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ABSTRACT
This study was conducted to (1) characterize coagulation cascade and complement 

system in systemic lupus erythematosus (SLE); (2) evaluate the associations between 
coagulation cascade, complement system, inflammatory response and SLE disease 
severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus 
activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE 
patients and 24 healthy controls. The levels of ten coagulations, seven complements 
and three cytokines were measured in 112 SLE patients. Clinical data were collected 
from 2025 SLE patients. The analysis of multi-omics data revealed the common links 
for the components of coagulation cascade and complement system. The results of 
ELISA showed coagulation cascade and complement system had an interaction effect 
on SLE disease severity, this effect was pronounced among patients with excess 
inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 
provided good diagnostic performance for lupus activity. This study suggested that 
coagulation cascade and complement system become ‘partners in crime’, contributing 
to SLE disease severity and identified the diagnostic value of D-dimer combined with 
C4for lupus activity.

INTRODUCTION

Systemic lupus erythematosus (SLE) is a systemic 
autoimmune disease that is characterized by a diverse array 
of autoantibody production, immune complex deposition 
and tissue and organ damage [1]. Previous studies have 
reported the dysregulation of coagulation and complement-
related genes and proteins in patients with SLE, suggesting 
that coagulation cascade and complement system have a 
role in pathogenic process of SLE [2, 3]. However, most 
of these studies focused on individual molecules which 
limit sufficient insight into the complex disease, such as 

SLE. Technological advances in the expression profiling, 
such as transcriptomics, proteomics and metabolomics, 
have broadened the spectrum of detectable compounds [4]. 
These technologies are now beginning to be utilized in the 
study of SLE. Several studies have revealed the important 
roles of some signaling pathways in pathogenic process 
of SLE, including coagulation cascade and complement 
system [5–9]. These studies provide more information 
on the pathogenic pathways, but they are all based on a 
single omics platform and cannot reveal the links for the 
components of signaling pathways at transcript, protein 
and metabolite levels. Given that many signaling pathways 
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are orchestrated by global networks that cut across 
multiple omics layers [10], the researchers have recently 
begun to integrate the multi-omics data measured in a 
certain experiment to give a much more detailed view of 
signaling pathways than when applied individually [11–
13]. However, to date no researcher has comprehensively 
integrated these diverse sets of data to study SLE.

As fundamental biological processes, the individual 
constituents of coagulation cascade and complement 
system are finely orchestrated to form two distinct multi-
component networks [14]. However, a study discovered 
a novel complement cleavage mechanism in an acute 
lung inflammatory injury model by which thrombin can 
efficiently cleave complement 5 (C5) in the absence 
of C3 [15]. This observation was soon extended to 
the multi-intercommunication between coagulation 
cascade and complement system by in vivo and in vitro 
experiments [16, 17]. Further, recent studies suggest that 
the interaction is not confined to the coagulation cascade 
and complement system. Specifically, the coagulation 
cascade and complement system can interact with each 
other indirectly through the regulation of inflammatory 
mediators [18–20]. For example, an interaction between 
C5a and inflammatory cytokines have been demonstrated, 
including an effect on the production of tumor necrosis 
factor (TNF)-α and interleukin (IL)-6 [21]. Then, these 
cytokines can enhance the activation of coagulation 
cascade by promoting the expression of coagulants and 
inhibiting the production of anticoagulants [22]. The 
interplays between complement system, coagulation 
cascade and inflammatory response have been reported to 
be associated with disease severity in various clinical and 
experimental settings [18, 19]. However, the potential role 
of these interactions for disease severity in the patients 
with SLE has yet to be determined.

Evidence shows that early detection combined 
with a timely use of disease modifying anti-rheumatic 
drugs (DMARDs) can improve the outcome of SLE. The 
challenge is therefore to identify the best biomarkers to 
detect and diagnose lupus activity. In clinical practice, SLE 
disease activity index (SLEDAI) is used to diagnose lupus 
activity [23]. SLEDAI has an extremely high sensitivity 
and specificity; however, one of the main limitations of 
SLEDAI was overly complex because measurements of 
SLEDAI often use blood biochemical tests combined 
with cerebrospinal fluid cytology studies, X-rays and 
assays of renal tissue markers [23]. Other limitations 
include the expensive cost and time-consuming process. 
Many recent publications have documented specific gene 
and/or protein as potential biomarker of lupus activity, 
including haptoglobin, alpha-1 anti-chymotrypsin, retinol 
binding protein, miR-21, miR-181a, miR-196a, human T 
cell immunoglobulin domain and mucin-3 (TIM-3), TIM-
3 ligands, TNF-like weak inducer of apoptosis, CD72, 
programmed death ligand 1, ferritin, insulin-like growth 
factor binding protein 2, tumor necrosis factor receptor 

type II, homocysteine and B-lymphocyte stimulator 
[24–38]. An ideal lupus activity biomarker should be 
biologically relevant, reproducible, simple to apply in 
routine practice (inexpensive, easy and rapid to quantify, 
non-invasive) and would have a high degree of sensitivity 
and specificity. However, at present, no biomarker exists 
that fulfils all of the above. There is thus an urgent need for 
discovering new and reliable biomarkers. As most of the 
components of the coagulation cascade and complement 
system are present in peripheral blood and are readily 
accessible, they may be used as biomarker.

This study aimed firstly to systematically characterize 
coagulation cascade and complement system at transcript, 
protein and metabolite levels in the lupus cohort I by multi-
omics analysis. The second objective was to evaluate the 
associations between complement system, coagulation 
cascade, inflammatory response and SLE disease severity 
in the lupus cohort II by protein expression analysis. The 
final objective was to determine the diagnostic value 
of a combined D-dimer and C4 for lupus activity in the 
lupus cohort III by biomarker identification analysis. The 
diagrams of experimental design and workflow of the 
three-part study are depicted in Figure 1.

RESULTS

Subjects

Patients were recruited in 3 sets: the cohort I 
including 24 SLE patients for the multi-omics analyses, 
the cohort II including 112 SLE patients for the protein 
expression analysis and the cohort III including 2025 
SLE patients for the biomarker identification analysis. 
Twenty-four sex- and age-matched healthy controls (HCs) 
with no history of SLE, other inflammatory/autoimmune 
disease or cancer were used as controls for multi-omics 
analyses. Clinical and laboratory characteristics of all 
study population are summarized in Table 1.

Transcriptomics

An average of 22.3 million clean reads was 
generated per pool, of which 56.03%–63.39% could be 
uniquely aligned with the human genome 19 (hg19). 
Among the quantified genes, 420 genes showed significant 
change in expression pattern with 190 being up-regulated 
and 230 down-regulated in SLE patients when compared 
with HC (Supplementary Table 1). Enrichment analysis 
of these differentially expressed genes revealed gene 
ontology (GO) biological processes such as lymphocyte 
activation, defense response and leukocyte differentiation 
(Supplementary Table 2) as well as kyoto encyclopedia 
of genes and genomes (KEGG) pathways such as T 
cell receptor signaling, NF-kappa B signaling and, of 
particular note, coagulation cascade and complement 
system (Supplementary Table 3).
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Proteomics 
For each group, three biological replicate samples 

of patient (SLE_1; SLE_2; SLE_3) and control (HC_1; 
HC_2; HC_3) were included in the isobaric tag for 
relative and absolute quantitation (iTRAQ) experiment. 

Additionally, three technical repeats (T1; T2; T3) were 
processed for each biological replicate. For the six 
samples, a total of 301389 (T1), 300097 (T2), 298878 (T3) 
mass spectra were generated. After data filtering, 21471 
(T1), 20811 (T2), 20763 (T3) unique spectra that matched 

Figure 1: Scheme depicting the strategy used in this study. Part 1 (multi-omics analysis): Transcriptomics, proteomics and 
metabolomics were performed simultaneouslyin SLE cohort I (n = 24) and healthy controls (n = 24) to systematically characterize 
coagulation cascade and complement system at transcript, protein and metabolite levels; Part 2 (protein expression analysis): The levels of 
coagulations, complements and cytokines were measured in SLE cohort II (n = 112) by using ELISA to evaluate the associations between 
coagulation cascade, complement system, inflammatory response and SLE disease severity; Part 3 (biomarker identification analysis): 
Clinical data from SLE cohort III (n = 2025) were collected by medical record review to evaluate the diagnostic value of a combination 
of D-dimer and C4 for lupus activity. SLE, systemic lupus erythematosus; GO, gene ontology; KEGG, kyoto encyclopedia of genes and 
genomes; ROCs, receiver operating characteristic curves.
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to special peptides were obtained. Through searching 
Mascot, a total of 2715 (T1), 2643 (T2), 2652 (T3) 
peptides, 2355 (T1), 2284 (T2), 2291 (T3) unique peptides 
and 498 (T1), 485 (T2), 481 (T3) proteins were identified. 
We combined the three technical replicates to identify 
597 proteins (Figure 2A). Among all of the identified 
proteins, 385 proteins could be quantified (Figure 2B). 
The reproducibility of the iTRAQ experiment was 
evaluated by comparing the differences of quantification 
data among biological replicates. The results revealed 
more than 98% of the proteins exhibited differences of less 
than 20% (Figure 2C), suggesting the reproducibility was 
satisfactory. Among the quantified proteins, 87 proteins 
had increased expression and 24 proteins had decreased 
expression in SLE patients (Supplementary Table 4). 
GO enrichment analysis indicated the participation of 
differentially expressed proteins in a diverse array of 

biological function, including inflammatory response, 
sensory perception of light stimulus and cellular 
response to reactive oxygen species (Supplementary 
Table 5). KEGG pathway enrichment analysis identified 
coagulation cascade and complement system as the most 
relevant pathways (Supplementary Table 6).

Metabolomics

A total of 195 significantly altered metabolites were 
found in SLE patients. Representative metabolites can 
be found as Supplementary Table 7. Through searching 
KEGG, the metabolic pathways that were altered in 
SLE patients have been identified, which involve steroid 
hormone biosynthesis, tryptophan metabolism, and, of 
interest, coagulation cascade and complement system 
(Supplementary Table 8).

Table 1: Baseline characteristics of the study population
SLE cohort 1

(n = 24)
SLE cohort 2 

(n = 112)
SLE cohort 3 

(n = 2025)
HC

(n = 24)
Characteristics

Age, median (range), years 30.5 (16–50) 39 (14–86) 37 (10–78) 30 (20–55)
Sex, female/male, n 24/0 107/5 1858/167 24/0
SLEDAI score, median (range) 11 (4–28) 10 (1–46) 10 (0–48)

Clinical manifestations
Mucocutaneous manifestations, n (%) 12 (50) 51 (46) 887 (44)
Arthritis, n (%) 5 (21) 25 (22) 284 (13)
Nephritis, n (%) 13 (54) 64 (57) 913 (45)
Serositis, n (%) 6 (25) 20 (18) 402 (20)
Vasculitis, n (%) 2 (8) 9 (8) 210 (10)
Neuropsychiatric manifestations, n (%) 2 (8) 6 (5) 185 (9)
Myositis, n (%) 1 (4) 0 (0) 50 (2)

Laboratory measurements
Anti-Sm, n (%) 8 (33) 31 (28) 619 (31)
Anti-SSA/Ro, n (%) 17 (71) 68 (61) 1200 (59)
Anti-SSB/La, n (%) 7 (29) 13 (12) 277 (14)
Anti-RNP, n (%) 10 (42) 40 (36) 621 (31)
Anti-Rib P, n (%) 8 (33) 29 (26) 436 (22)
Anti-dsDNA, n (%) 10 (42) 51 (46) 781 (39)
Thrombocytopenia, n (%) 11 (45) 21 (19) 499 (25)
Leukopenia, n (%) 10 (42) 31 (28) 620 (31)
Low complement C3, n (%) 22 (92) 80 (71) 1380 (68)
Low complement C4, n (%) 16 (67) 52 (46) 999 (49)
High ESR, n (%) 21 (88) 81 (72) 1426 (70)
High CRP, n (%) 13 (54) 48 (43) 1111 (55)
Immunosuppressive drugs, n (%) 9 (38) 61 (54) 1300 (64)

SLE, systemic lupus erythematosus; HC, healthy subjects; SLEDAI, SLE Disease Activity Index; ESR, erythrocyte 
sedimentation rate; CRP, C reactive protein.
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Integrative analysis of multi-omics data

We performed a combined mapping of 
transcriptomic, proteomic and metabolic data to 
coagulation cascade and complement system. This 
analysis revealed the common links for the components 
of coagulation cascade and complement system at 
transcript, protein and metabolite levels (Figure 3). To 
explore functional roles of these pathways for SLE disease 

severity, several differentially expressed signaling proteins 
that were identified by our proteomic experiment were 
measured in lupus cohort II, including mannan-binding 
lectin-associated serine protease 2 (MASP2), C7, C1q, 
C4, coagulation factor 7 (F7), F9, F12, F13, fibrinogen 
(FIB), Von Willebrand factor (VWF), protein S (PPOS) 
and antithrombin-III (ATIII). To compensate for the 
limitation of detection range of the proteomic technology, 
we also measured C3a, C4a, C5a, factor I (FI), thrombin-

Figure 2: General information of the proteomics analysis. (A) A Venn diagram representing the overlap of identified proteins 
among the three technical replicates; (B) A Venn diagram representing the overlap of quantified proteins among the three technical 
replicates; (C) Repeatability of quantification data among biological replicates.
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Figure 3: Simplified coagulation cascade and complement system featuring transcriptomics, proteomics, and 
metabolomics regulations of systemic lupus erythematosus patients compared with healthy controls, according to 
KEGG nomenclature. Genes are presented as ovals, proteins as rectangles, metabolites by trapezoid. Regulation is color coded in which 
red stands for up regulated, green for down regulated, and black for unregulated. TFPI, tissue factor pathway inhibitor; F3, coagulation 
factor 3; F7, coagulation factor 7; F8, coagulation factor 8; F9, coagulation factor 9; F11, coagulation factor 11; F12, coagulation factor 
12; F13, coagulation factor 13; F2, coagulation factor 2; F2R, F2 receptor; VWF, Von Willebrand factor; ATIII, antithrombin-III; PROZ, 
protein Z; PROS, protein S; FIB, fibrinogen; IF, complement factor I; DF, complement factor D; MAC, membrane attack complex; MASP2, 
mannan-binding lectin-associated serine protease 2; C4BP, C4b-binding protein; KEGG, kyoto encyclopedia of genes and genomes.
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antithrombin complex (TAT) and D-dimer, all of which 
were important components of the coagulation cascade 
and complement system [2, 3]. Given that the interplays 
between the coagulation cascade, complement system 
and inflammatory response have been widely described 
[18, 19], three inflammatory cytokines were measured, 
including TNF-RII, IL-6 and IL-8. We then examined the 
associations between coagulation cascade, complement 
system, inflammatory response and SLE disease severity.

The interaction effect between coagulation 
cascade and complement system for SLE disease 
severity

We performed 3 different analyses to assess the 
principal effects of coagulation cascade and complement 
system and their interaction effect on SLE disease severity 
in lupus cohort II. First, both the coagulation score  
(β = 0.706, 95% CI 0.371 to 1.040, P < 0.001) and 
complement score (β = 0.590, 95% CI 0.328 to 0.852, P < 
0.001) were significantly associated with log-transformed 
(lt)SLEDAI when both were included in a linear regression 
model.

Second, a formal interaction test between 
coagulation score and complement score for ltSLEDAI 
yielded a statistically significant result (P < 0.001).

Finally, to help understand the interaction effect, 
we dichotomized coagulation score and complement 
score into two groups, respectively. This analysis yielded 
four groups for stratification of ltSLEDAI as described 
under ‘materials and methods’. The interaction effect is 
illustrated in Table 2. Specifically, in the group of low 
complement score, the relationship between coagulation 
score and ltSLEDAI was weak; the difference in mean 
value of ltSLEDAI between the low with the high 
coagulation score group was only 0.334. This difference 
increased to 0.831 in the group of high complement 
score. Similarly, in the group of low coagulation score, 
the relationship between complement score and ltSLEDAI 
was weak; the difference in mean value of ltSLEDAI 
between the low with the high complement score group 
was only 0.436. This difference increased to 0.933 
in the group of high coagulation score. These results 
demonstrate that there is an interaction effect between 
coagulation cascade and complement system for SLE 
disease severity.

The interaction effect between the coagulation 
cascade and complement system for SLE 
disease severity varied according to the levels of 
inflammatory reaction

To examine the extent to which the interaction 
effect of the coagulation cascade and complement system 
on SLE disease severity varied according to the levels of 

inflammatory response, inflammatory cytokine scores 
were divided into two groups by its median value (high 
cytokine score versus low cytokine score). Then, all of the 
analyses described above were repeated in the high and 
low cytokine score groups, respectively. 

In the high cytokine score group, both coagulation 
score (β = 1.047, 95% CI 0.602 to 1.491, P < 0.001) and 
complement score (β = 0.437, 95% CI 0.130 to 0.744,  
P = 0.006) were significantly associated with ltSLEDAI. 
Moreover, an interaction effect between the coagulation 
score and complement score was observed (P < 0.001) 
(Table 3). Specifically, in the group of low complement 
score, the relationship between coagulation score and 
ltSLEDAI was weak; the difference in mean value of 
ltSLEDAI between the low with the high coagulation 
score group was only 0.391. This difference increased to 
0.897 in the group of high complement score. Similarly, 
in the group of low coagulation score, the relationship 
between complement score and ltSLEDAI was weak; the 
difference in mean value of ltSLEDAI between the low 
with the high complement score group was only 0.359. 
This difference increased to 0.805 in the group of high 
coagulation score. 

In contrast, in the low cytokine score group, a 
formal interaction test between coagulation score and 
complement score for ltSLEDAI yielded a non-significant 
result (P = 0.406).

Testing whether there is a direct correlation 
between coagulation cascades with complement 
system in the patients with SLE

It is of interest to note that the coagulation score 
and complement score were independent (r = 0.151,  
P = 0.112). 

D-dimer and C4 as the surrogates for their 
respective pathways in the patients with SLE

We found significant correlations between D-dimer 
levels with the coagulation score (r = 0.423, P < 0.001) 
and between C4 levels with the complement score (r = 
-0.774, P < 0.001). These results suggest that D-dimer and 
C4 may be surrogates for their respective pathways. To 
demonstrate this possibility, all of the analyses described 
above were repeated using D-dimer in place of coagulation 
score and C4 in place of complement score. The results 
demonstrated a significant effect on ltSLEDAI by the 
interaction between D-dimer and C4 (Table 4). Moreover, 
inflammatory response subgroup analyses indicated that in 
the high cytokine score group, an interaction test between 
D-dimer and C4 for ltSLEDAI yielded a statistically 
significant result (P = 0.001), while in the low cytokine 
score group, an interaction test yielded a non-significant 
result (P = 0.738).
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Determination of the interaction effect between 
D-dimer and C4 for the risk of lupus activity

We test whether there is an interaction effect 
between D-dimer and C4 for the risk of lupus activity 
in lupus cohort III by using a logistic regression 

model. The results indicated that the interaction was 
significant (P < 0.001). The odds ratios (ORs) value 
of the quartiles of D-dimer increased with increases in 
C4 categories. Similarly, the OR value of the quartiles 
of C4 increased with increases in D-dimer categories 
(Figure 4).

Table 2: Comparison of ltSLEDAI in groups of patients by high/low levels of coagulation score 
and complement score

High coagulation 
score

Low coagulation 
score

Row P value (across 
coagulation score)

High complement score
   Patients, n 31 25
   Complement score, mean ± SD 0.892 ± 0.270 0.947 ± 0.367
   Coagulation score, mean ± SD 0.797 ± 0.263 0.117 ± 0.212
ltSLEDAI, mean ± SD 2.894 ± 0.539 2.063 ± 0.725 0.001a

Low complement score
   Patients, n 25 31
   Complement score, mean ± SD 0.102 ± 0.200 -0.041 ± 0.301
   Coagulation score, mean ± SD 0.786 ± 0.318 0.116 ± 0.194
ltSLEDAI, mean ± SD 1.961 ± 0.664 1.627 ± 0.899 0.523a

Column P value 
(across complement score)
ltSLEDAI 0.001a 0.263a 0.001a

aChanges in ltSLEDAI are statistically compared using Tamhane’s T2(M) test. SLE, systemic lupus erythematosus; SLEDAI, 
SLE Disease Activity Index; ltSLEDAI, log-transformed SLEDAI.

Table 3: Comparison of ltSLEDAI in groups of patients by high/low levels of coagulation score 
and complement score in the high cytokine score group

High coagulation 
score

Low coagulation 
score

Row P value (across 
coagulation score)

High complement score
   Patients, n 24 11
   Complement score, mean ± SD 0.928 ± 0.274 1.119 ± 0.454
   Coagulation score, mean ± SD 0.834 ± 0.264 0.150 ± 0.169
ltSLEDAI, mean ± SD 3.093 ± 0.317 2.196 ± 0.801 0.024a

Low complement score
   Patients, n 12 9
   Complement score, mean ± SD 0.126 ± 0.228 0.049 ± 0.200
   Coagulation score, mean ± SD 0.720 ± 0.222 0.251 ± 0.140
ltSLEDAI, mean ± SD 2.288 ± 0.611 1.837 ± 0.715 0.618a

Column P value 
(across complement score)
ltSLEDAI 0.005a 0.886a 0.004a

aChanges in ltSLEDAI are statistically compared using Tamhane’s T2(M) test. SLE, systemic lupus erythematosus; SLEDAI, 
SLE Disease Activity Index; ltSLEDAI, log-transformed SLEDAI.
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Comparison of the diagnostic performance of 
a combination of D-dimer and C4 with that of 
other hematological biomarkers

The area under receiver operating characteristic 
curves (AUROCs) was used to evaluate the diagnostic 
performance of D-dimer, C4 and their combination. As 
expected, a combination of D-dimer and C4 had better 
AUROCs than individual biomarkers (Figure 5A). In 
addition, we compared the diagnostic performance of 
a combination of D-dimer and C4 with that of other 
rhematological biomarkers. The results have shown that a 
combination of D-dimer and C4 provided better diagnostic 
performance than all individual biomarkers (Figure 5B 
and Figure 5C). Of these individual biomarkers, C3 and 
anti-dsDNA had better AUROCs than others. We then 
compared the diagnostic performance of a combination 

of D-dimer and C4 with that of a combination of C3 and 
anti-dsDNA. The results have shown that a combination of 
D-dimer and C4 provided better diagnostic performance 
(Figure 5D).

Developing a multivariate predictive equation 
based on D-dimer and C4 levels to assess the 
likelihood of lupus activity

A predictive equation for lupus activity was created: 
P = 1 / (1 + e−z), where z = -1.612 + 0.361 (D-dimer) + 
0.325 (C4) + 0.093 (interaction). For example, if a patient 
had a D-dimer level of > 2.80 ug/mL and C4 level of ≤ 
0.05 mg/mL, the probability of lupus activity could be 
computed as follows: z = -1.612 + 0.361 × 4 + 0.325 × 4 + 
0.093 × 4 × 4 = 2.620. The probability was therefore given 
by P = 1 / (1 + e-2.620) = 0.932. The performance of the 

Figure 4: The odds ratio for lupus activity in each group according to the quartiles (Q1-Q4) of D-dimer and C4 in 2025 
systemic lupus erythematosus patients. Clinical data were collected from the medical records of patients hospitalized with systemic 
lupus erythematosus (n = 2025). The participants were classified into 4 categories according to the quartile of the D-dimer concentration 
(D-dimer ≤ 0.56, 0.56 < D-dimer ≤ 1.20, 1.20 < D-dimer ≤ 2.80, and D-dimer > 2.80 ug/mL) and further classified into 4 groups according 
to the quartile of the C4 concentration (C4 > 0.20, 0.12 < C4 ≤ 0.20, 0.05 < C4 ≤ 0.12 and C4 ≤ 0.05 mg/mL), with reference to the group 
with D-dimer ≤ 0.56 ug/mL and C4 > 0.20 mg/mL. Active lupus disease was defined as systemic lupus erythematosus disease activity index 
score ≥ 8.
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predictive equation depended on the cut-off used to define 
a positive test and the accuracy of the predictive equation 
was summarized in Table 5.

DISCUSSION

Numerous studies have investigated the levels 
of complement and coagulation-related molecules in 
the patients with SLE [2, 3]. The results indicated that 

dysregulation of complement and coagulation-related 
molecule has a role in pathogenic process of SLE. 
However, coordinated changes of complement and 
coagulation-related molecules have not been analyzed 
as usually each molecule is analyzed independently by 
specific immunoassays. With the background of such 
a wide range of complement and coagulation-related 
molecules having an implication in pathogenic process 
of SLE, omics techniques have revealed as a very useful 

Figure 5: Compared the diagnostic performance of a combination of D-dimer and C4 with that of the biomarkers 
of hematological abnormalities for lupus activity by using receiver operating characteristic curves. Clinical data were 
collected from the medical records of patients hospitalized with systemic lupus erythematosus (n = 2025). (A) D-dimer combined with C4 
provided better diagnostic performance than D-dimer or C4 alone; (B) D-dimer combined with C4 provided better diagnostic performance 
than low C3, leukopenia, thrombocytopenia, high ESR, high FIB, or high CRP alone; (C) D-dimer combined with C4 provided better 
diagnostic performance than anti-dsDNA, anti-Sm, anti-SSA/Ro, anti-SSB/La, anti-RNP or anti-Rib P alone; (D) D-dimer combined with 
C4 provided better diagnostic performance than a combination of C3 and anti-dsDNA. Low C3 is defined as < 0.85 mg/mL; high FIB is 
defined as > 4.00 ug/mL; high ESR is defined as > 20.00 mm/h; high CRP is defined as > 8.00 mg/L. FIB, fibrinogen; ESR, erythrocyte 
sedimentation rate; CRP, C-reactive protein. Lupus activity was defined as systemic lupus erythematosus disease activity index score ≥ 8.
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tool for the evaluation of global systemic changes in 
molecule expression [13, 39]. To this end, transcriptomics, 
proteomics and metabolomics have been used recently to 
define molecule expression signatures in patients with 
SLE. These studies have demonstrated pathogenic roles 
of several key signaling pathways for the development 
of SLE, including coagulation cascade and complement 

system [5–8, 40–47]. However, a common limitation in 
these studies is that the experiment was usually performed 
by single omics technology. Recently, many researchers 
have utilized multiple omics technologies in a certain 
experiment that is an integrated approach able to give 
a much more detailed view of signaling pathways than 
when used individually [10–13, 48–50]. However, to date 

Table 4: Comparison of ltSLEDAI in groups of patients by high/low levels of D-dimer and C4
High D-dimer Low D-dimer Row P value 

(across D-dimer)
Low C4
   Patients, n 31 21
   C4, mean ± SD 0.149 ± 0.072 0.169 ± 0.082
   D-dimer, mean ± SD 0.774 ± 0.060 0.581 ± 0.132
   ltSLEDAI, mean ± SD 2.768 ± 0.673 2.169 ± 0.843 0.007a

High C4 
   Patients, n 25 35
   C4, mean ± SD 0.563 ± 0.185 0.524 ± 0.181
   D-dimer, mean ± SD 0.774 ± 0.056 0.567 ± 0.135
   ltSLEDAI, mean ± SD 1.907 ± 0.722 1.762 ± 0.839 0.475a

Column P value 
(across C4)
ltSLEDAI 0.001a 0.059a 0.001a

aChanges in ltSLEDAI are statistically compared using LSD test. SLE, systemic lupus erythematosus; SLEDAI, SLE disease 
activity index; ltSLEDAI, log-transformed SLEDAI.

Table 5: Sensitivity, specificity, predictive values and Youden index of the predictive equation 
according to different cut-offs for the diagnosis of lupus activity in 2025 SLE patients

P (cut-off) Variable Sensibility Specificity PPV NPV Youden index
0.932 D-dimer > 2.80 ug/mL C4 ≤ 0.05 mg/mL 0.138 0.981 0.927 0.389 1.119 
0.868 D-dimer > 1.20 ug/mL C4 ≤ 0.05 mg/mL 0.253 0.956 0.911 0.417 1.209 
0.760 D-dimer > 0.56 ug/mL C4 ≤ 0.05 mg/mL 0.327 0.919 0.878 0.433 1.246 
0.604 D-dimer > 0   ug/mL C4 ≤ 0.05 mg/mL 0.352 0.890 0.851 0.435 1.242 
0.872 D-dimer > 2.80 ug/mL C4 ≤ 0.12 mg/mL 0.231 0.956 0.904 0.411 1.187 
0.773 D-dimer > 2.80 ug/mL C4 ≤ 0.20 mg/mL 0.274 0.924 0.866 0.416 1.199 
0.629 D-dimer > 2.80 ug/mL C4 > 0 mg/mL 0.318 0.869 0.813 0.417 1.188 
0.783 D-dimer > 1.20 ug/mL C4 ≤ 0.12 mg/mL 0.425 0.890 0.873 0.464 1.315 
0.655 D-dimer > 0.56 ug/mL C4 ≤ 0.12 mg/mL 0.562 0.788 0.826 0.502 1.350 
0.501 D-dimer > 0 ug/mL C4 ≤ 0.12 mg/mL 0.642 0.667 0.775 0.511 1.309 
0.664 D-dimer > 1.20 ug/mL C4 ≤ 0.20 mg/mL 0.517 0.825 0.841 0.489 1.342 
0.519 D-dimer > 1.20 ug/mL C4 > 0   mg/mL 0.613 0.707 0.789 0.506 1.320 
0.533 D-dimer > 0.56 ug/mL C4 ≤ 0.20 mg/mL 0.696 0.629 0.770 0.536 1.324 
0.398 D-dimer > 0   ug/mL C4 ≤ 0.20 mg/mL 0.820 0.370 0.699 0.536 1.191 
0.406 D-dimer > 0.56 ug/mL C4 > 0   mg/mL 0.839 0.407 0.716 0.586 1.246 
0.303 D-dimer > 0   ug/mL C4 > 0   mg/mL 1.000 0.000 0.641 0.000 1.000 

SLE, systemic lupus erythematosus; P, probability; PPV, positive predictive value; NPV, negative predictive value.
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no study focused on a combined analysis in SLE. In this 
study, we performed the transcriptomics, proteomics and 
metabolomics simultaneously in the patients with SLE 
and HCs. The results revealed significant alterations 
of many of the components of the coagulation cascade 
and complement system in SLE at the transcriptional, 
proteomic and metabolic levels, the majority of which 
were consistent with previous immunoassays results 
[2, 3]. To gain deeper insights into coagulation cascade 
and complement system, a combined mapping of 
transcriptomic, proteomic and metabolic data to these 
pathways was performed. This analysis revealed the 
common links for the components of coagulation cascade 
and complement system at the gene, protein and metabolite 
level. It is interesting to note that (i) varying or even 
contradicting data correlations between transcriptome and 
proteome have been found, such as SERPING1 secretion 
that is independent from gene transcription. Thus, the 
function of the coagulation cascade and complement 
system may result from the concerted action of gene 
and protein ensembles, rather than from the isolated 
action of single players; (ii) a pathway map exhibits 
various possible routes that one can take. For example, 
the dysregulation of metabolite Frbrin can be caused 
by the abnormalities of F13 or FIB or a combination of 
these factors. Our failure to produce effective therapeutic 
drugs could, in part, be related to our lack of a deeper 
understanding of all possible routes that one can take [51, 
52]. Altogether, an integrated omics approach has the 
potential to considerably advance our understanding of 
the coagulation cascade and complement system in SLE. 

Although coagulation cascade and complement 
system are two distinct multi-component networks, 
numerous studies have independently reported several 
interesting interactions between these two pathways and 
the contribution of these interactions to the development 
of various clinical conditions [14, 18–20]. Consistently, 
we found that coagulation cascade and complement 
system had an interaction effect on SLE disease severity. 
Mechanically, previous studies have shown that the 
components of coagulation cascade and complement 
system can interact with each other directly, leading to 
the activation of both pathways simultaneously [15–
17]. However, no significant correlation was observed 
between coagulation cascade and complement system 
in this study, suggesting the direct interaction between 
these two pathways is disease-specific and may not 
occur in the patients with SLE. Recently, evidence from 
in vitro and in vivo models is accumulating to support 
the indirect interactions between coagulation cascades 
and complement system through the involvement of 
inflammatory mediators [18–22]. In the present study, 
the interaction effect between the coagulation cascade 
and complement system on SLE disease activity was 
pronounced among patient with excess inflammatory 
cytokines. Drawing together several lines of evidence that 

(i) SLE is a systemic autoimmune disease, characterized 
by excess inflammatory cytokine production [1]; (ii) the 
extent of complement cleavage in SLE depends in part 
on the levels of inflammatory response [53–55]; (iii) 
inflammatory cytokines facilitate coagulation factor 
activation in SLE [56], and (iv) inflammatory mediators 
can serve as bridge between coagulation cascade and 
complement system [18–22], an attractive mechanism 
arises that during an inflammatory response, the reactions 
of coagulation cascade and complement system occurred 
not only coincidentally but also in a self-reinforcing 
manner in patients with SLE that lead to exacerbation of 
the disease.

SLEDAI is considered as the ‘gold standard’ 
for the diagnosis of lupus activity [23]. However, this 
tool is apparently not easy to implement. Recently, 
new biomarkers are emerging as research on SLE 
progresses [24–38]. However, these biomarkers are 
hard to measure, relatively expensive and not routinely 
assayed. Compared with these biomarkers, D-dimer and 
C4 are more stable and easier to be measured routinely 
in most hospitals. Therefore, D-dimer and C4 may serve 
as good biomarkers for lupus activity. Previous studies 
on D-dimer levels in patients with SLE mainly focused 
on the role of D-dimer in clinical manifestations. The 
importance effect of D-dimer on the development of 
serositis and vascular disease in patients with SLE has 
been confirmed [57, 58]. However, the diagnostic value 
of D-dimer for lupus activity has rarely been examined. 
With respect to C4, there is still some uncertainty about 
the use of this parameter as biomarker for the diagnosis 
of lupus activity. One study reported that serum levels 
of C4 are useful in disease activity evaluation in patients 
with SLE [59]. In contrast, another study found that 
serum levels of C4 split product C4d rather than C4 can 
be used as biomarker for lupus activity [60]. A recent 
study uncovered the molecular heterogeneity of SLE [61]. 
This suggests that a combination of several biomarkers 
rather than a single biomarker will be required by 
clinicians for lupus activity diagnosis [62]. Therefore, 
studies working with a combination of biomarkers that 
are involved in biologically relevant pathways may be 
more meaningful and more substantial than studies focus 
on single biomarkers. In the present study, we evaluated 
the diagnostic value of a combined D-dimer and C4 for 
lupus activity in a large cohort of patients with SLE. 
The results demonstrated that a combination of D-dimer 
and C4 provided good diagnostic performance. Based 
on D-dimer and C4 levels, a multivariate predictive 
equation was developed to assess the likelihood of lupus 
activity. As with all other prediction models [63–65], it 
must be made clear that such a model never predicts the 
specific outcome of an individual patient. However, with 
a predictive model, we can determine the probability 
of lupus activity. In clinical practice, a clinician can 
determine what probability of lupus activity constitutes 
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a reasonable threshold when therapy with potentially 
significant side effects is being considered. If a therapy has 
minimal side effects and the delay in identifying patients 
with high disease activity inhibits the benefit of therapy, it 
may be reasonable to offer the therapy to patients whose 
probability of lupus activity falls below 60%. If a therapy 
has substantial risk, such as with cyclophosphamide [66], 
it may be reasonable to restrict it to those whose risk of 
lupus activity exceeds 80%.

There is some weakness in our study. First, to better 
correlate SLE disease severity with signaling pathway, it 
is ideal to collect blood samples and clinical data of SLE 
patients before starting DMARDs treatment. However, in 
reality it is challenging to obtain these samples and data. In 
our study, part of the blood samples and clinical data was 
obtained from the SLE patients who had been receiving 
treatment for more than a month. Second, because of 
the cross-sectional nature of this study, associations do 
not necessarily mean causality, particularly when these 
include potentially co-dependent variables. For instance, 
we cannot rule out the possibility that exacerbation of the 
SLE somehow causes dysfunctional coagulation cascade 
and complement system as well as excess inflammation, 
although it is difficult to postulate a potential mechanism. 
Similarly, we cannot exclude the possibility that excess 
inflammation (with accompanying lupus activity) causes 
the dysregulation of coagulation cascade and complement 
system. Prospective studies are required in the future.

In summary, this manuscript consists of three parts. 
In the first part (multi-omics analysis), transcriptomics, 
proteomics and metabolomics were performed 
simultaneously in the patients with SLE and HCs to 
identify the differentially expressed coagulation and 
complement-related genes ⁄ proteins ⁄ metabolites. Further 
analysis by integration of multi-omics data provided 
several novel findings as illustrated in Figure 2. First, 
coagulation and complement-related gene levels do not 
ultimately determine protein levels, such as SERPING1 
concentration that is independent from gene transcription. 
Second, one biological reaction can be caused by different 
routes as shown by the fact that the dysregulation of 
metabolite Frbrin can be caused by the abnormalities 
of F13 or FIB or a combination of these factors. To our 
knowledge, this is the first study integrating multi-omics 
data sets to analyze the pathogenic signaling pathways 
in SLE and will serve as basis for future investigations 
in relevant research areas. In the second part (protein 
expression analysis), we define the relationships 
between the coagulation cascade, complement system, 
inflammatory response and SLE disease severity that 
has not been previously described. We have found that 
coagulation cascade and complement system have an 
interaction effect on SLE disease severity and this effect 
is pronounced among patients with excess inflammation. 
In the third part (clinical data analysis), we have shown 
for the first time a good diagnostic power of a combined 

D-dimer and C4 for lupus activity. Moreover, by using 
D-dimer and C4, we have created a novel predictive 
equation for lupus activity: P = 1 / (1 + e−z), where 
z = -1.612 + 0.361 (D-dimer) + 0.325 (C4) + 0.093 
(interaction). This multivariate equation improves current 
methods for the diagnosis of lupus activity and can be 
easily implemented in an inexpensive programmable 
calculator.

MATERIALS AND METHODS

Subjects

The protocol for our study was consistent with the 
provisions of the World Medical Association Declaration 
of Helsinki, and informed consent was obtained from 
each subject before enrolment. The study was approved 
by the medical ethics committee of Anhui Medical 
University. Methods were carried out in accordance with 
the approved guidelines. The patients were recruited from 
the First Affiliated Hospital of Anhui Medical University 
and Anhui Provincial Hospital. All patients fulfilled at 
least 4 of the SLE classification criteria of the American 
College of Rheumatology [23]. Clinical manifestations of 
SLE patients, such as lupus nephritis, arthritis and skin 
rash, were recorded. Laboratory abnormalities, including 
thrombocytopenia (< 100 × 109/L), leukopenia (< 4.0 × 
109/L), hematuria (> 5 RBC/HP), proteinuria (> 0.5 g/
day), the presence of anti-dsDNA and levels of C3 and C4, 
were also retrieved from the medical record. SLE disease 
activity was evaluated by SLEDAI scores [23]. Active 
lupus disease was defined as SLEDAI scores ≥ 8. 

Collection of blood samples and clinical data

Blood samples were collected into different tubes. 
Blood samples for transcriptomics were collected in 
PAXgene Blood RNA tubes, allowed to remain at room 
temperature for 2 h, frozen at –20°C overnight, and then 
stored at –80°C until RNA isolation. Blood samples for 
proteomics and metabolomics were collected in EDTA 
tubes and centrifuged at 3000 rpm for 15 min at 4°C. 
Blood samples for measurement of serum complement 
and inflammatory cytokine were collected in plain tubes. 
Blood samples for measurement of plasma coagulation 
were collected in tubes containing 0.106 M trisodium 
citrate. All samples were aliquoted prior to storage at 
–80°C. Only one aliquot was retrieved for each assay to 
avoid multiple freeze/thaw cycles.

Clinical data were collected from consecutive 
patients with the following criteria: (1) diagnoses 
of systemic lupus erythematosus (SLE), (2) plasma 
coagulation D-dimer and serum complement C4 measured 
by routine analyses, (3) complete clinical and laboratory 
data available for calculation of SLE disease activity index 
(SLEDAI) score. We excluded any patient missing data on 
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demographic information and medication intake because 
these variables were controlled for subsequent analyses. 
With these criteria, a final sample of 2025 patients 
contributed to the analyses.

Transcriptomics (RNA-sequencing, RNA-seq) 

Total RNA was isolated with PAXgene Blood 
RNA Kit. To minimize the biological variation, within 
each group [SLE patients and healthy controls (HC)], 
equal amounts of sample from 8 different individuals 
were randomly pooled. For each group, three biological 
replicate samples of patient (SLE_1; SLE_2; SLE_3) 
and control (HC_1; HC_2; HC_3) were included. The 
RNA was dissolved in RNase-free water (New England 
BioLabs) to remove residual DNA. The concentration 
of RNA was determined by NanoDrop 2000 (Thermo 
Fisher Scientific), and the RNA integrity value (RIN) was 
checked using 2100 Bioanalyzer (Agilent).

The cDNA libraries were prepared according to 
the Illumina manufacturer’s instructions. The poly(A) 
containing mRNA molecules were purified using Sera-
mag Magnetic Oligo(dT) Beads (Illumina) from RNA 
of each sample. Ten milli molar Tris-HCl was used to 
elute the mRNA from the magnetic beads. To avoid 
priming bias when synthesizing cDNA, the mRNA was 
first fragmented before cDNA synthesis. The mRNA was 
fragmented into small pieces using divalent cations at 
elevated temperature. The cleaved mRNA fragments were 
converted to double-stranded cDNA using SuperScript II, 
RNaseH and DNA Pol I. The resulting cDNA was purified 
using the QIA quick PCR Purification Kit (Qiagen). Then, 
cDNA was subjected to end-repair and phosphorylation 
using T4 DNA polymerase, Klenow DNA polymerase 
and T4 polynucleotide kinase, and subsequent purification 
using QIA quick PCR Purification Kit (Qiagen). These 
repaired cDNA fragments were adenylated using Klenow 
DNA polymerase, producing cDNA fragments with a 
single ‘A’ base overhung at their 3’ ends for subsequent 
adapter ligation. Adapters were ligated to the ends of these 
3’ adenylated cDNA fragments, followed by purification 
using MinElute PCR Purification Kit (Qiagen). To select 
a size range of templates for downstream enrichment, the 
products of the ligation reaction were purified on a 2% 
agarose gel (Bio-rad). A range of cDNA fragments (200 
± 25 bp) was excised from the gel and extracted using 
QIA quickGel Extraction Kit (Qiagen). Fifteen rounds of 
PCR amplification were performed to enrich the adapter 
modified cDNA library. The PCR products of size 200 
± 25 bp were purified using QIAquick GelExtraction 
Kit except that Qiaquick spincolumns were substituted 
with MinElute spin columns (Qiagen). Finally, after 
quantification on a 2100 Bioanalyzer using the DNA1000 
chip kit (Agilent), the cDNA library products were 
sequenced using the Illumina HiSeq 2000 according to 
manufacturers’ protocols.

Raw reads were filtered using a fastx tool kit and 
then mapped to the human genome 19 (hg19). To obtain 
quantification scores for all genes, fragments per kilobase 
of exon model per million mapped reads (FPKM) values 
were calculated by using the RSEM program [67]. We 
used the NOISeq package to identify differentially 
expressed genes [68]. Probability ≥ 0.8 and an absolute 
value of log2Ratio ≥ 1 were used as the threshold to judge 
the differentially expressed genes. The filtered clean read 
transcriptomics data have been deposited to the National 
Center for Biotechnology Information under accession 
number SRP076773.

Proteomics (isobaric tags for relative and 
absolute quantitation, iTRAQ) 

To reduce the complexity of samples, the highly 
abundant proteins were depleted using ProteoMinerTM 
Kits (Bio-Rad) according to the manufacturer’s protocol. 
Samples were eluted in Lysis buffer (7 M Urea, 2 M 
Thiourea, 4% 3-[(3-Cholamidopropyl)dimethylammonio]
propanesulfonate, 40 mM Tris-HCl, pH 8.5) and reduced 
with 10 mM dithiothreitol at 56°C for 1 h, followed by 
alkylation with 55 mM iodoacetamide (IAM) in the 
darkroom for 1 h. The reduced and alkylated protein 
mixtures were precipitated by adding chilled acetone 
at -20°C overnight. After centrifugation, the pellet was 
dissolved in 0.5 M tetraethyl-ammonium bromide (TEAB) 
(Applied Biosystems) and sonicated in ice. An aliquot 
of the supernatant was then taken for determination of 
protein concentration by the Bradford assay. The proteins 
in the supernatant were kept at -80°C for further analysis.

Total protein (100 μg) was taken out of each sample 
solution. Then, the protein was digested with Trypsin Gold 
(Promega) with the ratio of protein : trypsin = 30:1 at 37°C 
for 16 h. After trypsin digestion, peptides were dried by 
vacuum centrifugation. Peptides were reconstituted in 0.5 
M TEAB and processed according to the manufacture’s 
protocol for 8-plex iTRAQ reagent (Applied Biosystems). 
Briefly, one unit of iTRAQ reagent was thawed and 
reconstituted in 24 μl isopropanol. Samples were labeled 
with the iTRAQ tags as follow: SLE_1, isobaric tags 
113; SLE_2, isobaric tags 114; SLE_3, isobaric tags 119; 
HC_1, isobaric tags 116; HC_2, isobaric tags 117 and 
HC_3, isobaric tags 118. The protocols which generate 
such biological replicate samples were the same as that 
in transcriptomics analysis. The labeled peptides were 
incubated at room temperature for 2 h and then mixed and 
dried by vacuum centrifugation. 

Strong cation exchanger (SCX) chromatography 
was performed with a LC-20AB high performance liquid 
chromatography (HPLC) pump system (Shimadzu). The 
iTRAQ-labeled peptide mixtures were reconstituted with 
4 ml buffer A [25 mM NaH2PO4 in 25% acetonitrile 
(ACN), pH 2.7] and loaded onto a 4.6×250 mm SCX 
column containing 5 μm particles (Phenomenex). The 
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peptides were eluted at a flow rate of 1 ml/min with a 
gradient of buffer A for 10 min, 5 - 60% buffer B [25 mM 
NaH2PO4, 1 M kalium chloratum (KCl) in 25% ACN, 
pH 2.7] for 27 min, 60–100% buffer B for 1 min. The 
system was then maintained at 100% buffer B for 1 min 
before equilibrating with buffer A for 10 min prior to the 
next injection. Elution was monitored by measuring the 
absorbance at 214 nm, and fractions were collected every 
1 min. The eluted peptides were pooled into 20 fractions, 
desalted with a Strata X C18 column (Phenomenex) and 
vacuum-dried.

For each biological replicate, three technical 
repeats (T1; T2; T3) were processed. Each fraction 
was resuspended in buffer A (2% ACN, 0.1% formic 
acid) and centrifuged at 20000 rpm for 10 min. The 
final concentration of peptide was 0.5 ug/ul. Then, 10 
μl supernatant was loaded on a LC-20AD nanoHPLC 
(Shimadzu). The peptides were eluted onto a 10 cm 
analytical C18 column. The samples were loaded at 8 
μl/min for 4 min, then the 44 min gradient was run at 
300 nl/min starting from 2 to 35% buffer B (98% ACN, 
0.1% FA), followed by 2 min linear gradient to 80%, 
maintenance at 80% buffer B for 4 min, and finally return 
to 5% in 1 min.

The peptides were subjected to nanoelectrospray 
ionization, followed by tandem mass spectrometry (MS/
MS) in a Q-Exactive orbitrap (Thermo Fisher Scientific) 
coupled online to the HPLC. Intact peptides were 
detected in the orbitrap at a resolution of 70000. Peptides 
were selected for MS/MS using high-energy collision 
dissociation (HCD) operating mode. Ion fragments were 
detected in the orbitrap at a resolution of 17500. A data-
dependent procedure that alternated between one MS 
scan followed by fifteen MS/MS scans was applied for 
the 15 most abundant precursor ions. The electrospray 
voltage was 1.6 kV. Automatic gain control (AGC) was 
used to optimize the spectra generated by the orbitrap. The 
AGC targets for MS and for MS/MS were 3e6 and 1e5, 
respectively. For MS scans, the m/z scan range was 350 to 
2000 Da. For MS/MS scans, the m/z scan range was 100 
to 1800 Da. 

Raw data files acquired from the orbitrap were 
converted into MGF files using Proteome Discoverer 
1.2 (Thermo Fisher Scientific). Protein identification 
was performed by Mascot search engine (version 
2.3.02) against the database of Uniprot-proteome-homo-
sapiens-9606_20150316 (68015 sequences) [69]. For 
protein identification, a mass tolerance of 20 ppm was 
permitted for intact peptide masses and 0.05 Da for 
fragmented ions. The potential variable modifications 
were Gln->pyro-Glu (N-term Q), Oxidation (M) and 
Deamidated (NQ). The fixed modifications were 
Carbamidomethyl (C), iTRAQ-8plex (N-term) and 
iTRAQ-8plex (K). The charge states of peptides were set 
to +2 and +3. To reduce the probability of false peptide 
identification, peptides obtained after applying 1% false 

discovery rate (FDR) cut off were selected for further 
analysis. Each confident protein contains at least one 
unique peptide. For protein quantitation, it was required 
that a protein contains at least two unique spectra. The 
quantitative protein ratios were normalized by the median 
peptide ratio in Mascot. The differentially expressed 
proteins have been considered as significant if they met 
the following criteria: (1) fold change of ratio > 1.20 or < 
0.83 and P-value < 0.05, (2) satisfied the first criteria in 
at least 2 of 3 technical replicates. Proteins that met these 
criteria were excluded if discordant trend in expression 
had emerged within the three technical replicates. The 
final fold change of protein was calculated as the average 
value obtained from all technical replicates. The mass 
spectrometry proteomics data have been deposited to the 
ProteomeExchange database under accession number 
PXD004443 through the PRIDE website (http://www.
ebi.ac.uk/pride/). Username: reviewer69314@ebi.ac.uk, 
Password: 4rzbNxdo.

Metabolomics

Plasma samples (50 ul) were thawed and then 
precipitated by 200 μl methanol. After centrifugation 
at 14000 rpm for 10 min at 4°C, 10 μl supernatant was 
transferred into the HPLC-MS. A “quality control” (QC) 
sample was also prepared by mixing equal volumes (10 
μl) from each plasma sample before sample preparation. 

LC-MS data were acquired using HPLC system 
(Shimadzu) coupled online to a LTQ orbitrap velos 
instrument (Thermo Fisher Scientific). Sample analysis 
was carried out in positive ion modes. The mass scanning 
range was 50–1000 m/z and the capillary temperature was 
350°C. Nitrogen sheath gas was set at a flow rate of 30 l/
min. Nitrogen auxiliary gas was set at a flow rate of 10 l/
min. Spray voltage was set to 4.5 kV. The LC-MS system 
was run in binary gradient mode. Solvent A was 0.1% 
formic acid/water, and solvent B was 0.1% formic acid/
methanol. The flow rate was 0.2 ml/min. A C-18 column 
(150 mm×2.1 mm, 3.5 um) (Agilent) was used for all 
analysis. The gradient was as follows: 5% solvent B at 
0 min, 5% solvent B at 5 min, 100% solvent B at 8 min, 
100% solvent B at 9 min, 5% solvent B at 18 min, and 
5% solvent B at 20 min. The pooled “QC” sample was 
injected five times at the beginning of the run to ensure 
system equilibrium and then every 5 samples to further 
monitor the stability of the analysis [70, 71].

The acquired MS data pretreatments, including peak 
picking, peak grouping, retention time correction, second 
peak grouping and annotation of isotopes and adducts, 
were achieved using the XCMS and CAMERA software. 
LC-MS raw data files were initially converted into 
mzXML format by ReAdW software (version 4.3.1), then 
directly processed by the XCMS and CAMERA software. 
A list of the ion intensities of each peak was generated 
using retention time and the m/z data pairs as identifiers for 
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each ion. The resulting three-dimensional matrix contained 
peak indices (retention time-m/z pairs), sample names 
(observations) and ion intensity information (variables). 
To obtain consistent variables, the resulting matrix was 
further reduced by removing peaks with more than 80% 
missing values. To ensure that data are of comparable high 
quality within an analytical run, an approach based on the 
periodic analysis of a standard biological quality control 
sample (QC sample) together with the true samples is 
now accepted as a quality assurance strategy in metabolic 
profiling. Here, each retained peak is normalized to the 
QC sample using robust loess signal correction (R-LSC). 
A threshold of 30% was set for the relative standard 
deviation (RSD) values of metabolites in the QC samples, 
which is accepted as a standard in the assessment of 
repeatability in metabolomics data sets. Finally, the 
filtered matrix was exported for multivariate statistical 
analysis using partial least-squares discriminant analysis 
(PLS-DA). For each metabolite peak, Mann−whitney−
wilcoxon test was applied to measure the significance 
of each metabolite among the different trimesters, with 
results adjusted for multiple testing using FDR correction. 
On the basis of a variable importance in the projection 
(VIP) threshold > 1, a number of metabolites responsible 
for the difference in the metabolic profile scan of three 
trimesters can be obtained. The metabolites identified by 
two latent variables of the PLS-DA model were validated 
at a univariate level using FDR test with the critical P 
value set to not higher than 0.05. 

Exact molecular mass data from significant 
peaks were used to search the databases, such as 
HMDB, BioCyc, KEGG, LIPID as well as MetaCyc, 
for metabolite identities. A metabolite name was 
reported when a mass difference between observed and 
theoretical mass was < 20 ppm. Isotopic distribution 
measurements were used to further validate the molecular 
formula of matched metabolites. The identities of key 
metabolites were confirmed by comparison of their 
MS/MS spectra and retention time with those obtained 
using 9 available reference standards in our laboratory. 
The mass spectrometry metabolomics data have been 
deposited to the public repository MassIVE under 
accession number MSV000079834, which can be found 
in ftp://MSV000079834@massive.ucsd.edu. Username: 
MSV000079834, Password: a.

Protein expression analysis

We measured the levels of seven serum 
complements, ten plasma coagulations and three serum 
inflammatory cytokines by commercially available 
ELISA kits. The serum complements included C3a 
(Catalog No. 550499, BD), C4a (Catalog No. 550947, 
BD), C5a (Catalog No. 557965, BD), mannose-binding 
lectin-associated serine proteinase 2 (MASP2) (Catalog 
No. HK326, Hycult Biotech), C1q (Catalog No. 

ab170246, Abcam), C7 (Catalog No. ab125964, Abcam) 
and factor I (FI) (Catalog No. ab195460, Abcam). The 
plasma coagulations included factor 7 (F7) (Catalog No. 
ab108829, Abcam), factor 9 (F9) (Catalog No. ab108831, 
Abcam), factor 12 (F12) (Catalog No. ab108835, 
Abcam), factor 13 (F13) (Catalog No. ab108836, 
Abcam), fibrinogen (FIB) (Catalog No. ab108842, 
Abcam), thrombin-antithrombin complex (TAT) (Catalog 
No. ab108907, Abcam), Von Willebrand factor (VWF) 
(Catalog No. ab108918, Abcam), protein S (PROS) 
(Catalog No. ab125969, Abcam), D-dimer (Catalog No. 
ab196269, Abcam) and antithrombin-III (ATIII). (Catalog 
No. DSPC10, RD). The serum inflammatory cytokines 
included tumor necrosis factor-receptor II (TNF-RII) 
(Catalog No. DRT200, RD), interleukin (IL)-6 (Catalog 
No. 430507, BioLegend) and IL-8 (Catalog No. D8000C, 
RD). In addition, the level of serum C4 was measured in 
the clinical laboratory using nephelometric method.

We divided the 21 analytes mentioned above into 
two groups: the pathway activators, including C3a, C4a, 
C5a, MASP2 and C7 (complement pathway), VWF, F7, 
TAT, FIB, F9 and D-dimer (coagulation pathway) as well 
as TNF-RII, IL-6 and IL-8 (inflammatory responses), 
and pathway inhibitors or de-activators, including C1q, 
FI and C4 (complement pathway) as well as PROS, F12, 
F13 and ATIII (coagulation pathway). Two approaches 
were used to achieve this: one use data from our 
proteomics experiment and another was based on the 
published literatures [1, 2]. The pathway activators were 
significantly elevated in SLE patients and their levels 
were positively correlated with the level of the activation 
of the pathway. In contrast, the pathway inhibitors or 
de-activators were significantly decreased and their 
levels were negatively associated with the level of the 
activation of the pathway. The summary complement 
score was based on the levels of C3a, C4a, C5a, MASP2, 
C7, C1q, FI and C4. When we calculated the summary 
complement score, pathway activators were regarded as 
positive number while pathway inhibitors or de-activators 
were viewed as negative number. Concentration values 
were normalized across all samples so that the maximum 
value for any analytes was 1. Values for each sample 
were then summed to derive the final score. The summary 
coagulation score and cytokine score were calculated for 
each sample in a way similar to the calculation of the 
summary complement score.

Statistical analysis 

For the multi-omics analysis, GO is an international 
standardization of gene function classification system. 
Used for the bioinformatic analysis, it provides a set of 
dynamic updating controlled vocabulary to describe genes 
and gene products attributes in the organism. GO has three 
ontologies, which can describe molecular function, cellular 
component and biological process. KEGG pathway is a 
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collection of manually drawn pathway maps representing 
our knowledge on the molecular interaction and reaction 
networks. Heatmap was constructed using ggplot2 of R 
software (version 3.1.3).

For the protein expression analysis, we assessed the 
principal effects of coagulation score and complement 
score on ltSLEDAI by using multivariate linear 
regressions. The results are presented as β-coefficient 
along with their 95% confidence intervals. The interaction 
effect was assessed as a test of a product term formed 
from the coagulation score and complement score. To 
help understand the interaction effect, we dichotomized 
the coagulation score and complement score into two 
groups, respectively (low coagulation score versus high 
coagulation score; low complement score versus high 
complement score). With these criteria, participants were 
then categorized as: (1) low coagulation score and low 
complement score (as reference group in this analyses), 
(2) low coagulation score and high complement score, 
(3) high coagulation score and low complement score, 
and (4) high coagulation score and high complement 
score. Multiple group comparisons were performed, and 
significant differences among groups were assessed by 
LSD test assuming equal variances or Tamhane’s T2(M) 
test assuming unequal variances. 

We next examined the extent to which the interaction 
effect of the coagulation cascade and complement system 
on SLE disease severity varied according to the levels of 
inflammatory reaction. For this analysis, cytokine scores 
were divided into two groups by its median value (low 
cytokine score versus high cytokine score). All of the 
analyses described in the above paragraph were repeated 
in the high and low cytokine score groups, respectively.

To assess whether D-dimer and C4 could be 
surrogates for their respective pathways, the above 
analyses were repeated using D-dimer in place of 
coagulation score and C4 in place of complement score.

For the clinical data analyses, we used a logistic 
regression model to test the possible interaction between 
D-dimer and C4 on the risk for lupus activity. Results 
are presented as ORs along with their 95% confidence 
intervals. For this analysis, the participants were classified 
into four categories according to the quartile of D-dimer 
concentration (D-dimer ≤ 0.56, 0.56 < D-dimer ≤ 1.20, 
1.20 < D-dimer ≤ 2.80, and D-dimer > 2.80 ug/mL) and 
further classified into 4 groups according to the quartile of 
C4 concentration (C4 > 0.20, 0.12 < C4 ≤ 0.20, 0.05 < C4 
≤ 0.12 and C4 ≤ 0.05 mg/mL), with reference to the group 
with D-dimer ≤ 0.56 ug/mL with C4 > 0.20 mg/mL. All 
participants were assigned to one of 16 categories. 

The diagnostic values of D-dimer, C4 and other 
hematological biomarkers were assessed by calculating 
AUROCs. 

Based on D-dimer and C4 levels, a predictive 
equation was developed to assess the likelihood of lupus 
activity. The probability of lupus activity in an individual 

patient was derived from the following formula: P = 1 
/ (1 + e−z), where P is the probability of lupus activity 
and z = β0 (derived constant) + β1 (D-dimer) + β2 (C4) 
+ β3 (interaction). For a range of probabilities that might 
be used to identify individuals with lupus activity, the 
accuracy of the predictive equation was evaluated by 
calculating sensitivity, specificity, positive and negative 
predictive values, and Youden index. 

Categorical variables were reported as frequencies 
and proportions. Continuous variables were reported 
as mean ± SD or medians with range, depending on 
their distribution. The Pearson correlation coefficient 
was used for correlation analyses. P value < 0.05 
was considered statistically significant. All statistical 
analyses were performed using SPSS 13.0 (Chicago, 
Illinois, USA). 
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