great importance to determine the biological 
functions that are important for pathological features and 
to identify the corresponding novel biomarkers relevant for 
clinicopathological parameters, in particular, non-coding 
RNAs (ncRNAs), including microRNAs (miRNAs) and 
lncRNAs.

In this study, we examined gene modules and their 
corresponding biological functions that are significantly 
linked to clinicopathological parameters. We found 
potent prognostic markers, including lncRNAs that were 
identified based on their association with survival time. 
We also used WGCNA to look for gene sets with similar 
biological function based on the TCGA dataset for PCa. 
Six gene modules were identified, one of which is related 
to patient survival time. Enrichment analysis revealed the 
genes in the survival time-related module are significantly 
associated with the regulation of protein translation. We 
further identified dysregulated lncRNAs involved in 
protein translation with prognostic potential in PCa and 
dissected the roles of lncRNAs and miRNAs via target 
predictions and co-expression networks.

RESULTS

Identification of gene modules using WGCNA

Extending the survival time is the final goal for 
patients suffering from PCa. In this follow up analysis of 
the TCGA PRAD dataset, WGCNA was used to create co-
expressed gene networks associated with survival time. 
Only genes with appreciable expression levels (FPKM>1) 
in more than half of the PCa patients were subjected to 
analysis. Power 22 was selected as the soft threshold to 
identify co-expression gene modules (for details, see the 
Materials and Methods section). Seven gene-network 
modules were identified and color-coded. Since the “grey” 
module is reserved for unassigned genes, we focused on 
the other six modules instead. As shown in Figure 1, the 
turquoise, blue and brown modules are the top 3 modules 
which contained the highest number of genes. The 
turquoise module contained 532 genes, while the blue and 
brown had 523 and 305 genes, respectively.

Linking modules to pathological parameters

We further evaluated the relationship between these 
modules and the pathological parameters by calculating 
the correlation value of the eigengenes of each module 
(for a detailed definition, see the Materials and Methods 
section) with the clinical information obtained from 
the patients. The turquoise module was marginally 

Figure 1: Gene modules detected using the weighted correlation network analysis (WGCNA). (A) Scale-free topology 
index and mean connectivity were used to determine the soft threshold. (B) Clustering dendrogram of genes. The dissimilarity of genes is 
based on topological overlap. The genes are assigned to different modules and are identified using different colors. (C) Number of genes in 
each module identified from WGCNA. The numbers in the bracket represent the number of genes in each module. The modules containing 
the most number of genes are the turquoise module, blue module and brown module.
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significantly associated with survival time (p=0.07, 
Figure 2). The green module was associated with clinical 
parameters including Gleason score (p=4e-17), most PSA 
(p=9e-27) and lymph nodes according to haematoxylin 
and eosin (HE) staining (p=1e-06). Functional enrichment 
analysis based on KEGG pathways and biological process 
of Gene Ontology (GO) revealed the genes in the green 
module are involved in the GO term “cell cycle”. This 
observation is consistent with a previous report which 

also found cell cycle genes are correlated with PSA 
and the Gleason score [7]. The yellow module was also 
associated with Gleason score and lymph nodes according 
to HE examination. And as expected, the genes in this 
module were shown to participate in immune and defense 
responses. Finally, the brown module was negatively 
associated with Gleason score and lymph nodes according 
to HE examination. The genes assigned to this module 
significantly participate in focal adhesion pathways as 

Figure 2: Module-trait associations. Each row corresponds to a module eigengene, and each column corresponds to a pathoclinical 
parameter. The module eigengene is defined as the first principal component of a given module and considered a representative of the gene 
expression profiles in a module. Each grid contains the correlation value, calculated based on eigengene expression and clinical traits. The 
corresponding p-value is the Student asymptotic p-value for the correlation. The grid is color-coded by correlation according to the color 
bar of the correlation. 
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well as the biological processes of muscle contraction and 
cell adhesion, consistent with previous studies on adhesion 
genes such as CD44 [4], CDH1 [5, 6] and GJA1 [11].

The turquoise module is correlated with survival 
time and associated with RNA-processing and 
protein translation

In the present study, we used survival time as one 
of the sample traits. There are two methods that are 
commonly used to identify prognostic markers. One 
method is at the gene module level, according to the 
correlation between the survival time and eigengene for 
each module. The other method is at the single gene level 
according to the correlation value (for details, see the 
Materials and Methods section) of gene expression and 
survival time.

With the most number of genes, the turquoise 
module was marginally significantly associated with 
survival time (p=0.07). Functional enrichment analysis 
revealed the genes in this module are associated with 
RNA processing and translation (Supplementary Table 
1). As shown in Figure 3A, there are primarily 3 clusters 
of genes representing different biological functions 
in the turquoise module. The cluster with the purple 
background represents a translation-related function, while 
the clusters with the gold and sea green background are 
associated with mitochondrial-related processes and RNA 
processing, respectively. Further functional enrichment 
analysis revealed the genes in the turquoise module 
are significantly involved in the ribosome pathway and 
neurodegenerative diseases (Figure 3B).

In addition to the above functional enrichment 
analyses, we also performed a hypergeometric test on the 
turquoise module. The hypergeometric test is a widely-
used method to identify the function of gene sets based 
on overlapping genes with known functions [12]. A gene 
family comprises a set of similar genes with similar 
biochemical functions. The HUGO gene nomenclature 
committee (HGNC) contains the members of each gene 
family. According to HGNC, the ribosomal protein family 
is comprised of 164 genes encoding for ribosomal proteins, 
including L ribosomal proteins (RPL), S ribosomal proteins 
(RPS) and mitochondrial ribosomal proteins (MRPL, 
MRPS) [13]. As shown in Figure 3C, the genes in the 
turquoise module significantly overlapped with the HGNC 
ribosomal protein family (hypergeometric test, p<7.6e-12). 
Taken together, our results show the turquoise module is 
correlated with survival time and closely associated to RNA 
processing and protein translation.

FDZ7 and MEIS1 are good prognostic markers 
for PCa patient survival time in gleason score-
related modules

Gene significance (GS) is a measure to quantify the 
correlation of individual genes with clinical information 

[14]. Similarly, for individual genes, module membership 
(MM) is a measure to evaluate the degree of correlation 
between the module eigengene and the expression level 
of a single gene [15]. In this study, survival time was 
used as the clinical information. At the single gene level, 
prognostic markers can be identified using the correlation 
of gene expression and survival time. Genes with high GS 
and MM are regarded as the most important components 
of the modules, which are remarkably correlated with 
survival time. Among the genes in modules which are 
notably linked to Gleason score, we identified genes 
associated with high GS and high MM.

Our current findings show there are four modules 
which are correlated with Gleason score: the yellow, red, 
green and brown modules (Figure 2). Considering the high 
soft threshold β  =22, we used the cut-off GS>0.1 [15, 16] 
and MM>0.8 [17] to determine which genes are critical for 
survival time in these four modules. Only 9 genes (FZD7, 
PRTFDC1, FAXDC2, MEIS1, ST5, FBXL22, EOGT, and 
NPR2) in the brown module met the criteria. In the brown 
module, the co-expression network comprised of 296 
nodes and 5698 edges with adjacency>0.02. Among the 9 
genes identified, FZD7, FBXL22, and MEIS1 were the top 
3 ranked genes based on the number of interacting genes.

Next, we examined the expression pattern of FZD7, 
FBXL22, and MEIS1 in several PCa cohorts to establish 
whether any of these genes could be potential biomarkers. 
FBXL22 is lowly expressed in the TCGA prostate cancer 
dataset (average FPKM=1.8, SD=1.2) and therefore may 
not be a good biomarker candidate. FZD7 is a member 
of the Frizzled receptor family and has been shown to 
be important in cancer development and progression by 
activating Wnt pathways [18]. Although FZD7 is up-
regulated in multiple tumors, including colorectal cancer 
and breast cancer [18], we found FZD7 is down-regulated 
in PCa relative to normal tissue across multiple cohorts 
(Figure 4A-4D). Similar observations were also found 
in PCa cell lines (Figure 4E). Moreover, patients with 
high FZD7 expression have better disease-free survival 
rates (Figure 4F). MEIS1 is a novel AR co-repressor [19]. 
Similar to FZD7, we found MEIS1 is down-regulated in 
both prostate tumors (Figure 4G-4J) and PCa cell lines 
(Figure 4K), and a high MEIS1 expression is an indication 
of better overall survival for PCa patients (Figure 4L) [20]. 
Taken together, our GS and MM analysis have revealed 
FZD7 and MEIS1 as potentially new prognostic genes for 
PCa that are associated with good patient outcome.

Identification of novel prognostic lncRNAs 
in PCa

The module that was most significantly associated 
with survival time was the turquoise module. Recently, a 
number of lncRNAs have been implicated in PCa biology. 
For example, PCAT-1, PRNCR1, and MALAT1 were 
shown to regulate the development and progression of 
PCa [21–23]. Therefore, we decided to see whether there 
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are any potential prognostic lncRNAs in the turquoise 
module. Notably, we found four lncRNAs including 
NCBP2-AS2, LINC00116, GAS5, and ZFAS1. NCBP2-AS2 
did not show any expression differences between normal 
and tumor tissues in PCa (data not shown), however, it 
has been reported to be up-regulated in lung squamous 
cell carcinoma compared to lung adenocarcinoma [24]. 
LINC00116 is up-regulated in PCa relative to normal tissue 
(data not shown), however, the function of LINC00116 
has not been explored yet. For GAS5 and ZFAS1, both 

lncRNAs are also up-regulated in PCa relative to normal 
prostate tissues in the four datasets that we examined 
(Figure 5).

As shown above, the genes in the turquoise module 
are highly associated with biological functions related 
to ribosomes. Therefore, we asked whether LINC00116, 
ZFAS1 or GAS5 could be directly involved in the 
translation process. To address this, we used the web tool, 
RegRNA, which looks for ribosome binding sites (RBS) 
in RNA sequences [25]. As shown in Figure 5I, ZFAS1 

Figure 3: Genes in the turquoise module are involved in translation via ribosomal protein-coding genes. (A) Enrichment 
analysis was performed for genes in the turquoise module. For the Gene Ontology BP terms, the Cytoscape app, Enrichment Map was used 
to identify the most correlated terms for genes in the turquoise module. One node represents one biological process. The node size increased 
with number of genes. The thickness of the edges between two terms is proportional to the similarity coefficient of the associated terms. 
(B) The enriched KEGG pathway of the genes in the turquoise module. (C) The overlapped genes between ribosomal protein-coding genes 
and those in the turquoise module. The p-value was calculated using the hypergeometric test.
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but not LINC00116 or GAS5 contains RBS. This finding 
suggests that ZFAS1 may be directly involved in ribosome-
related translation.

Next, we assessed the prognostic potential of 
LINC00116, GAS5, and ZFAS1. For this, we performed 
survival analysis with a log-rank test to determine 
whether patients with high and low expression levels of 
these lncRNAs have significantly different survival rates. 

As shown in Figure 6A-6B, the high expression of GAS5 
or ZFAS1 is correlated with a worse outcome in PCa. 
These results (Figure 6A-6B) are consistent with the data 
obtained from TANRIC (Supplementary Figure 1) [26]. In 
contrast, LINC00116 appears not to be a good predictor of 
patient outcome. Thus, we further focused on GAS5 and 
ZFAS1, which are up-regulated in PCa tissues relative to 
normal samples (Figure 5 and Figure 6C-6D). Since the 

Figure 4: Identification of genes important for survival time in Gleason score-related modules. (A) FZD7 is down-regulated 
in tumor vs. normal in dataset SRP002628 from publication [PMID: 21571633], (B) GSE24283 from publication [PMID: 21261984], (C) 
ERP000550 from publication [PMID: 22349460], (D) SRP005908 from publication [PMID: 21036922] and (E) GSE25183 from publication 
[PMID: 21804560]. (F) According to the Kaplan-Meier plot, patients with high FZD7 expression have better survival probability using 
Taylor’s MSKCC dataset. (G) MEIS1 is down-regulated in tumor vs. normal in dataset SRP005908 from publication [PMID: 21036922], 
(H) SRP002628 from publication [PMID: 21571633], (I) GSE24283 from publication [PMID: 21261984], (J) ERP000550 from publication 
[PMID: 22349460] and (K) GSE25183 from publication [PMID: 21804560]. (L) According to the Kaplan-Meier plot, patients with high 
expression of MEIS1 expression have better survival probability using Tsboner Rubin’s dataset.
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turquoise module is associated with RNA-processing and 
protein translation (Figure 3), we examined the expression 
correlation between ribosomal genes, GAS5 and ZFAS1. 
In Pearson’s correlation coefficient (PCC) analysis, both 
ZFAS1 (0.5<PCC<0.82, p<1.0e-9) (Supplementary Figure 
2) and GAS5 (0.41<PCC<0.84, p<1.0e-9) (Supplementary 
Figure 3) are correlated significantly with ribosomal 
genes. Based on the above results, we believe GAS5 and 
ZFAS1 are potent novel prognostic lncRNAs in PCa that 
have a role in protein translation.

The interaction network of miR-940 and 
lncRNAs in PCa

The reciprocity among miRNAs, lncRNAs, and 
protein-coding genes constitute an intricate interaction 

network, which is dysregulated in all types of human 
cancers [27]. To dissect this complex network, we began 
by exploring the role of miRNAs in the turquoise module. 
We found microRNA miR-940 in the turquoise module. 
MiR-940 is up-regulated in both primary and metastatic 
PCa patients (Figures 7A-7B). According to DIANA-
miRPath [28], the targets of miR-940 are significantly 
enriched in “prostate cancer” (p=0.045). Moreover, 
miR-940 has been shown to suppress PCa migration and 
invasion by regulating the expression of MIEN1 [29]. To 
determine whether miR-940 could potentially regulate the 
expression of lncRNAs in the turquoise module, we used 
LncBase [30] which hosts a database of non-coding RNA 
targets of microRNA. Surprisingly, miR-940 has been 
experimentally validated by immunoprecipitation assays 
to interact with both GAS5 and ZFAS1 [31, 32]. Taken 

Figure 5: Cross-dataset expression of survival related lncRNAs. (A) GAS5 is up-regulated in tumors vs. normal tissues in dataset 
SRP002628 from publication [PMID: 21571633], (B) GSE24283 from publication [PMID: 21261984], (C) ERP000550 from publication 
[PMID: 22349460] and (D) SRP005908 from publication [PMID: 21036922]. (E) ZFAS1 is up-regulated in tumor vs. normal tissues in 
dataset SRP002628 from publication [PMID: 21571633], (F) GSE24283 from publication [PMID: 21261984], (G) ERP000550 from 
publication [PMID: 22349460]and (H) SRP005908 from publication [PMID: 21036922]. (I) RegRNA identified the ribosome-binding 
sites of ZFAS1.
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together, we speculate that the GAS5/ZFAS1/miR-940 axis 
plays key roles in PCa via the protein translation pathway. 
How these three factors influence the outcome of PCa 
patients remains elusive.

MiRNAs bind to partially complementary sequences 
of their target mRNAs, and many of these molecules have 
been widely implicated in various human diseases. Thus, 
to understand the relationship between miR-940 and its 
target genes in the turquoise module and how they are 
integrated as part of the GAS5/ZFAS1/miR-940 axis, we 
searched for mRNA targets of miR-940. For this, we 
used TarBase [33], a data warehouse that stores targets 
of miRNAs originating from both manual curation and 

experimental studies. From our search, we identified 
15 gene targets of miR-940 belonging to the turquoise 
module, including COX14, CPSF3L, EGLN2, MBD3, 
MRPS2, NAA10, NPDC1, OTUB1, PLEKHJ1, RPL28, 
SART1, TCEA2, TMEM205, TMUB1, and TSR3. Next, 
to obtain additional information on how these genes are 
connected with miR-940 as well as GAS5 and ZFAS1, we 
obtained the expression information for these 15 genes 
along with miR-940, GAS5, and ZFAS1 and performed 
PCC analysis. Based on the correlation heat map for these 
genes, ZFAS1 and GAS5 are highly positively correlated 
with each other (PCC=0.83, p<1.0e-9, Figure 7C). 
Moreover, correlation analysis also revealed miR-940 is 

Figure 6: Expression and prognostic potential of GAS5 and ZFAS1 according to TCGA prostate cancer dataset. (A) 
According to the Kaplan-Meier plot, patients with high GAS5 expression have worse survival probability. (B) According to the Kaplan-
Meier plot, patients with high ZFAS1 expression have worse survival probability. (C) GAS5 is up-regulated in tumor vs. normal tissues. (D) 
ZFAS1 is up-regulated in tumor vs. normal tissues.
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positively correlated with GAS5 (PCC=0.47) and ZFAS1 
(PCC=0.49) (Figure 7C) which suggests miR-940 also 
likely to be involved in prostate cancer.

Finally, to further dissect the role of GAS5 
and ZFAS1 in PCa, we created a gene co-expression 
subnetwork for the genes in the turquoise module, which 
included GAS5, ZFAS1, miR-940 and its targets from 
TarBase (Figure 8). As shown in the network, GAS5 and 
ZFAS1 share many co-expressed genes, including genes 
encoding both S and L ribosomal proteins. One of the 
target genes of miR-940 is NAA10 which interacts with 
the most genes in the network. Interestingly, both GAS5 
and ZFAS1 are linked to MRPS2, a gene coding for 
mitochondrial ribosomal proteins which is also a target of 
miR-940 via NAA10. RPL28, as the third largest node in 
the network and a target of miR-940, interacts with GAS5 
and ZFAS1 via other ribosomal protein-encoding genes. 
A simplified version of the gene co-expression network 
using the Cytoscape app, ThematicMap, can be found in 

Supplementary Figure 4. Again, this network map shows 
GAS5 and ZFAS1 are targeted by miR-940 via NAA10 
and RPL28 and possibly other targets of miR-940 as well 
(genes in nodes 3 and 4, including ribosomal genes). In 
summary, our results show miR-940 indirectly targets 
GAS5 and ZFAS1 via its mRNA targets, including NAA10 
and RPL28.

DISCUSSION

In this study, we performed co-expression gene 
network analysis on PCa patient RNA-seq samples and 
identified a gene module that correlated with patient 
survival time. In functional enrichment analysis, 
we showed the genes in this module are involved in 
translation and RNA-processing. Translation pathways 
have previously been implicated to predict patient survival 
in PCa. For example, higher expression of EIF4E, a 
family member of the eukaryotic translation initiation 

Figure 7: Expression of miRNA and its targets in the turquoise module. (A) MiR-940 is up-regulated in tumor vs. the normal 
in dataset SRP005908 from publication [PMID: 21261984], (B) ERP000550 from publication [PMID: 22349460]. (C) Based on the gene 
expression profile from TCGA prostate cancer, the expression similarity of the genes of interest is shown in the two-way clustering heat 
map. The interested genes include two lncRNAs (GAS5 and ZFAS1), one miRNA (miR-940) and target genes of miR-940 in the turquoise 
module. GAS5 and ZFAS1 are highly correlated with each other.
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factor, is associated with worse outcome in PCa patients 
[34, 35]. Moreover, it is now known that RNA processing 
contributes to the generation of androgen receptor splice 
variants, the constitutive activation of which is associated 
with poor prognosis [36].

Due to its tissue-specific and cancer-specific 
expression, long non-coding RNAs are favorable 
candidates as diagnostic or prognostic biomarkers for 
cancer. Indeed, a number of lncRNAs have emerged as 
potential biomarkers for PCa. High SCHLAP1 expression 
in PCa has been reported to predict worse patient outcome 
[37–40]. The up-regulation of UCA1 [41] and NEAT1 
[42] also indicates a poor prognosis in patients suffering 
from PCa. In contrast, a low PCAT29 expression has been 
shown as an indicator of a higher potential for recurrence 
[43]. Similarly, the down-regulation of PCAT14 [44, 45] 
and DRAIC [46] are both associated with poor prognosis 
of PCa. In this work, we identified several non-coding 
RNAs in the module that correlated with survival time, 
including GAS5, miR-940, and ZFAS1. Furthermore, our 
findings suggest that GAS5 and ZFAS1 are potential novel 
prognostic markers for PCa.

GAS5 expression and its clinical implication 
have been examined in many types of cancers. For 
example, GAS5 is down-regulated in breast cancer 
[47]. In squamous cell carcinoma of the head and neck, 
higher expression of GAS5 in patients indicates higher 
recurrence-free survival [48]. Functionally, GAS5 has 
been shown to bind to the DNA-binding domain of AR 
[49]. This is because part of the GAS5 sequence is similar 
to the glucocorticoid receptor responsive element [50]. 
Therefore, GAS5 can prevent the binding of AR to its 
target DNA sequences by sequestering the androgen/AR 
complex [49]. In PCa, GAS5 has been shown to promote 
apoptosis [51] and inhibit cell proliferation and cancer 
progression by targeting miR-103 and the mTOR pathway 
[52]. In the present study, our results suggest that GAS5 
may also be involved in regulating protein translation in 
PCa and a high GAS5 expression is a predictor of worse 
disease-free survival.

The expression of ZFAS1, like GAS5, is also up-
regulated in normal mammary glands compared to 
breast cancer tissues [53]. Our current results show 
that high ZFAS1 expression is an indicator of lower 

Figure 8: Co-expression network of GAS5, ZFAS1, miR-940 and target genes of miR-940 in the turquoise module. The 
co-expression network was constructed for the genes of interest which included two lncRNAs (GAS5 and ZFAS1), one miRNA (miR-940), 
target genes of miR-940 in the turquoise module and their co-expressed genes with correlation coefficients larger than 0.01. Node size is 
proportional to the number of co-expressed genes.
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disease-free survival for PCa patients. This predictive 
power of ZFAS1 does not appear to be limited to PCa, 
as it has been reported for gliomas as well [54]. With 
regards to function, ZFAS1 has been shown to regulate 
cell proliferation and migration of ovarian cancer by 
targeting miR-150-5p [55], whereas, in gastric cancer, 
ZFAS1 was demonstrated to accelerate cell proliferation 
via repressing the expression of KLF2 and NKD2 [56]. 
In this study, we also showed ZFAS1 may have functions 
related to protein translation which has been previously 
reported for breast cancer [53].

Compared to GAS5 and ZFAS1, the role of miR-
940 is less clear and appears to be different depending on 
the type of cancer. Moreover, in some cancer types, the 
finding has even been contradictory. In general, miR-940 
has been reported as a tumor suppressor in many studies. 
In addition, it is highly expressed in normal tissues 
compared with tumors in nasopharyngeal carcinoma [4], 
breast cancer [4], pancreatic ductal adenocarcinoma [57], 
ovarian cancer [58], hepatocellular carcinoma and gastric 
cancer [59]. On the other hand, miR-940 has also been 
reported as an oncogene with higher expression in tumor 
compared to normal tissues in pancreatic cancer [60], 
oral tongue squamous cell carcinoma, cervical cancer [4] 
and gastric cancer [60]. Currently, studies of miR-940 in 
cancer are still sparse and contradictory. For example, in 
one study miR-940 was reported to act as an oncogene 
in gastric cancer by directly down-regulating ZNF24 
expression [60]. But in another study also on gastric 
cancer, miR-940 was reported as a tumor suppressor [59]. 
Therefore, the difference in expression trend of miR-940 
may lie in the different cohorts and cancer types. Further 
studies are needed to clarify these observations.

Here, we described the regulation between GAS5, 
ZFAS1, and miR-940 in PCa. Our findings suggest miR-
940 directly targets NAA10 and indirectly targets ZFAS1 
and GAS5 via MRPS2 and other ribosomal genes. In 
addition, we used WGCNA to detect gene modules that 
are significantly associated with pathoclinical parameters. 
We also identified prognostic biomarkers based on 
correlations between survival time and gene expression 
from both the single gene and gene module perspectives. 
Finally, we inferred the function of non-coding RNAs 
based on co-expressed genes. In conclusion, our work 
suggests that co-expression analysis of large-scale RNA-
seq profiling can facilitate the identification and functional 
characterization of novel prognostic markers.

MATERIALS AND METHODS

Data acquisition

HTSeq-FPKM TCGA expression profiling was 
downloaded from https://gdc-portal.nci.nih.gov/projects/t 
for PCa, together with clinical data, including “BCR 

status”, “tumor status”, “Gleason score”, “pathologic 
N”, “pathologic T”, “psa_most_recent_results”, “lymph_
nodes_examined”, “lymph_nodes_examined_he_count” 
and “residual tumor”. Clinical information was obtained 
from 380 patients, and the following analyses were 
performed on these patients.

Gene co-expression network construction and 
module identification

WGCNA was used to create gene co-expression 
networks and to identify gene modules [14, 61]. All 
transcripts expressed (FPKM>1) in at least half of the 
patients were included for WGCNA. First, a symmetric 
matrix of Pearson’s correlation was computed between all 
gene pairs. Second, the correlation matrix was raised to 
power β = 30 to obtain the adjacency matrix. Considering 
its characteristic of scale-free topology (R2 = 0.9), the 
power β=22 is selected to construct the adjacency network 
(Figure 1). The adjacency matrix was further transformed 
to a topological overlap matrix (TOM), which aims to 
evaluate the most strongly correlated genes. The matrix 
(1-TOM) was used for hierarchical clustering. In the 
hierarchical dendrogram, its branches are regarded as 
the gene modules, which are cut using branch cutting 
algorithms [62]

The gene significance (GS) of the ith gene can be 
defined: GS =| cor(x ,T)| ,i i

β  where xi  is the expression 
profile of gene i and T is the sample trait. β  =22 (Figure 
1A) is the power we used to find gene modules. For each 
module, the module eigengene was represented by the first 
principal component of the expression profile. Modules 
were merged together when the module eigengenes are 
highly correlated (correlation > 0.75). The module-
trait relationships (Figure 2) exhibits the correlation of 
eigengene expression in a module q (E(q)) and clinical 
traits T  (survival time, Gleason score, PSA and number 
of lymph nodes). The correlation value in each grid 
was calculated as | cor(E ,T) | ,(q) β  with corresponding 
Student asymptotic p-value. The module membership 
(MM) quantifies the extent of similarity of a pair of 
gene and module. MM of each gene was calculated as 
MM i = cor x ,Eq

i
q( ) ( ) . For more details, please refer to 

[63]. The correlation network of genes in the turquoise 
module was constructed based on adjacency threshold as 
0.01.

Functional enrichment analysis

Fisher’s exact test was adopted to measure the gene 
enrichment in the annotation terms according to DAVID 
[64, 65]. When the Bonferroni-adjusted p≤ 0.05 was used, 
we assumed that the user gene lists were significantly 
enriched in this functional term. “Enrichment Map”, a 
Cytoscape plugin (http://cytoscape.org/) [66], was used 

https://gdc-portal.nci.nih.gov/projects/t
http://cytoscape.org/
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to identify the function clusters for genes in the largest 
module (turquoise module), facilitating the interpretation 
of the enrichment terms.
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