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tissues from healthy individuals: description of the diverse and 
most represented species 

Giulio Ferrero1,2,*, Francesca Cordero1,3,*, Sonia Tarallo3, Maddalena Arigoni4, 
Federica Riccardo4, Gaetano Gallo5,6, Guglielmo Ronco7, Marco Allasia8, Neha 
Kulkarni4, Giuseppe Matullo3,9, Paolo Vineis3,10, Raffaele A. Calogero4, Barbara 
Pardini3,9,* and Alessio Naccarati3,11,*

 1Department of Computer Science, University of Turin, Turin, Italy
 2Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
 3Italian Institute for Genomic Medicine, IIGM (formerly Human Genetics Foundation, HuGeF), Turin, Italy
 4Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
 5Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
 6Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
 7Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Turin, Italy
 8Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, Turin, Italy
 9Department of Medical Sciences, University of Turin, Turin, Italy
10MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
11Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
*These authors contributed equally to this work

Correspondence to: Alessio Naccarati, email: alessio.naccarati@iigm.it

Keywords: next-generation sequencing; small non-coding RNA profiling; microRNAs; non-invasive biomarkers; surrogate tissues

Received: September 06, 2017    Accepted: November 15, 2017    Published: December 14, 2017
Copyright: Ferrero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

ABSTRACT

The role of non-coding RNAs in different biological processes and diseases is 
continuously expanding. Next-generation sequencing together with the parallel 
improvement of bioinformatics analyses allows the accurate detection and quantification 
of an increasing number of RNA species. With the aim of exploring new potential 
biomarkers for disease classification, a clear overview of the expression levels of 
common/unique small RNA species among different biospecimens is necessary. However, 
except for miRNAs in plasma, there are no substantial indications about the pattern of 
expression of various small RNAs in multiple specimens among healthy humans. 

By analysing small RNA-sequencing data from 243 samples, we have identified 
and compared the most abundantly and uniformly expressed miRNAs and non-miRNA 
species of comparable size with the library preparation in four different specimens 
(plasma exosomes, stool, urine, and cervical scrapes). 

Eleven miRNAs were commonly detected among all different specimens while 
231 miRNAs were globally unique across them. Classification analysis using these 
miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and 
tRNAs were the most represented non-miRNA small RNAs detected in all specimen 
types that were analysed, particularly in urine samples. With the present data, the 
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INTRODUCTION

The discovery of many stable extracellular small 
RNAs has changed our view of gene expression regulation, 
including the role that these molecules may play in several 
complex processes previously partially understood such 
as cell-to-cell communication [1]. In this respect, with 
an astonishing number of publications in the last decade, 
microRNAs (miRNAs) represent the most explored small 
non-coding RNA (sncRNA) species in humans [2]. A 
large number of studies has demonstrated that cellular 
and extracellular miRNA altered expression is associated 
with a wide variety of diseases, including cancer [3, 4]. 
However, little is known about the presence within the 
same matrix of other common species of sncRNAs such as 
piwi-interacting RNAs (piRNAs), small nucleolar RNAs 
(snoRNAs), tRNAs etc. All these versatile RNA species 
are known to be key components of molecular interactions 
and gene regulation in eukaryotes [5]. 

The field of circulating extracellular RNA molecules 
is rapidly growing thanks to the implementation of 
Next-Generation Sequencing (NGS) technologies 
and bioinformatics solutions that analyze the huge 
amount of data released from sequencing. With such 
high-throughput approach, all extracellular RNAs can 
be quantified and tested as potential sources of new 
diagnostic and therapeutic biomarkers in many different 
types of biological samples [6]. To achieve this, RNA-
Sequencing (RNA-Seq) has emerged as a powerful tool in 
transcriptomics, gene expression profiling and biomarker 
discovery. Sequencing cell-free nucleic acids from liquid 
biopsies additionally provides exciting possibilities for 
molecular diagnostics, and might help establish disease-
specific biomarker signatures [7]. Lower complexity, not 
known post-processing modifications, simple detection 
and amplification methods, tissue-restricted expression 
profiles, and sequence conservation between humans and 
model organisms make extracellular miRNAs and other 
sncRNAs ideal candidates for non-invasive biomarkers to 
reflect and study various physiopathological conditions in 
the body [8]. It is possible to extract and quantify high-
quality sncRNAs from a wide range of cell and tissue 
sources, including cell lines, fresh and formalin-fixed 
paraffin-embedded tissues, plasma, serum, urine and other 
body fluids [8–10]. Despite this increasing interest, the 
field is still largely in an exploratory and descriptive phase. 
There are no standardized methods for sample collection, 
isolation, or analysis. There is also no general agreement 
on the terms for a good quality sample definition, and 
each specimen (body fluid or surrogate tissue) under 

various disease/injury conditions are likely to have diverse 
contents and different criteria for quality assessment [7, 
11]. A growing number of isolation methods for profiling 
circulating extracellular RNA molecules have been 
developed but still, there is no gold standard for the most 
efficient inclusive or selective protocols [6]. However, 
the complexity of the small RNA-Seq workflow bears 
challenges and biases that researchers need to be aware 
of, in order to generate high-quality data [12].

The creation of large repositories including data 
from different human specimens, isolation methods, 
detection platforms, and analysis tools is essential to 
increase our understanding of the extent and types of 
extracellular RNA material present in different body 
fluids/surrogate tissues. At present, there are few large 
datasets describing the extracellular contents in biofluid 
samples from healthy controls [13–17]. Besides, previous 
studies on extracellular sncRNAs have investigated very 
small numbers or pooled samples with the purpose of 
identifying a specific class of RNAs [18]. The largest 
investigations of samples focused almost exclusively on 
miRNAs, with the main limitation of measuring either 
only targeted miRNAs in large numbers of individuals or 
the whole known miRNome in very small populations. In 
a recent work it has been described the largest group of 
plasma-based miRNAs and the first broadest variety of 
extracellular (non-miRNA) sncRNAs in a large population 
[15]. In another similar work, authors profiled the small 
RNA (16–32 nts) payload of human biofluids by NGS. 
Extracellular RNAs were isolated from plasma, urine and 
saliva samples from 55 young male athletes and sequenced 
to establish a sncRNA pattern at steady state [6].

In the present study, we investigated pattern and 
expression levels of miRNAs and other sncRNAs of 
comparable size in four different biospecimens representing 
ideal surrogate tissues for diagnostic and screening 
programs. Specifically, we analysed data from small 
RNA-Seq from 125 plasma-derived exosomes, 48 urine, 
31 cervical scrapes, and 39 stool samples collected from 
healthy subjects. For cervical scrapes and stool, this is the 
first study investigating sncRNAs by NGS. In addition, 
urine and stool samples were paired with those from plasma 
collected from the same subjects.

RESULTS

Overview of study samples and pipeline analysis

We analysed small RNA-Seq data of RNA extracted 
from exosomes from 125 plasma samples of healthy 

most uniformly expressed small RNAs in each sample type were also identified. A 
signature of small RNAs for each specimen could represent a reference gene set in 
validation studies by RT-qPCR. 

Overall, the data reported hereby provide an insight of the constitution of the human 
miRNome and of other small non-coding RNAs in various specimens of healthy individuals. 
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donors derived from three different studies (respectively 39 
for the Study 1, 46 for the Study 2, and 40 for the Study 3) 
(Materials and Methods). Additionally, sequencing was 
performed on RNA from 39 faecal samples (Study 1), 
48 urine samples (Study 2), and cervical scrapes from 31 
Human Papilloma Virus (HPV) negative women. Some of 
the plasma sample donors provided at the same occasion 
a sample of stool (39 from Study 1) or urine (46 from 
Study 2). 

Total RNA was isolated from samples with specific 
kits for each type of specimens while library preparation 
for small RNA-Seq was performed adopting the same kit 
and protocol. Libraries were run at the same sequencing 
facility. Finally, all bioinformatics analyses (i.e. pre-
processing of raw data) were performed following the 
same pipeline by the same operator. 

To explore the landscape of sncRNA expression levels 
in different biospecimens, we designed a computational 
strategy for small RNA-Seq data analysis (Figure 1A). 
We updated the miRNA analysis pipeline published by 
our group [19] by adding a second phase focused on the 
analysis of small RNA-Seq reads unmapped against the 
human miRNome (Materials and Methods). 

Initially, small RNA-Seq datasets were pre-
processed and quality controlled to remove adapter 
sequences and low-quality reads. The processing 
information about the 243 datasets analysed is provided 
in Supplementary Table 1A and 1B. Quality check 
confirmed that were no reads shorter than 15 nucleotides 
and the rate of low quality reads (quality score < 30) 
was on average below 8%, with urine and stool samples 
providing the best rates (<1%).

Identification of miRNAs and non-miRNA 
sncRNAs

miRNA mapping analysis showed remarkable 
differences among specimens for read alignment rates 
(Figure 1B, 1C and Supplementary Figure 1A). Consistently 
with the highest rates of read alignment (Figure 1C), urine 
samples were generally associated with a high number of 
reads (median reads = 12.38 million) followed by plasma 
exosomes (median reads = 11.34 million), stool (median 
reads = 4.88 million), and cervical scrapes (median  
reads = 4.13 million) (Supplementary Figure 2A).

Datasets from plasma exosome and urine samples 
were characterized by the highest miRNA alignment rates 
(16.3% and 11.0%, of reads aligned, respectively) while 
datasets from stool and cervical scrape samples were 
associated on average with low miRNome alignment rates 
(0.7% and 1.2% of reads aligned, respectively). 

Of the 1,823 miRNA annotations from miRBase, 
a range from 19.9% (cervical scrapes) to 73.8% (plasma 
exosomes study 2) of human miRNAs were detected 
in all the investigated specimens. A median of 58.61% 
of miRBase annotations were detected across the four 

specimen types. Specifically, miR-486-5p was the 
most expressed miRNA in plasma exosomes samples 
(median reads = 180,173 reads) while miR-320a (median 
reads = 198 reads), miR-6813-5p (median reads = 5,911 
reads), and miR-30a-5p (median reads = 25,910 reads) 
were the highest expressed in cervical scrapes, stool, and 
urine, respectively (Supplementary Figure 2B).

Since a large fraction of sequencing reads did 
not map on miRNome (Supplementary Table 1A), the 
alignment analysis was extended to other candidate 
sncRNA annotations by initially remapping reads on the 
human genome. Then, mapped reads were assigned to 
sncRNA annotations quantifiable using our size selection 
criterion. These annotations included sncRNAs annotated 
in GENCODE v24 database [20] (transcript length ≤70 
bp) as well as piRNA (average length 31±1 bp) and 
tRNA (average length 74±7 bp) species annotated in the 
Database of Small Human non-coding RNAs (DASHR) 
release 1 [21] (Supplementary Table 1C). The alignment 
rates observed were higher for cervical scrapes (88.4%) 
followed by urine (81.1%), and plasma exosome samples 
(69.5%). As expected, stool datasets were associated with 
the lowest alignment rate on the human genome (28.1%) 
consistently with the presence of microbiome RNAs 
and other RNAs introduced by the diet, contributing to 
the large fraction of faecal RNA content (Supplementary 
Table 1A and Supplementary Figure 1A). In urine, 
most reads were assigned to piRNA (44.5%) or tRNA 
annotations (45.1%). Conversely, in the other specimens, 
a low assignment rate was observed ranging 1.8–3.4% 
for piRNAs and 1.0–3.3% for tRNAs, respectively 
(Supplementary Figure 1B). Homologous piRNAs 
annotated to different loci were associated with the same 
number of reads across samples.

Common and specific miRNAs among different 
specimens

Considering the individual datasets from plasma 
exosome samples, it was evident a study-specific influence 
on the read alignment distribution with samples from the 
study 1 characterized, on average, by the overall highest 
alignment on miRNome annotations (28.3% aligned 
reads). However, PCA on miRNAs and other sncRNA 
annotations expressed in at least one study (within study 
median number of reads >20) showed a distinct cluster 
formed by all plasma exosome samples with respect 
to other biospecimens (Supplementary Figure 1C). A 
comparable result was obtained by computing a pairwise 
correlation analysis: datasets from the three plasma 
exosome studies clustered together and were clearly 
separated from the others (Supplementary Figure 1D). 
Given the results from the PCA and correlation analyses, 
plasma exosome samples from the three studies were 
merged into a single group after read count correction with 
Surrogate Variable Analysis (SVA). The identification of 
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pattern of miRNAs detectable in the different specimens 
was performed by considering miRNAs characterized 
by a median of normalized reads higher than 20 in at 
least one specimen. Using this threshold, cumulatively, 
394 miRNAs were quantified in at least one specimen 
(Figure 2A, Supplementary Table 2A). Eleven miRNAs 
were identified as commonly detectable in all types of 
specimens: miR-320a, miR-589-5p, miR-636, miR-1273a, 
miR-3960, miR-4419a, miR-4497, miR-4709-5p, miR-
4792, miR-7641-1, and miR-7641-2.

Functional enrichment analysis of validated target 
genes of the 11 shared miRNAs revealed biological 
processes related to mRNA translation and transcription 
including translational initiation (GO:0006413, p = 
1.9 × 10–8) or positive regulation of transcription, DNA-
templated (GO:0045893, p = 4.2 × 10–7) (Supplementary 
Table 2B).

Plasma exosome samples were characterized by 
the highest number of specimens-specific miRNAs (155 
miRNAs) followed by stool (55 miRNAs), urine (22 
miRNAs), and cervical scrape samples (one miRNA) 
(Figure 2A, 2B). Considering only the specimen-specific 
miRNAs, miR-122-5p was the most expressed in plasma 
exosome samples (median reads = 32,512 reads) while 
miR-655-5p (median reads = 792 reads), miR-204-5p 
(median reads = 750 reads) and miR-4741 (median reads 
= 28 reads) were the most abundantly expressed in stool, 
urine, and cervical scrapes, respectively (Supplementary 
Figure 2C). 

PCA analysis of the highly-expressed sets of 
miRNAs showed a good accuracy in the classification 
of different biospecimens (Figure 2C). To identify the 
discriminative miRNAs in the specimen classification, 
we also performed a classification and attribute selection 

Figure 1: (A) Schematic representation of the computational pipeline applied in the analysis of small RNA-Seq dataset from healthy 
individuals. The modules of the pipeline designed for miRNAs and other sncRNAs are depicted in orange and green, respectively. (B) 
Bar plot showing for each specimen, the average number of sequencing reads aligned to miRNA annotations (green), unmapped on 
miRNA annotations but mapped on human genome (red), and unmapped on both miRNA annotations and the human genome (blue).  
(C) Table reporting the average, minimum, and maximum number of reads (in million) composing the starting datasets, aligned in the 
different analysis phases, or assigned to specific RNA annotations. HS= Homo sapiens. 
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analysis. Using a Random Forest classifier, we obtained 
an accuracy of 99.6% with only one sample incorrectly 
classified (Supplementary Table 2C). All the miRNAs 
analysed were associated with a high chi-square statistic 
(merit) in the attribute selection analysis with miR-204-5p, 
miR-5698, and miR-335-3p associated with the highest 
merit (Supplementary Table 2D).

For a subset of patients, paired data from plasma 
and stool samples or from plasma and urine samples were 
available allowing a comparison between expression 
levels of sncRNAs in the different specimens from the 
same subject. As reported in Supplementary Table 2E, 
2F, a low co-expression was generally observed either 
between plasma-stool or plasma-urine samples. The only 
exception was miR-3665 which was characterized by a 
positive correlation between plasma and urine samples 
(r = 0.59, p = 2.0 × 10–5).

Prediction of candidate miRNA isoforms (isomiRs) 
was also performed using our datasets. As reported in 
Supplementary Table 2G, 832 isomiRs associated with 
more than 20 supporting reads in at least one specimen 
type were detected. Overall, 94.4% of isomiRs were 
detected in plasma exosome or urine samples consistently 
with the higher number of aligned reads in these samples. 

The isomiRs with the highest number of supporting 
reads were a 3′ variant of miR-486/miR-486-2 in plasma 
samples, a 5′ variant of miR-934 in urine sample, a 5′ 
variant of miR-7704 in cervical scrapes, and a 3′ variant 
of miR-583 in stool samples. Among the previously 
identified 11 common miRNAs, eight were associated to 
an isomiR predicted in only one or two types of specimens 
(particularly in plasma or urine samples) (Supplementary 
Table 2H). 

Expression pattern of other sncRNAs

Cumulatively, 615 non-miRNA sncRNAs were 
quantified in at least one specimen. Of this set of 
annotations, 112 sncRNAs were commonly detected in all 
the analysed sample types (Figure 3A and Supplementary 
Table 3A). Coherently with the highest alignment rates, 
piRNAs were the most represented type of sncRNAs 
in urine, plasma exosomes, and stool (Supplementary 
Figure 2D). Urine samples emerged as the specimen 
characterized by the highest piRNA and tRNA contents 
(Supplementary Figure 1B). Among the other sncRNAs 
identified there were tRNAs, mitochondrial RNAs, and 
snoRNAs particularly in plasma exosomes. Consistently, 

Figure 2: (A) Venn diagram reporting the number of miRNAs detected in different specimens from healthy individuals and their overlap. 
(B) Heat map showing the log10 number of normalized reads supporting the miRNAs specifically detected in one specimen or commonly 
detected among them. (C) PCA plot showing the small RNA-Seq datasets separation obtained using miRNAs detected in samples analysed.
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considering those sncRNAs specific of each specimen, 
the highest number of sncRNAs was identified in urine  
(n = 127) and the same were grouped substantially apart 
from the other datasets in a PCA analysis using the 
sncRNA expression levels (Figure 3B). 

PiR-31068 was the most abundant molecule in 
urine samples (Supplementary Figure 2D). The tRNA 
chr1.tRNA2-GlyCCC showed the highest expression 
levels among the sncRNAs specific in urine samples 
(median reads = 419 reads) while piR-43137 was the most 
abundant plasma exosome-specific sncRNA (median 
reads = 366 reads), and piR-36705 the most abundant 
stool-specific sncRNA (median reads = 131 reads) 
(Figure 3C and Supplementary Figure 2F). No specific 
sncRNAs of cervical scrapes were identified.

The specificity of these sets of sncRNAs was 
confirmed using a Random Forest classification algorithm 
which exactly classified 236 samples out of 243 (97.1%) 
(Supplementary Table 3B). The attribute selection analysis 
evidenced tRNAs chr19.tRNA2-GlyTCC, chr2.tRNA12-
PseudoCTC, and chr6.tRNA150-MetCAT as the sncRNAs 
with the highest merit in the classification (Supplementary 
Table 3C).

Regression analysis between paired plasma exosome 
and stool samples or plasma exosome and urine samples 
from the same individuals showed a low coherent 
expression for sncRNAs detected (Supplementary 
Table 3D, 3E).

Assessing inter-individual variability in sncRNA 
expression in each specimen type

Independently of the extensive intrinsic variability 
among subject’s extracellular RNA levels for each 
specimen, we selected the highly abundant sncRNAs 
with the lowest variable expression levels (i.e. potential 
reference sncRNAs) across all subjects. To achieve this, 
the highly-expressed miRNAs and sncRNAs specifically 
detected in plasma exosomes, stool, or urine (Figure 2A 
and 3A) characterized by the smallest expression 
variation in each specimen were identified by computing 
the median and the Median Absolute Deviation (MAD) 
of the expression levels (Supplementary Tables 2I 
and 3F). Specifically, the analysis highlighted miR-
142-5p, miR-655-5p, and miR-196a-1-5p as potential 
reference miRNAs in plasma exosomes, stool, and urine, 

Figure 3: (A) Venn diagram reporting the number of non-miRNA sncRNA species detected in different specimens from healthy individuals 
and their overlap. (B) PCA plot showing the small RNA-Seq datasets separation obtained using the non-miRNA RNA species detected in 
the samples analysed. (C) Heat map showing the log10 number of normalized reads supporting the non-miRNA RNA species detected in 
one specimen only or commonly detected among them. 
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respectively (Figure 4A, 4B). Considering the isomiRs 
predicted for the reference miRNAs reported in Figure 4A, 
all the isomiRs predicted for reference miRNAs in plasma 
and urine were also identified in these sample types while 
no isomiRs were predicted for reference miRNAs in 
stool samples (Supplementary Table 2D). The analysis of 
reference non-miRNA sncRNAs highlighted piR-43137, 
chr6.tRNA59-IleAAT, and piR-33543 as the candidate 
sncRNAs for plasma exosome, stool, and urine samples, 
respectively (Figure 4C, 4D).

To further investigate the reference sncRNAs 
identified, an integrative analysis of public resources was 
performed (Supplementary Table 4A, 4B). Considering 
the top 10 reference miRNAs and sncRNAs characterized 
by the low ratio between MAD and median expression 
(Figure 4A, 4C), their expression was compared 
with RNA-Seq data from specimens collected in five 
independent studies and two databases publicly available. 

All the 10 most stably expressed miRNAs in plasma 
exosomes were also detected (average reads >20) in 
exosome data (analysed individuals, n = 40) from [15], 
plasma samples (n = 55) from [6], and venous blood 
samples data (n = 3) from [22]. Six out of 10 stably 
expressed urine miRNAs were detected in urine RNA 
(n = 4 and n = 55 analysed by [22] and [6], respectively). 
Interestingly, six of the 10 top miRNAs were also detected 
in samples from kidney (n = 11) or bladder (n = 2) small 
RNA-Seq data from DASHR database. The expression of 
the top 10 miRNAs in stool samples was not confirmed 
in stool data (n = 2) from [22], but two miRNAs were 
detected in colon samples (n = 8) by [23]. 

Among the reference non-miRNA sncRNAs, piR-
62011 was detected as abundant in our plasma exosome 
data as well as plasma, serum and whole blood data 
from DASHR. Chr6.tRNA152-ValCAC was detected in 
our urine set and in small RNA-Seq data from DASHR 

Figure 4: (A) Bar plot showing the top 10 miRNAs characterized by the lower ratio between the MAD and the median expression levels 
in plasma exosome, stool, or urine samples. (B) Box plot showing the log10 number of normalized reads supporting miRNAs characterized 
by the lower ratio between the MAD and the median expression level in plasma exosomes stool, or urine samples. (C) Bar plot showing 
the top 10 non-miRNA sncRNA species characterized by the lower ratio between the MAD and the median expression levels in plasma 
exosome, stool, or urine samples. (D) Box plot showing the log10 number of normalized reads supporting non-miRNA sncRNA species 
characterized by the lower ratio between the MAD and the median expression level in plasma exosomes stool, or urine samples.
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kidney tissues [21]. All the others reference non-miRNA 
sncRNAs were generally associated with low expression 
in most of the datasets analysed.

DISCUSSION

The study of the expression patterns of different 
sncRNAs in a wide spectrum of tissues, along with  
investigations into the functions of these molecules, 
is yielding novel insights in the fast-growing field 
of non-coding RNAs in the normal cell biology and 
pathogenesis. miRNAs have been extensively studied 
in the extracellular space but little is still known about 
the presence of other sncRNAs [15]. As diagnostic and 
therapeutic procedures move from biopsies in the direction 
to less invasive methodologies, sncRNAs analysed in 
different biospecimens represent attractive candidates as 
biomarkers for complex diseases [12].

In the present study, we investigated expression 
patterns of sncRNAs in different human biospecimens that 
could be easily and minimally invasively collected also 
in the context of screening programs. The data presented 
hereby were obtained from healthy subjects representing, 
on average, the steady state in normal conditions of the 
human organism.

The first analysis was focused on miRNA expression 
distribution across different investigated specimens. 
Globally, setting up an arbitrary threshold of median 20 
reads, almost 400 miRNAs (out of an average of 1,046 
unique miRNAs identified across specimens with at least 
one read) were detected, with many of them specific to 
one or few specimen types. A large set of miRNAs was 
expressed only in plasma exosomes (n = 155) while less 
miRNAs were private of stool or urine and only one of 
cervical scrapes. Plasma exosomes also shared several 
miRNAs with other specimens (particularly urine with 109 
expressed miRNAs in common). Interestingly, considering 
the whole set of highly expressed miRNAs, it was possible 
to accurately group samples of the same biological type 
independently from the others. This aspect is important 
in search of specific biomarkers representing an altered 
status of a tissue in relation to a disease [24]. Conversely, 
eleven miRNAs presented a similar pattern of expression 
among all specimens. The most commonly investigated 
resulted miR-320a whose downregulation is associated 
with different diseases including cancer [25–30]. The 
relevance of an ubiquitous high expression of this miRNA 
related to a healthy status is supported by our findings as 
well. miR-589-5p, miR-636, and miR-4792 have been 
also described previously in other studies. miR-589-5p 
resulted a good inhibitor of MAP3K8 and suppressor of 
CD90+ cancer stem cells in hepatocellular carcinoma 
[31]. On the other hand, miR-636 was proposed as a good 
biomarker for several diseases in a large set of tissues and 
biofluids such as diabetic kidney disease [32], colorectal 
cancer [33], and pancreatic cancer [34]. Finally, miR-4792 

was found dysregulated in oral submucous fibrosis [35], 
in nasopharyngeal carcinoma tissues [36] and in uterine 
leiomyoma [37]. Surprisingly, the rest of the commonly 
expressed miRNAs were not studied in detail before. 
Besides being found dysregulated in many studies in 
relation to different diseases, those miRNAs commonly 
expressed across different types of samples could be 
taken into consideration as multi-specimen markers. We 
have compared our results to those of available datasets 
on same specimens or anatomically-related tissues  
[6, 15, 16, 21, 22, 38]. The total number of reads obtained 
and the proportion of the detected sncRNA species is 
comparable to other studies previously published with the 
exception of the study of Yeri and colleagues that included 
YRNAs [6, 15, 38]. For instance, the high expression of 
the above mentioned miR-320a and miR-589-5p were also 
observed in all other datasets. 

Notably, in our study, we could compare the co-
expression of sncRNAs in plasma exosomes/urine or 
plasma exosomes/stool collected from the same subjects. 
Again, in the search of specific markers related to disease, 
it is important to have an overview on the similarities/
differences across different biotypes at an individual level. 
Apparently, except for very few miRNAs mostly detected 
in urine/plasma, we could not observe any significant 
relationship between the expression of same sncRNAs in 
different biospecimens. This aspect is very important, in 
the sense that a multi-specimen miRNA panel may be more 
relevant for accurately describing a disease status, providing 
different miRNA behaviours across tissues. Similar findings 
were reported by us in a study on miRNA expression levels 
in both stool and whole plasma of healthy subjects with 
different dietary habits. Despite similar associations were 
observed between miRNA and diet (vegans, vegetarian vs 
omnivorous) or lifestyle habits, miRNA expression levels 
were not related between the two different specimens [39].

Since isomiRs have emerged as widely expressed in 
normal and cancer tissues [40, 41], we further investigated 
whether they were also detectable in the analysed 
specimens. As reported in Supplementary Table 2C–2D, 
many isomiRs were predicted in our datasets particularly 
in plasma and urine samples. Interestingly, among the 11 
miRNAs commonly expressed in all specimens, eight 
were associated to an isomiR predicted in only one or two 
types of them. 

miRNA profiling by NGS in different specimens 
in relation to healthy status and pathological conditions 
is becoming more and more frequent, especially in 
whole plasma [15]. Less explored is the field of other 
non-miRNA sncRNAs, although RNA sequencing 
potentialities, new annotation tools available and an 
increasing number of studies demonstrating their role in 
the normal physiology of the organism are appearing [42]. 
These ‘new’ small RNAs may play an important role in 
RNA silencing, micro-guarding and cancer [43]. In our 
study, we have confirmed that small RNA-Seq provide a 
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huge number of reads not mapping to the miRNome in all 
type of samples analysed, particularly in stool. However, 
there is still not a consensus on how to comprehensively 
analyse these RNA molecules. In the present study, we 
focused on RNA species with a size between 30 to 70 
nucleotides, due to the characteristics of the libraries 
prep kit employed, specific for small RNA sequencing. 
Considering these criteria, we have obtained a potential 
list of thousands of RNAs (>30,000) which we have used 
to filter the remapped reads after their annotation (from 
DASHR and GENCODE databases). Despite several 
different sncRNAs identifiable with our thresholds (misc_
RNA, Mt_tRNA, piRNA, rRNA, snoRNA, snRNA, 
sRNA, tRNA), we have mainly identified piRNAs and 
tRNAs. In urine, we observed the largest number of 
“private” sncRNAs other than miRNAs (n = 127). Cervical 
scrapes had the less abundant number of these species and 
none of them was private. In total, 112 sncRNAs resulted 
expressed in all the biospecimens. Again, plasma exosome 
and urine samples shared many molecules in common 
(n = 150). Interestingly, as for miRNAs, also for the other 
sncRNAs, several molecules were characteristics of a 
single specimen while others were in common. Each body 
fluid appears to have clear differences in extracellular 
RNA expression profiles. For example, there appears to 
be a high proportion of piRNAs in urine samples, when 
compared with other RNA biotypes. This is quite similar 
to what observed by Yeri et al. [6] which observed an 
overrepresentation in urine of piRNAs and tRNAs. 
piRNAs hold great promise as potential biomarkers, owing 
to their sncRNA features such as small size, stability 
in biofluids and archival materials, and the variety of 
detection methods. Moreover, considering there are 
10–25 times more piRNA species (20,000–50,000) than 
miRNAs, the impact of their deregulation is likely at least 
as relevant. Additionally, piRNA expression patterns have 
been shown to be deregulated in a variety of cancer types 
[44–46]. Recently, the study of tRNAs and their role in the 
regulation of gene expression is revealing new interesting 
aspects in molecular biology. tRNA-derived small RNAs, 
named tRNA halves (tiRNAs) and tRNA fragments (tRFs), 
have been reported to be abundant and their dysregulation 
to be associated with cancer [43]. Interestingly, we have 
not identified snoRNAs and other sncRNAs as reported 
in other studies [6, 47]. Better sncRNA tissue atlases that 
include more comprehensive profiles of the small RNA 
species will be necessary for better comparisons.

Expression patterns of miRNAs have been 
extensively studied but there is still controversy on the best 
endogenous control(s) to employ as reference in studies 
by RT-qPCR or microarray, especially when analysing 
biofluids [24]. An overview of the expression levels of 
sncRNAs in a large set of biofluids/biospecimen could 
provide a good base for the research of endogenous controls 
to be used in case-control studies when searching for 
sncRNAs as biomarkers of disease [24]. We propose miR-

142-5p, miR-655-5p, and miR-196a-1-5p as miRNAs with 
a high and stable expression in plasma exosome, stool, and 
urine respectively, while piR-43137, chr6.tRNA59-IleAAT, 
and piR-33543 as the candidate references among other 
sncRNAs in plasma exosomes, stool, and urine respectively. 
miR-142-5p has been found dysregulated in plasma but not 
in exosomes [47–49] although it has been demonstrated that 
in rats the activation of the acute stress response modifies 
its profile in plasma exosomes [50]. miR-655-5p and miR-
196a-1-5p have never been studied in stool and urine, except 
for miR-196a reported to be altered in focal segmental 
glomerulosclerosis [51]. Considering the top 10 reference 
miRNAs detected in plasma exosomes, stool, or urine 
sample group, we observed a general coherence between 
the specificity of isomiR and reference miRNA expression. 
The only exceptions were two 5′ variants of miR-204. 
However, these variants were detected by imposing two 
and three 5′ mismatches on a 14- and 15 nt sub-sequence 
of miR-204, respectively. The read alignment against such 
small sequences makes the read assignment less reliable 
reinforcing the hypothesis that a deeper sequencing depth 
is required to characterize properly the expression of these 
miRNA variants. 

The biological samples used in the present work are 
very attractive for the research of non-invasive biomarkers. 
Blood plasma and urine belong to the group of easily 
accessible body fluids, and they are among the most 
frequently used diagnostic material for the development of 
surrogate cancer biomarkers [52, 53]. From the first work 
reporting the presence in plasma of miRNAs by Lawrie and 
colleagues [54], a growing number of studies have evaluated 
their expression in relation to a wide range of diseases 
and focused on the biology and features of circulating 
miRNAs [55]. Circulating miRNAs are considered as a 
tool employed in the horizontal gene transfer between cells 
within the tumor or between tumor and host cells: this is 
a strong biological rationale to use them as a new class of 
cancer biomarkers. miRNAs and other sncRNAs can be 
released by the cell by passive leakage into circulation. 
However, these molecular species can be released in a 
more active way from the cells by secretion of shedding 
microvesicles or exosomes containing free sncRNAs or in 
the form of ribonucleoprotein complexes [56]. Bladder cells 
are in direct contact with urine making this body fluid an 
ideal source for the detection of cancer biomarkers. Urine is 
collected noninvasively, and the procedure is relatively fast 
and cost-efficient compared with other clinical samples. In 
addition, sampling can be repeated at different times, and 
this makes urine an attractive candidate as a screening test 
for urogenital cancers that needs constant monitoring [53]. 
Stool has been extensively used as a potential substrate 
for developing non-invasive molecular screening tests for 
gastrointestinal diseases including colorectal cancer and for 
microbiome analyses. There is a rationale for determination 
of noncoding RNAs expression levels in stool which 
includes the observations that colonocytes are continuously 
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shed into the faecal stream, with a periodicity of exfoliation 
roughly every 3–4 days. In addition, sncRNAs are 
extremely stable, enabling accurate and reproducible 
detection in the stool without need of special stabilization or 
logistical requirements. Conventional stool-based screening 
tests present several limitations including low sensitivity 
and specificity for advanced adenoma and pre-cancerous 
lesions. No optimal method has been established yet based 
on faecal DNA- and mRNA-based testing [57]. The role of 
diet and other lifestyle factors on miRNA and other sncRNA 
expression profiles in relation to disease risk is still scarcely 
explored [58]. Dietary components have been implicated in 
many pathways involved in diseases, including apoptosis, 
cell-cycle control, inflammation, and angiogenesis. Those 
pathways are also regulated by different RNAs [59]. 
Interestingly, recent discoveries point to a role of faecal 
miRNAs also introduced by the diet on shaping the human 
microbiota [60]. Cervical exfoliated cells are widely used in 
cervical cancer screening, both for HPV testing and Pap test. 
Recently, their use has been extended to miRNA analyses 
[61]. These few studies show that the potential application 
of miRNA detection in cervical exfoliated cells deserves 
further exploration, also as an additional option for triage of 
HPV-positive women in population-based screening.

We acknowledge that the present study has some 
limitations but also several strengths. Among the latter, 
we can consider the large number of samples sequenced, 
especially for plasma-exosomes, and the possibility to 
analyse different biospecimens of the same subjects to 
understand different/similar patterns according to tissue of 
origin. To our knowledge, we report the largest description 
of sncRNA data from plasma-derived exosome, as well as 
the first investigation of this kind on cervical scrape and 
stool samples by NGS in healthy subjects. Importantly, the 
outcomes of our study derive from samples analysed with 
the same protocols by the same operators and analysed 
by the same pipeline from raw sequencing data to final 
results. Other studies usually combine different datasets 
from different studies. 

Among the limitations of our study, we can list that 
the library preparation is optimized for miRNAs while we 
have also adapted it for detecting a group of other sncRNAs. 
Additionally, we could not control analyses considering 
known potential confounders (age, gender) since not all the 
samples were provided with this information. Finally, some 
of the samples were investigated only in subjects of one 
gender only (i.e., urine in males only). 

Small RNA-Seq holds promise for exhaustively 
analyse miRNAs and other sncRNAs in many different 
types of specimens, as we demonstrated in our study. These 
RNA molecules are currently investigated for their potential 
use as diagnostic/prognostic tools. The high resistance 
to degradation of sncRNAs makes these molecules 
particularly attractive for researchers that constantly cope 
with a wide range of incubations and storage conditions, 
as well as different origins of samples [62]. However, an 

optimization and standardization of both the biological and 
computational procedures to investigate sncRNA expression 
levels are necessary. Combining molecular aspects with 
bioinformatics and an epidemiological approach should 
provide stronger markers to be investigated specifically in 
particular biospecimens. 

MATERIALS AND METHODS

Study participants

All samples included in the study were collected from 
healthy donors participating to different studies running 
in our laboratories who donated their blood (for plasma 
extraction), stool, and /or urine for research purposes 
[63, 64]. For cervical scrapes, samples were collected 
in the context of a national screening programme (New 
Technologies for Cervical Cancer screening (NTCC) study, 
[65]). All subjects provided written informed consent 
according to the Helsinki declaration. The design of the 
study was approved by the local Ethics Committees.

Stool samples (study 1) 

In a hospital-based study for colorectal cancer 
diagnosis, subjects resulting negative to colonoscopy 
and to any inflammatory disease were included in the 
present study. For the same individuals, we have collected 
also plasma samples (n = 39). Naturally evacuated 
stool samples were collected in special tubes with RNA 
stabilizing solution, returned at the time of performing 
colonoscopy and stored at –80°C until RNA extraction.

Urine (study 2)

 The study population included men recruited 
between the years 2008–2012 in the Turin Bladder Cancer 
Study (TBCS) who donated an aliquot of blood and urine. 
A full description of controls is available in Pardini et 
al. [66]. For almost all subjects, we have collected also  
plasma samples (n = 46).

Urine samples from each participant were collected 
in the morning, stored at 4°C until the processing 
consisting of centrifugation at 3,000g for 10 min. The 
urine supernatant aliquots were then transferred in tubes 
and stored at –80°C until use. 

Exosome isolation from plasma

In addition to the subjects described above for whom 
plasma samples were available (Study 1 and Study 2), 
we have included also 40 plasma samples collected from 
healthy blood donors for a Leukaemia study (Study 3). 

For all subjects, human plasma samples were 
obtained from 5–8 ml of blood centrifuged for 10 min at 
1000 rpm. Plasma aliquots (about 200–300 μl each) were 
then stored at –80°C until use. Exosomes were isolated 
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from 200 μl of plasma using the ExoQuick exosome 
precipitation solution (System Biosciences, Mountain 
View, CA, USA) according to the manufacturer’s 
instructions with minor modifications. Briefly, the 
plasma was mixed with 50.4 μl of ExoQuick solution and 
refrigerated at 4°C overnight (at least 12 h). The mixture 
was then further centrifuged at 1500 g for 30 min. The 
exosome pellet was dissolved in 200 μl of nuclease free 
water; RNA was extracted immediately from the solution.

Cervical scrapes

The study is nested in a large Italian multi-
centre randomised controlled trial recruiting women in 
population-based screening programs that actively invite 
women aged 25–64 years (NTCC Study, [65]). NTCC 
recruitment was conducted between 2002 and 2004. 
In the present study, only samples from HPV negative 
women were included. Cervical scrape samples have 
been collected and stored in Specimen Transport Medium 
(STM), or RNA-later at –80°C until RNA extraction.

RNA extraction and quality control

Total RNA from plasma exosomes was extracted with 
the miRNeasy plasma/serum mini kit (Qiagen) using the 
QiaCube extractor (Qiagen). RNA from stool was extracted 
using the Stool Total RNA Purification Kit (Norgen Biotek 
Corp). Total RNA from urine was extracted with Urine 
microRNA Purification kit (Norgen biotek corp), following 
the manufacturer’s standard protocol.

RNA from cervical scrape was extracted from 
samples stored in STM or RNA-later, using the 
miRCURY™ RNA Isolation Kit - Cell & Plant (Exiqon) 
following manufacturer`s protocol. 

RNA quality and quantity was verified according to 
MIQE guidelines (http://miqe.gene-quantification.info/). 
For all samples, RNA concentration was quantified by 
Qubit® 2.0 Fluorometer with Qubit® microRNA Assay Kit 
(Invitrogen).

Library preparation for small RNA-Seq

Small RNA transcripts were converted into barcoded 
cDNA libraries. Library preparation was performed with 
the NEBNext Multiplex Small RNA Library Prep Set 
for Illumina (New England BioLabs Inc., USA). For 
each library, 6 μL of RNA (min 35 ng) were used in all 
the experimental procedures as starting material. Each 
library was prepared with a unique indexed primer so 
that the libraries could all be pooled into one sequencing 
lane. Multiplex adaptor ligations, reverse transcription 
primer hybridization, reverse transcription reaction and 
PCR amplification were performed according to the 
protocol for library preparation (Protocol E7330, New 
England BioLabs Inc., USA). After PCR amplification, 
the cDNA constructs were purified with the QIAQuick 

PCR Purification Kit (Qiagen, Germany) following the 
modifications suggested by the NEBNext Multiplex Small 
RNA Library Prep Protocol and loaded on the Bioanalyzer 
2100 (Agilent, Germany) using the DNA High Sensitivity 
Kit (Agilent, Germany) according to the manufacturer’s 
protocol. Libraries were pooled together (24plex) and 
further purified with a gel size selection.

A concluding Bioanalyzer 2100 run with the High 
Sensitivity DNA Kit (Agilent Technologies, Germany) 
that allows the analysis of DNA libraries regarding size, 
purity and concentration completed the workflow of 
library preparation. The obtained sequence libraries were 
subjected to the Illumina sequencing pipeline, passing 
through clonal cluster generation on a single-read flow 
cell (Illumina Inc., USA) by bridge amplification on the 
cBot (TruSeq SR Cluster Kit v3-cBOT-HS, Illumina Inc., 
USA) and 50 cycles sequencing-by-synthesis on the HiSeq 
2000 (Illumina Inc., USA) (in collaboration with EMBL, 
Heidelberg, Germany).

Computational analyses (additional information 
in Supplementary Material)

Analysis of miRNAs

miRNA data analysis was performed following 
the optimized workflow proposed in [19]. The obtained 
FASTQ files from small RNA-seq were quality-checked 
using FastQC software.

Reads shorter than 14 nucleotides were discarded 
from the analysis; the remaining reads were clipped from 
the adapter sequences using Cutadapt software (http://
journal.embnet.org/index.php/embnetjournal/article/
view/200). The trimmed reads were mapped against the 
precursor miRNA sequences downloaded from miRBase 
(Release 21) by the Shrimp algorithm. A matrix of integer 
values called counting matrix was created. 

Since plasma datasets were generated in independent 
studies and presented a large variability, a SVA [67] was 
performed to correct the read counts. IsomiR analysis 
was performed using isomiRID algorithm [68] in default 
settings. A maximum of three mismatches between reads 
and reference miRNA sequences was considered for the 
analysis.

Analysis of other sncRNAs

The set of small RNA-Seq reads not aligned by 
SHRiMP over miRNA sequences were aligned against 
human genomic sequence hg38 (GRCh38) using Bowtie2 
v2.2.7 in default settings [69]. Reads alignment files were 
used to quantify the expression of ncRNA annotations 
from Gencode v24 [70] and DASHR database [21]. The 
annotations with median reads greater than 20 were 
selected. Then, read counts were normalized by computing 
the library size factor [71]. The SVA [67] was performed 
to correct the read counts of plasma studies. 
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Bioinformatic tools and data integration

The list and the expression levels of sncRNAs 
identified in the different specimen types were compared 
using Venn diagrams and heatmap.2 R functions. 
PCA analysis was performed using prcomp R function 
and autoplot function from ggfortify R package. The 
contribution of each sncRNA expression level to the 
classification of specimen type was evaluated using 
Weka 3.6.12 [72]. miRNA functional enrichment analysis 
was performed using EnrichR web tool [73] on the list 
of validated miRNA targets annotated in miRWalk 2.0 
database [74]. 

The set of sncRNAs identified in this study 
was compared with public lists sncRNAs detected in 
specimens and tissues from healthy individuals as reported 
in supplementary materials of target publications and 
databases. 
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