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Global view of a drug-sensitivity gene network
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ABSTRACT

An important challenge in drug development is to gain insight into the mechanism 
of drug sensitivity. Looking for insights into the global relationships between 
drugs and their sensitivity genes would be expected to reveal mechanism of drug 
sensitivity. Here we constructed a drug-sensitivity gene network (DSGN) based on 
the relationships between drugs and their sensitivity genes, using drug screened 
genomic data from the NCI-60 cell line panel, including 181 drugs and 1057 sensitivity 
genes, and 1646 associations between them. Through network analysis, we found that 
two drugs that share the same sensitivity genes tend to share the same Anatomical 
Therapeutic Chemical classification and side effects. We then found that the sensitivity 
genes of same drugs tend to cluster together in the human interactome and participate 
in the same biological function modules (pathways). Finally, we noticed that the 
sensitivity genes and target genes of the same drug have a significant dense distance 
in the human interactome network and they were functionally related. For example, 
target genes such as epidermal growth factor receptor gene can activate downstream 
sensitivity genes of the same drug in the PI3K/Akt pathway. Thus, the DSGN would 
provide great insights into the mechanism of drug sensitivity.
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INTRODUCTION

There is compelling evidence that predictions of 
anticancer drug response can be refined by identifying 
and applying molecular biomarkers [1, 2]. For example, 
the use of drugs to target the protein product of the BCR–
ABL translocation in chronic myeloid leukemia, or the 
BRAF gene in malignant melanoma, helped transform 
the treatment of these diseases and substantially improve 
survival rates [3, 4]. In recent years, enormous efforts 
have been made to identify predictive biomarkers of drug 
response. For example, Lindsay et al. provided non-linear 
machine learning techniques, and generated biomarkers 
that predict drug response [5]. David et al. developed 
a novel approach named Multivariate Organization of 
Combinatorial Alterations (MOCA), combining many 
genomic alterations into biomarkers of drug response, 

and found that multi-gene features have substantially 
higher correlation with drug response than do single-
gene features [6]. It follows that methods considering 
the cumulative effect of many markers would make the 
prediction of complex phenotypes (such as drug response) 
more accurate [2, 7].

Based on the fact that many genes may be regarded 
as genomic biomarkers for drug response and one genomic 
biomarker may be correlated to sensitivity toward many 
drugs [6], a large-scale network correlating drugs and their 
sensitivity genes should be constructed, as it would give 
global clues to possible biomarker-related treatments of 
drug response, and network analysis would be helpful in 
elucidating the action of drug sensitivity.

However, it would be difficult to construct such a 
global drug sensitivity gene network via low-throughput 
biological experimental studies. One of the major concerns 
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is that gene expression estimates, generated on different 
microarray platforms or even in different batches, are 
not always consistent, leading to irreproducible data 
[8]. Another factor is that publicly available data on 
gene expression related to drug response are relatively 
limited. Fortunately, these limitations could be alleviated 
to a great extent by the development of high-throughput 
experimental and bioinformatics technologies. The NCI-
60 cell line panel and associated drug screens were used to 
pioneer the approach of linking drug sensitivity to genomic 
data [9]. Meanwhile, with the development of CellMiner, 
rapid data retrieval of genomic data along with activity 
reports for ~20,000 chemical compounds across the NCI-
60 was allowed [10]. Hence, we can acquire genomic 
data related to drug sensitivity, and build the relationship 
between the sensitivity genes and drug response.

In this study, we constructed a global drug-
sensitivity gene network (DSGN) in which nodes represent 
drugs or sensitivity genes, and these are connected if 
the genes are related to anticancer sensitivity of the 
corresponding drug. We then did a series analysis of the 
global relationships between drugs and sensitivity genes, 
including the basic properties of the DSGN, shortest path 
analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of the sensitivity 
genes, Anatomical Therapeutic Chemical (ATC) codes 
and side effects of the drugs. Through these analyses, our 
findings offered insight into the interplay between drugs 
and sensitivity genes.

RESULTS

Construction of the drug-sensitivity gene 
network (DSGN)

We constructed a bipartite network consisting of two 
disjoint kinds of nodes. One kind of node corresponded 
to drugs tested in the National Cancer Institute (NCI) 
Developmental Therapeutics Program (DTP), and the 
other kind of node comprised the sensitivity genes 
from the profiles for the 60 cell lines of the NCI DTP 
drug screen [11]. A drug and a gene were connected if 
the gene was related to the anticancer sensitivity of the 
corresponding drug. To obtain the relationships between 
them, we used CellMiner Analysis tools (https://discover.
nci.nih.gov/cellminer/) to retrieve potential associations 
between a drug and its sensitivity genes by calculating the 
Pearson correlation coefficient (PCC). Setting |PCC| ≥ 0.5 
and p-value < 0.01, we obtained 16,694 significant drug-
gene correlations, including 6477 genes and 234 drugs. 
Each drug was associated with up to 27.6 sensitivity genes 
on average. To reduce the false positive results and obtain 
the more significant drug-sensitivity gene relationships, 
we ranked the sensitivity genes for each drug according 
to the absolute PCC value, and retained the top 10% of 
sensitivity genes (see Materials and Methods). Finally, the 

DSGN was composed of 1646 drug-gene pairs, including 
1057 genes and 181 drugs that were grouped into 12 drug 
classes using the ATC classification system in the DSGN 
(see Figure 1).

Properties and functional mapping of the DSGN

The DSGN was composed of 1238 nodes (1057 
sensitivity genes and 181 drugs) and 1646 edges (Figure 1;  
Supplementary Dataset 1). We examined the DSGN, 
and its network topological characteristics are displayed 
in Supplementary Figure 1. The degree distributions 
of the drug and gene nodes both followed power law 
distributions approximately with slopes of −5.45 and 
−6.24, respectively, and R2 = 0.27 and 0.35, respectively 
(Supplementary Figure 1A, 1B). Thus, the DSGN was 
scale-free. The degree of genes was distributed from 
1 to 19. Schlafen family member 11 (SLFN11), with 
the highest degree of 19, was recently discovered as a 
dominant response factor of cancer cells to topoisomerase 
I inhibitors [12, 13]. Knockdown of SLFN11 increases 
chemoresistance of cancer cells to a broad range of DNA 
damaging agents [12, 14], and ectopic expression of 
SLFN11 sensitizes colon cancer cells to topoisomerase 
I inhibitors [15], consistent with the involvement of 
SLFN11 in the DNA damage response [12]. The gene 
with the second highest degree (12) was Src-like-adaptor 
(SLA), which is expressed in a variety of cell types, and 
it can both inhibit and activate signaling downstream 
of various cell surface receptors including the B cell 
receptor, the T cell receptor, cytokine receptors and 
receptor tyrosine kinases, which are important regulators 
of immune and cancer cell signaling [16]. SLA protein 
appears to be an important component in regulating signal 
transduction required by immune and malignant cells 
[16], so it was also relevant for many anticancer drugs. 
Meanwhile, the degree of drugs was distributed from 
1 to 69, and the drug Vemurafenib, which is a B-Raf 
enzyme inhibitor developed for the treatment of late-
stage melanoma [17], had the highest degree. Other drugs 
with high degrees included Zalcitabine with a degree of 
68, which is a potent inhibitor of HIV replication at low 
concentrations, acting as a chain-terminator of viral DNA 
by binding to reverse transcriptase [18], and Artemether 
with a degree of 63, which is an antimalarial agent used to 
treat acute uncomplicated malaria [19].

To investigate the biological functions of drug 
sensitivity genes in the DSGN, we employed functional 
analysis of the corresponding genes. We implemented 
KEGG pathway enrichment by using DAVID [20], and 
found 24 pathways were significantly enriched (p-value 
< 0.01) (Table 1, Figure 2A). The hematopoietic cell 
lineage (hsa04640) pathway was the most significantly 
enriched pathway, and it is significantly associated with 
pediatric acute lymphoblastic leukemia [21]. The primary 
immunodeficiency (hsa05340) pathway was also a 
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Figure 1: The DSGN network. The rectangles and circles in the network correspond to drugs and sensitivity genes, respectively.  
A drug and a gene are connected by an edge if the gene is related to the anticancer sensitivity of the corresponding drug. Different colors of 
gene and drug nodes represent subcellular localization class of genes and ATC classification of drugs, respectively. The node size represents 
the degree of node.
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significantly enriched pathway, which might be associated 
with acute myeloid leukemia (AML) development [22].

We then characterized the sensitivity genes in the 
DSGN by categorizing them into six groups according to 
subcellular localization: membrane, cytoplasm, organelles, 
nucleus, exterior and genes that did not belong to any 
group above (unknown). Figure 2B shows the distribution 
of these sensitivity genes among the six groups. We found 
that up to 472 (44.65%) genes belonged to the membrane 
group, which indicates that these genes are likely to 
participate in the processes of cell membrane function, 
such as the transport process and membrane receptor 
recognition process.

We also compared the 1057 sensitivity genes 
with each of the following gene sets: 571 Cancer Gene 
Census genes (CGC), 2712 essential genes (Essential), 
547 adverse drug reaction-associated proteins (ADRPs), 
11,700 Mendelian disease genes (MDGs), 2123 orphan 
disease-causing mutant genes (ODMGs) and 2354 
drug target genes (Target). Figure 2C and 2D show the 
overlaps between the sensitivity genes and the other six 
gene sets. Although the number of overlaps is small, we 

still found that sensitivity genes significantly overlapped 
with CGC (p = 0.00546), Essential (p = 7.9e-10), 
ADRPs (p = 0.002763) and ODMGs (p = 9.792813e-10) 
(hyper geometric distribution test), indicating that many 
sensitivity genes are possibly cancer genes, essential 
genes, adverse drug reaction-associated proteins and 
orphan disease-causing mutant genes.

To further investigate the drugs and sensitivity genes 
in the DSGN, we generated two biologically relevant 
network projections, a "drugs–drug network" (DDN) 
and a "sensitivity gene network" (SGN) from the DSGN 
bipartite network.

Functional characteristics of the DDN

In the DDN (composed of 125 nodes and 564 
edges), the nodes represented the drugs, and two drugs 
were connected to each other if they were connected to 
at least one common gene in the DSGN (Supplementary 
Figure 2). Some researchers have indicated that drugs 
that bind to similar proteins tend to have similar effects 
and pharmacological properties [23–25]. Thus arose the 
question whether, if two drugs share the same sensitivity 

Table 1: Significantly enriched pathways

Term P Value FDR
1 hsa04640:Hematopoietic cell lineage 2.37E-10 2.86E-07
2 hsa05340:Primary immunodeficiency 7.48E-10 9.03E-07
3 hsa04514:Cell adhesion molecules (CAMs) 6.22E-06 0.007512
4 hsa04670:Leukocyte transendothelial migration 3.85E-05 0.046522
5 hsa04060:Cytokine-cytokine receptor interaction 8.34E-05 0.100689
6 hsa04510:Focal adhesion 1.28E-04 0.154968
7 hsa04672:Intestinal immune network for IgA production 1.78E-04 0.214605
8 hsa04660:T cell receptor signaling pathway 3.70E-04 0.445435
9 hsa04512:ECM-receptor interaction 0.002096 2.501833
10 hsa04650:Natural killer cell mediated cytotoxicity 0.003898 4.606564
11 hsa04062:Chemokine signaling pathway 0.00668 7.773949
12 hsa05332:Graft-versus-host disease 0.009976 11.40227
13 hsa04810:Regulation of actin cytoskeleton 0.015899 17.59498
14 hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.020163 21.80382
15 hsa04530:Tight junction 0.02086 22.47301
16 hsa05322:Systemic lupus erythematosus 0.021074 22.67742
17 hsa04520:Adherens junction 0.021923 23.48353
18 hsa05330:Allograft rejection 0.023549 25.00512
19 hsa05222:Small cell lung cancer 0.037487 36.95679
20 hsa04940:Type I diabetes mellitus 0.046316 43.59542
21 hsa04666:Fc gamma R-mediated phagocytosis 0.075082 61.03248
22 hsa05416:Viral myocarditis 0.076974 61.98434
23 hsa03010:Ribosome 0.096177 70.50742
24 hsa05320:Autoimmune thyroid disease 0.099817 71.91028
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genes, they tend to cause the same therapeutic or side 
effects.

To investigate this, we obtained the ATC 
classifications of 125 drugs and found that 205 drug-drug 
pairs out of 564 edges in the DDN belonged to the same 
ATC classification. We then generated 564 randomized 
drug pairs 1000 times. We found that there were no 
times when the number of randomized drug pairs that 
shared the same ATC classification was more than 205, 
suggesting that connected pairs tend to share the same 
ATC classification (p-value < 0.001, Figure 3A). Taking 
Chlorambucil and Carmustine for example, Chlorambucil 
is a nitrogen mustard alkylating agent used as an 
antineoplastic agent for the treatment of various malignant 
and nonmalignant diseases, while Carmustine is a cell-
cycle phase nonspecific alkylating antineoplastic agent 

used for the treatment of brain tumors, multiple myeloma, 
Hodgkin’s disease and non-Hodgkin’s lymphomas. The 
two drugs were connected by some sensitivity genes, and 
they belong to the same ATC code L (antineoplastic and 
immunomodulating agents).

Then we downloaded the public and accurate side 
effect records from the SIDER database that includes 997 
drugs corresponding to 4492 side effects. In the DDN, 
there were 71 drugs that were also recorded in the SIDER 
database and these drugs formed 110 unique connected 
drug pairs that share the same side effect (Figure 3B). In 
the SIDER database, some side effects, such as dizziness 
and nausea, were caused by most drugs. To improve the 
specificity of the similarity of drug pairs, we calculated the 
number of side effects shared by drug pairs rather than the 
number of drug pairs that shared the same side effects. We 

Figure 2: Functional annotations of the drug sensitivity genes in DSGN. (A) KEGG pathways enriched by sensitivity genes. 
(B) Pie chart of 1057 sensitivity genes categorized into six groups according to subcellular localization: membrane, cytoplasm, organelles, 
nucleus, exterior and genes that did not belong to any group above (unknown). (C) The Venn diagram of overlaps among the 1057 
sensitivity genes (NET), 571 Cancer Gene Census genes (CGC), 2712 essential genes (Essential) and 547 adverse drug reaction-associated 
proteins (ADRP). (D) The Venn diagram of overlaps among the 1057 sensitivity genes (NET), 11,700 Mendelian disease genes (MDG), 
2123 orphan disease-causing mutant genes (ODMG) and 2354 drug target genes (Target).
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Figure 3: Characteristics of drug pairs that have the same sensitivity genes. (A) 205 drug pairs that have the same sensitivity 
genes share the same ATC classification, compared to 1000 times permutations. (B) The proportion of shared side effects by drug pairs that 
have the same sensitivity genes (red), compared to the proportion of shared side effects among the total drug pairs in the SIDER database 
(blue).
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found that the number of side effects shared by connected 
drug pairs of the DDN was significantly higher than the 
number of side effects shared by total drug pairs in the 
SIDER database (p-value = 2.2*e-16, Wilcoxon rank sum 
test). These results suggested that two drugs sharing the 
same sensitivity genes in the DDN tend to cause the same 
side effects.

Functional characteristics of the SGN

We also constructed the (SGN), in which two genes 
are related by anticancer sensitivity toward the same drug 
in the DSGN. SGN was composed of 1033 nodes and 
15,224 edges (Supplementary Figure 3). 

Yildirim et al. indicated that targets of a single drug 
tend to be in the same module of a network of physical 
protein-protein interactions (PPIs) and participate in the 
same molecular complex or cellular pathway [26]. Thus 
arose the problem whether the sensitivity genes of the 
same drug also display this feature. First, we investigated 
the distribution of sensitivity genes belonging to the same 
drug by calculating the shortest path between sensitivity 
genes in the Human Protein Reference Database (HPRD) 
[27] and STRING [28] network using the classical 
Dijkstra algorithm. We observed a strong enrichment in 
the regions of first, second and third neighbors compared 
with the distribution of the shortest path between all nodes 
in the HPRD and STRING PPI network (Figure 4A, 4B), 
showing a bias toward clustering of the sensitivity genes 
of the same drug in the SGN network.

We then investigated whether the sensitivity gene 
pairs of the same drug tend to participate in the same 
pathway. We found that there were 253 connected gene 
pairs in the SGN engaging in 39 pathways. We then 
randomized the gene pairs 1000 times, and we found that 
there were no times when the number of randomized gene 
pairs that engaged in the same pathway was more than 
253, suggesting that connected pairs tend to participate in 
the same pathway (p-value < 0.001, Figure 4C).

Correlation between a sensitivity gene and drug 
target gene in the context of the cellular network

Tumor-targeted delivery of compounds to the site 
of malignancy allows for enhanced cellular uptake and 
increased therapeutic effects, so the development of 
targeted delivery greatly improved anticancer therapeutic 
research [29]. Meanwhile, molecular biomarkers have 
been widely used to predict anticancer drug response. 
Thus arose the question whether the sensitivity genes 
and drug target genes are functionally related, and we 
explored the mechanism of action of sensitivity genes by 
investigating the relationships between sensitivity genes 
and target genes. To further investigate the functions of 
sensitivity genes, we also analyzed the relationships 
between the sensitivity genes and the target genes of the 

same drug based on the PPI network. We obtained the 
drug targets from the DrugBank database (http://www.
drugbank.ca), which is a richly annotated database of drug 
and drug target information [30]. All of the sensitivity 
genes and target genes were mapped into the PPI network 
(HPRD and STRING). In the PPI network, we calculated 
the shortest path between a sensitivity gene and target 
gene for each drug, and we found that the shortest paths 
followed a normal distribution, the shortest paths being 
between 0 and 10 (0 represented the sensitivity gene and 
the target gene being the same) and the average of the 
shortest paths being 4.04 for HPRD (4.07 for STRING). 
Then we compared the distribution of the above shortest 
paths with that of all nodes in the HRPD (or STRING). We 
found that the distribution of the shortest paths between 
all nodes in the PPI network was significantly larger than 
the distribution of the shortest paths between sensitivity 
genes and target genes for the same drug (Figure 5A, 5B). 
Thus we concluded that the sensitivity gene and the target 
gene of the same drug are densely connected in the PPI 
network, which indicates that they are functionally related. 
Besides, we found 103 drugs for which the shortest path 
between the sensitivity gene and the target gene was less 
than 4 in the HPRD network and 91 drugs in the STRING 
network, of which 78 drugs overlapped between the two 
PPI networks (Figure 5C), which further indicated the 
robustness of our results.

To further demonstrate the mechanism underlying 
the interaction between the sensitivity gene and the 
target gene, we selected epidermal growth factor receptor 
(EGFR) as an example. ErbB2/EGFR inhibitor is an 
important type of anticancer drug (e.g. Lapatinib and 
Varlitinib) and its gene is also a sensitivity gene in our 
DSGN. Tetsu et al. reported that inhibiting EGFR could 
evoke innate drug resistance in lung cancer cells by 
preventing Akt activity and thus inactivating Ets-1 function 
[31]. The expression of EPH receptor A2 (EPHA2) is 
activated by EGFR and EGFRvIII in the human cancer 
cell lines [32]. EPHA2 is also the target of Dasatinib. 
Interestingly, the combination of Dasatinib and Gefitinib 
(an EGFR inhibitor) presents anti-tumor properties that 
are superior to those of platinum-based combinations, 
indicating that this combination may be a promising 
new treatment modality to be tested in the clinic [33]. 
We extracted a subnetwork of epidermal growth factor 
receptor (EGFR) gene and its neighbor nodes from the 
HPRD network (Figure 5D). Then we found that some 
genes in this subnetwork (for example, PIK3R1, PIK3R3 
and MET) are involved in the PI3K/Akt signaling pathway 
and some genes (JAK1, JAK2 and STAT5B) are involved 
in the JAK/STAT signaling pathway. PI3K/Akt was 
overexpressed and activated in cancer cells and was found 
to induce chemoresistance in various cancers [34–38]. For 
example, the PI3K/Akt pathway was found to be related 
to multidrug resistance in gastric cancer cells [39]. In 
addition, O’Gorman et al. found PI3-kinase inhibition 
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Figure 4: Functional characterizations of sensitivity genes belonging to the same drug. (A) Distribution of the shortest paths 
of sensitivity genes belonging to the same drug in the HPRD network (red), compared to the shortest paths among all nodes in the HPRD 
(blue). (B) Distribution of the shortest paths of sensitivity genes belonging to the same drug in the STRING network (red), compared to the 
shortest paths among all nodes in the STRING (blue). (C) 253 gene pairs participated in the same pathway, compared to 1000 permutations.
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significantly increased sensitivity in HL60 human 
leukemia cells [40]. Meanwhile, the increased JAK/
STAT signaling and enhanced interference with aerobic 
glycolysis and autophagy are associated with resistance 
to Afatinib [41]. Also, the crosstalk involving PI3K/Akt 
and JAK/STAT pathways was related to resistance to 
Sorafenib, an oral multikinase inhibitor [42].

DISCUSSION AND CONCLUSIONS

One of the biggest challenges associated with 
cancer chemotherapy resistance is discovering the 
unknown underlying mechanisms of drug sensitivity. 
Insight into the mechanisms of drug sensitivity is critical 
for effective treatment strategies in drug development. 
With the development of high-throughput technology, 
some high-quality data made it possible to reveal the 
potential mechanism underlying drug sensitivity. NCI-
60 data assessed gene expression profiles in 60 human 
cancer cell lines and characterized drug activities by 
treatment with more than 70,000 different compounds. 

CellMiner provided a rapid data retrieval of genomic 
data along with activity reports for ~20,000 chemical 
compounds across the NCI-60. They pioneered the 
approach of linking drug sensitivity to genomic data by 
the development of high-throughput experimental and 
bioinformatics technologies.

We constructed a DSGN using CellMiner Analysis 
tools to retrieve potential associations between a drug and 
its sensitivity genes in the NCI-60 cell line panel.

Network analysis of the DSGN offered insight into 
the interplay between drugs and sensitivity genes. We 
noticed that two drugs sharing the same sensitivity genes 
tended to share the same ATC classification and tended to 
cause the same side effects. Interestingly, we investigated 
the biological functions of the drug sensitivity genes, and 
found significantly enriched pathways were associated 
with cancer occurrence and development. Furthermore, 
compared to other functional gene sets, the sensitivity 
genes tended to be cancer genes, essential genes, adverse 
drug reaction-associated protein genes and orphan disease-
causing mutant genes.

Figure 5: The relationships between a sensitivity gene and a target gene for the same drug. (A) Distribution of the shortest 
paths between a sensitivity gene and a target gene for the same drug in the HPRD network (red), compared to the shortest path distribution 
for all nodes in the HPRD (blue). (B) Distribution of the shortest paths between a sensitivity gene and a target gene for the same drug in 
the STRING network (red), compared to the shortest path distribution for all nodes in the STRING network (blue). (C) Among the shortest 
paths between sensitivity genes and target genes that are less than 4, 103 drugs are in the HPRD network and 91 drugs are in the STRING 
network, of which 78 drugs overlap between the two PPI networks. (D) Subnetwork of epidermal growth factor receptor (EGFR) and its 
neighbor nodes from the HPRD network; red corresponds to sensitivity genes, yellow corresponds to target genes, and green corresponds 
to enzymes in the PI3K/Akt signaling pathway.
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We also investigated the different sensitivity genes 
of the same drug. We found the sensitivity genes tended 
to cluster together in the PPI network when we calculated 
the shortest path. Besides, by implementing pathway 
enrichment analysis, we found sensitivity gene pairs that 
belonged to the same drug tended to participate in the 
same pathway. That indicated that sensitivity genes of the 
same drug tended to engage in the same module of the PPI 
network and participate in the same biological functions. 
In view of the fact that anticancer therapeutic research 
is significantly associated with targeted delivery and 
molecular biomarkers, we investigated the relationships 
between the sensitivity genes and target genes based on 
the PPI network by calculating the shortest path between 
them, and we found that the sensitivity gene and target 
gene of the same drug were densely connected, indicating 
that they are functionally related. Interestingly, we found 
that the drug combination Dasatinib and Gefitinib could be 
inferred from the interaction of their targets, EPHA2 and 
EGFR, suggesting that targeting sensitivity genes/proteins 
may be a potential strategy against drug resistance.

We also noticed that there were some limitations of 
our current study. Firstly, compared to tens of thousands 
of drugs, DSGN only include 181 FDA-approved 
anticancer small molecular drugs. It would be improved 
by the development of high-throughput experiments and 
pharmacogenomics. Another limitation of our study is 
the data source of DSGN was relatively simple. Besides 
NCI-60 dataset, integrating more drug-affected gene 
expression profiles of other resources and literatures will 
alleviate this limitation and complement DSGN. Although 
these data sets and the methodology are far from complete, 
our network analyses still provide statistically significant 
characteristics of the relationships between drugs and 
sensitivity genes.

In conclusion, we constructed a drug-sensitivity 
gene network (DSGN) based on the potential relationships 
between drugs and their sensitivity genes in the NCI-
60 cell line panel, which contained 181 drugs, 1057 
sensitivity genes and 1646 associations. Then we did 
a series of analysis to look for insights into the global 
relationships between drugs and their sensitivity genes, 
such as network analysis of DSGN, shortest path analysis 
between sensitivity gene and target gene, KEGG pathway 
enrichment analysis of sensitivity genes, ATC and side 
effects analysis of drugs, and so on. At last, our analyses 
provide statically significant characteristics of the 
relationships between drugs and sensitivity genes and help 
to gain insight into the mechanism of drug sensitivity.

MATERIALS AND METHODS

Generating the DSGN

We collected drugs and sensitivity genes from the 
NCI-60 cancer cell line database. The NCI-60 cancer 

cell line database is a large-scale information set with 
multiple genomic and drug response platforms. We 
retrieved potential associations between the drug activity 
and the expression levels of mRNAs by CellMiner, which 
is a powerful platform that allows rapid data retrieval 
of transcripts for genes along with activity reports for 
chemical compounds. The CellMiner provides ‘NCI-
60 Analysis Tools’ to study the relationships between 
the mRNA expression and the 50% growth inhibitory 
concentration (GI50) values of drugs by calculating the 
Pearson correlation coefficient (PCC) between them. 
Firstly, we selected U.S. food and drug administration 
(FDA)-approved drugs and clinical trials drugs, and 
filtered out drugs not in the DrugBank database. Then we 
followed the steps to retrieve the correlations: (i) in the 
‘NCI-60 Analysis Tools’ page, click ‘Pattern comparison’ 
and ‘Drug NSC#’ option in Step 1 section; (ii) input the 
drug NSC ID in Step 2 section; (iii) enter e-mail address 
and CellMiner would send the result documents of 
Pearson correlations between all genes and each input 
drug; (iv) integrated all drug files together. Assigning 0.5 
as the PCC threshold, we obtained 16,694 correlations of 
drug-gene pairs, encompassing 6477 genes and 234 drugs, 
each drug was associated with up to 27.6 sensitivity genes 
on average. Then we did some dealing steps to reduce the 
false positive results and obtain the more significant drug-
sensitivity gene relationships. For each drug: (i) we ranked 
the drug-gene pairs according to the absolute PCC value 
in descending order, and counted the number of sensitivity 
genes, and rounded this number up to 10-fold value rd 
(e.g. if the drug was related with 32 sensitivity genes, then 
rd = 40); (ii) we retained the top 10%*rd of the ranked 
drug-gene pairs (e.g. if rd = 40, then we retained top 4 
drug-sensitivity gene pairs); (iii) we mapped NSC ID to 
the drug names. Finally, we obtained 1646 drug-gene 
pairs, encompassing 1057 genes and 181 drugs.

SIDER database

We obtained drug side effects data from a public 
computer-readable side effect resource, the side effect 
resource (SIDER) [43], which is freely available for 
academic research on the website http://sideeffects.embl.
de. We collected 997 drugs corresponding to 4492 side 
effect terms. In the DSGN, 71 drugs were recorded in the 
SIDER database.

Different gene sets

CGC genes

The cancer genes are genes for which mutations 
have been causally implicated in cancer. We downloaded 
571 cancer genes from the CGC (http://cancer.sanger.
ac.uk/cancergenome/projects/census/), which is an 
ongoing effort to catalogue these cancer genes.
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Essential genes

Essential genes are crucial in the study of the 
robustness of biological systems and effective drug target 
identification, while knockouts of them would result in a 
lack of cell viability or embryonic lethality. We collected 
2721 essential genes from the Online GEne Essentiality 
(OGEE) database [44].

ADRPs

ADRPs are proteins that mediate adverse drug 
reactions or toxicity by binding to drugs or their reactive 
metabolites. We collected 547 ADRPs from Chen’s 
previously published work [45].

MDGs

We collected 11,700 MDGs from the Online 
Mendelian Inheritance in Man database [46], which is a 
comprehensive, authoritative and timely knowledge base 
of human genes and genetic disorders compiled to support 
human genetics research and education and the practice of 
clinical genetics.

ODMGs

An orphan disease is a disease that affects fewer than 
200,000 inhabitants, which is equivalent to approximately 
6.5 patients per 10,000 inhabitants, and ODMGs are 
orphan disease-causing mutant genes. We collected 2123 
ODMGs from Zhang’s previously published work [47].

Drug target data source

The drug-target associations were downloaded from 
the DrugBank database [48]. We obtained target genes of 
6905 drugs. Duplicated target genes without Entrez ID 
were excluded, and we collected 2354 drug target genes.

Extraction of subnetwork related to sensitivity 
gene and drug target gene

We selected epidermal growth factor receptor 
(EGFR) as example to study the mechanism underlying 
the interaction between the sensitivity gene and the 
target gene. EGFR gene and its first neighbor nodes were 
extracted from the HPRD to construct a subnetwork.
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