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ABSTRACT

Acute myeloid leukemia (AML) is a blood cancer that is caused by a disorder 
of the process that normally generates neutrophils. Function and dysfunction of 
neutrophils are key to physiologic defense against pathogens as well as pathologies 
including autoimmunity and cancer. A major mechanism through which neutrophils 
contribute to health and disease is oxidative burst, which involves rapid release 
of reactive oxygen species (ROS) generated by a chemical reaction network 
catalyzed by enzymes including NADPH oxidase and myeloperoxidase (MPO). Due 
to the involvement of neutrophil-derived reactive oxygen species in many diseases 
and importance of NADPH oxidase and MPO-mediated reactions in progression 
and treatment of myeloid leukemia, monitoring this process and modulating it by 
pharmacological interventions is of great interest. In this work, we have evaluated 
the potential of a label-free method using ultra-weak photon emission (UPE) to 
monitor ROS production in neutrophil-like HL60 myeloid leukemia cells. Suppression 
of ROS was achieved by several drug candidates that target different parts of the 
reaction pathway. Our results show that UPE can report on ROS production as well as 
suppression by pharmacological inhibitors. We find that UPE is primarily generated 
by MPO catalyzed reaction and thus will be affected when an upstream reaction is 
pharmacologically modulated.

INTRODUCTION

Innate immune cells are key to health and many 
diseases. Neutrophil granulocytes (also called neutrophils), 
the most abundant innate immune cells, are at the forefront 
to fight against infections, regulate the adaptive immune 
system, and contribute to tissue damage when activated 
in excess [1–4]. During phagocytosis, neutrophils 
react to microbes, virus, and bacteria releasing several 
types of oxidants to kill the invading pathogens. The 
respiratory burst is the first mechanism of defense during 
phagocytosis and requires oxygen (O2) consumption to 

produce and release reactive oxygen species (ROS) [5]. 
The rapid release of superoxide anion radicals (O2

·-) and 
hydrogen peroxide (H2O2), which are the primary source 
of the oxidants, is followed by rapid conversion into other 
oxidant species (OH·, HOCl, etc) [5]. These processes 
are catalyzed mainly by two enzymes, NADPH oxidase 
and myeloperoxidase (MPO), the latter being a signature 
protein of neutrophils. Physiologically, ROS production 
is beneficial at right doses; however, the overproduction 
of ROS (usually called as oxidative stress) has been 
related to several disorders such as Alzheimer’s disease 
[6], Parkinson’s disease [7], cancer [8, 9], cardiovascular 
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diseases [10] and chronic diseases such as diabetes [11], 
and rheumatoid arthritis [12].

Acute myeloid leukemia (AML) is a blood cancer 
that is caused by a disorder of the process that normally 
generates neutrophils [13]. AML is most commonly seen in 
adults and is associated with high morbidity and mortality 
[14]. Mutations in receptor tyrosine kinases (RTKs) and 
its downstream effectors are believed to underlie this 
cancerous process [15]. MPO is a lineage marker for acute 
myeloid leukemia and can serve as a prognostic factor. On 
the other hand, NADPH oxidase-derived reactive oxygen 
species serves as an immune evasion strategy by which 
AML cells kill the healthy immune cells. In brief, NADPH 
oxidase and MPO-mediated reactions are important in 
progression and treatment of AML.

Given the involvement of ROS in many diseases, 
drug therapies which target specific sites of ROS 
production are getting attention [16–18]. Various 
antioxidants and specific inhibitors of NADPH oxidase 
have been developed in recent years as a promising target 
for treating several types of cardiovascular diseases such 
as atherosclerosis [18, 19]. MPO inhibitors have also 
been considered as new potential drugs [20, 21]. MPO 
is the downstream pathway of NADPH oxidase, acting 
only at inflammation sites [22]. The overproduction of 
oxidants species by MPO has been reported to cause tissue 
damage and others complications in several diseases [23]. 
Modulation of ROS response could also be beneficial in 
AML therapy as well as in tissue destruction caused by 
excessive recruitment and activation of neutrophils.

In this work, we propose a label-free method 
using ultra-weak photon emission (UPE) to monitor 
pharmacological inhibition of ROS machinery in AML 
(HL-60) cells. UPE is endogenous light emitted by human 
tissues and is believed to be related to ROS generation 

[24, 25]. This weak light is emitted in the ultraviolet/
visible range (100 – 800nm) possibly reaching the near-
IR spectrum (801 – 1300nm) and originates from radiative 
(non-thermal) electronic transitions of excited electron 
states during reactions with biomolecules [24, 25]. Due to 
the close relation of UPE and ROS generation, UPE can be 
used as a dynamic monitoring tool for oxidative metabolism 
[26, 27]. In this work, we used three classes of drugs, 
namely anti-oxidants, specific NADPH oxidase inhibitors 
and an MPO inhibitor and monitored their response by 
UPE analysis. This analysis demonstrates whether or not 
UPE can report on the activity of these drugs and reveals 
reactions that primarily generate the emitted light.

RESULTS

Monitoring ROS by UPE measurement

We first demonstrate that AML cells generate 
UPE upon triggering ROS response [26]. We find that 
AML cells generate a weak UPE signal in resting state 
and this signal is amplified when the cells are treated 
with PMA [28]. Figure 1 shows a representative time 
trace of UPE during PMA stimulation of AML cells (see 
also Supplementary Figure 1). PMA is known to induce 
respiratory bursts in AML and neutrophils, thus we 
attribute the recorded UPE signal to ROS response [26].

To better demonstrate the link between the recorded 
signal and the ROS process, we quenched ROS response 
by two scavengers namely plumbagin and apocynin. We 
observed that UPE signal gets suppressed significantly 
by administration of these drugs (Figure 2). These lines 
of evidence clearly show that UPE analysis can detect 
ROS response and antioxidant activities in AML cells. 
Our experiments above show that UPE can inform 

Figure 1: A representative UPE profile of HL-60 cells in resting state and upon triggering ROS response stimulated 
by PMA. UPE profile was recorded for 9000 seconds at 37°C in the dark. The lines represent the smoothed UPE intensity followed by 
normalization by the highest UPE intensity.
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about oxidative metabolism, but it does not provide 
any molecular or pathway information. Plumbagin 
and apocynin scavenge ROS and also non-specifically 
inhibit the enzymatic reaction pathway that leads to ROS 
generation [29–36]. To provide mechanistic insights, in the 
following we target the reaction network using specific 
inhibitors of the key elements involved in ROS generation.

Targeting NADPH oxidase

To gain better mechanistic and molecular insights, 
we investigated if UPE reports on ROS pathway 
downstream or upstream (or both) to NADPH oxidase. 
To address this question, we inhibited NADPH oxidase 
specifically (Figure 3) and checked whether the UPE 
signal is affected or not. Two specific drugs were tested 
and the results indicate that downstream processes to 
NADPH oxidase contribute to the recorded UPE signal. 
By increasing the concentration of the drugs we could 
fully block the UPE signal, indicating that nearly all of 
the UPE signal is due to NADPH oxidase-mediated 
reaction and/or downstream processes with no detectable 
contributions from upstream or parallel reactions. This 

finding raises the question whether UPE signal is due 
to neutrophil specific MPO-mediated reaction or it is 
caused by non-specific reactions, i.e. NADPH oxidase- 
and/or superoxide dismutase (SOD)-mediated reactions 
(Supplementary Figure 2).

Targeting myeloperoxidase

Next, we aimed to resolve the contribution of 
neutrophil-specific MPO-mediated reactions to the UPE 
signal, a reaction which is downstream to the NADPH 
oxidase- and SOD-mediated processes in the ROS reaction 
network. For this aim, we tested a specific MPO inhibitor 
and measured the UPE signal. If the signal is caused by a 
process that depends on NADPH oxidase or SOD but not 
on MPO, we expect no effect by MPO inhibition. Figure 
4 presents the results obtained for the MPO inhibitor 
4-ABAH tested. Intriguingly, MPO inhibition clearly 
suppressed UPE signal. By increasing the concentration 
of MPO inhibitor we could nearly reach a full suppression. 
The results clearly indicate that UPE reports on ROS 
processes that are downstream to MPO catalysis and as 
such UPE can specifically report on MPO activity.

Figure 2: Plumbagin and Apocynin effects on UPE profile in HL-60 cells. (A) Dynamic UPE profileshowing the suppression 
of UPE intensity with the administration of scavengers Plumbagin and Apocynin in two different concentrations (n=1). (B) Analysis of the 
interval (3000 – 3600 seconds and 6000 – 6600 seconds) as indicated in (A) by the vertical lines. Statistical significance was determined by 
two-way ANOVA with errors bars represented as standard deviation (SD) and n≥3. ****p<0.0001.
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DISCUSSION

UPE has been considered a potential tool to monitor 
dynamic oxidative metabolism, but its utilization for 
medical diagnostics and pharmacology still requires more 
insights into the mechanism and the biochemical pathways 

that drive its generation. For this aim, we modulated ROS 
pathways pharmacologically and monitored UPE in 
time. We focused our study on neutrophil-like cell HL-
60 [37–40] because ROS generation by neutrophils is 
critically important in disease processes including cancer, 
infection, and tissue destruction in excessive immune 

Figure 3: VAS2870 and AEBSF effects on UPE profile in HL-60 cells. (A) Dynamic UPE profileshowing the suppression 
of UPE intensity with the administration of NADPH oxidase inhibitor VAS2870 and AEBSF in two different concentrations (n=1). (B) 
Analysis of the interval as indicated in (A) by the vertical lines. Statistical significance was determined by two-way ANOVA with errors 
bars represented as standard deviation (SD) and n≥3.

Figure 4: MPO inhibitor tested in the HL-60 cell model system measured by UPE. (A) Dynamic UPE profileshowing the 
suppression of UPE intensity with the administration of 4-ABAH in five different concentrations (n=1). (B) Analysis of the interval as 
indicated in (A) by the vertical lines. Statistical significance was determined by two-way ANOVA with errors bars represented as standard 
deviation (SD) and n≥3. ****p<0.0001.
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responses. We tested several NADPH oxidase inhibitors 
with a wide range of specificity (antioxidants, NOX, etc.) 
and also the downstream pathway specific for neutrophils 
(see Supplementary Figure 2) using an irreversible MPO 
inhibitor.

Our results show that UPE was able to monitor 
ROS production and suppression in all potential drug 
candidates tested independently of the specificity of the 
inhibitor. In addition, UPE response was dose-dependent 
for all drugs tested and in agreement with the IC50 found 
in the literature. Importantly, we have also checked cell 
viability during the drug treatment period of 9000 seconds 
recorded by UPE being the cells with a great viability 
during the time recorded (see Supplementary Figure 3). 
Our analysis indicates that the UPE signal can be fully 
suppressed when one of the few parallel pathways that 
form the ROS reaction network is blocked. ROS reaction 
network involves not only NADPH oxidase-MPO pathway 
but also the xanthine oxidase and mitochondrial pathways 
[41–43]. The fact that blocking NADPH oxidase-MPO 
pathway leads to full suppression of the UPE signal (see 
Figures 2, 3, 4) suggests that contributions from other 
reactions are negligible. Thus, specific reporters need to 
be designed and used to monitor other pathways in ROS 
reaction network.

Our pharmacological manipulation of ROS reaction 
pathway in AML cells and monitoring the outcome by 
UPE revealed that UPE can report on ROS generation 
and suppression. Our data indicate that MPO-mediated 
reaction is mainly responsible for the UPE signal. This 
is a unique capability for UPE because it provides a 
very simple, low-cost, label-free method for providing 
dynamic information on MPO-mediated ROS response. 
The application of this technology will not be limited to 
AML, where MPO-mediated ROS response can be used 
as a prognostic measure, but also in other cancers where 
tumor-associated neutrophils suppress T cell immunity via 
generation of ROS response [4, 44].

MATERIALS AND METHODS

Cell culture, differentiation, and induction of the 
respiratory burst in HL-60 cells

Acute promyelocytic leukemia cell line – HL-
60 (catalogue number CCL-240; lot number 62690063; 
ATCC, Manassas, VA) was cultured in Iscove's Modified 
Dulbecco's Medium – IMDM without phenol red (Gibco-
Life Technologies, Grand Island, NY), supplemented 
with 10% (v/v) of fetal calf serum (FCS) and 1% (v/v) 
penicillin/streptomycin (Sigma-Aldrich, St. Louis, 
MO). Cell seed and maintenance were kept between the 
exponential growths (2x105 - 1.0x106 cells per ml) in a 
CO2 incubator at 37 °C. The cell count and viability 
(>85%) was determined using the trypan blue exclusion 
method with an automated cell counter (Bio-Rad 

Laboratories, Hercules, CA). For the differentiation into 
neutrophils-like cells, we have used the standard protocol 
as described previously [27, 26]. In brief, when the cells 
were split and adjusted for cell density, 1 μM all-trans 
retinoic acid (ATRA; 98% grade, catalog number R250, 
Sigma-Aldrich) was added to the cells in order to induce 
differentiation via the granulocytic pathway. The cells 
were incubated for up to 7 days, and UPE experiments 
were performed on day 7. Cells were stimulated with 
54 nM of phorbol 12-myristate 13-acetate – PMA (98% 
grade, Sigma-Aldrich, St. Louis, MO) in the presence or 
absence of inhibitors: 4-Aminobenzoic acid hydrazide 
– 4-ABAH (Cayman Chemicals, Ann Arbor, MI); 
4-(2-Aminoethyl)benzene sulfonyl fluoride hydrochloride 
– AEBSF; 1,3-Benzoxazol-2-yl-3-benzyl-3H-[1, 2, 
3]triazolo[4,5-d]pyrimidin-7-yl sulfide – VAS2870; 
5-hydroxy-2-methyl-1,4-naphthoquinone – Plumbagin; 
4-Hydroxy-3-methoxyacetophenone – Apocynin (Sigma-
Aldrich, St. Louis, MO). Measurements were performed 
between cell passage numbers P07 - P28. As a standard 
protocol in immunology, ROS generation in neutrophil 
or neutrophil-like cells is typically assessed following 
stimulation by PMA and comparing it to ROS response by 
the cells in their resting state [28].

Ultra-weak photon emission (UPE) measurement

A 2-inch photomultiplier tube – PMT (series 9558B 
with S20 photocathode) purchased from ET Enterprises 
(Sweetwater, TX) was used for the UPE measurements. 
The detector was cooled to -25°C in order to reduce the 
noise. The photon emission intensity was recorded over 
the time (counts/sec). A Peltier element was used inside 
the dark chamber to maintain the sample at 37°C and 
the PMT was set in a vertical position at the top of the 
dark chamber (see Supplementary Figure 4). UPE was 
measured in HL-60 cells after PMA (54nM) induction. 
For each UPE measurement, a small aliquot of the cell 
suspension (6 ml at a cell density of 1x106 cells/ml) was 
used to record the UPE profile. First, the background 
was measured for 1000 seconds before PMA induction 
and subsequently, cells were stimulated with PMA in the 
presence or absence of inhibitors for 9000 seconds.

Myeloperoxidase and NADPH oxidase inhibitors

We have used HL-60 cells differentiated into 
neutrophil-like cells and induced a respiratory burst by 
applying phorbol 12-myristate 13-acetate (PMA). The 
respiratory burst was recorded for 9000 seconds and 
the potential of several NADPH inhibitors (VAS2870, 
Plumbagin, AEBSF, and Apocynin) and the irreversible 
myeloperoxidase inhibitor (4-ABAH) were evaluated. 
Apocynin, AEBSF, VAS2870, Plumbagin, and 4-ABAH 
were added at the indicated concentrations prior PMA 
induction. Only AEBSF was added 15 minutes before 
PMA stimulation.
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Data analysis

UPE data were processed and plotted using the 
software GraphPad Prism 7.0. The UPE data were 
smoothed using the function xy analysis (smooth - 2nd 
order of smoothing with 100 neighboring data points). 
Thus, the smoothed data were normalized by the highest 
UPE intensity (See the appended Supplementary Table 1). 
The smoothed curve is presented as dynamic data. Next, 
we have analyzed specific regions of the dynamic data 
(3000-3600 seconds and 6000-6600 seconds) to generate 
statistics averaging the smoothed data. Normalization was 
done by the average value of the UPE intensity induced 
only by PMA. Two-way ANOVA followed by Tukey 
multiple comparison tests with GraphPad Prism 7 was 
used to identify significant differences. Differences with 
a p-value<0.05 were considered significant.
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