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INTRODUCTION

Aging is an inevitable, intrinsic and irreversible 
process, which not only means increase in age, but 

also leads to deterioration of physiological functions. 
During the aging process, individuals lose viability and 
simultaneously increase vulnerability. On the other hand, 
aging is also a major risk factor for a variety of human 

Identification of human age-associated gene co-expressions in 
functional modules using liquid association

Jialiang Yang1,*, Yufang Qin2,*, Tiantian Zhang1, Fayou Wang3, Lihong Peng1, Lijuan 
Zhu4, Dawei Yuan5, Pan Gao6, Jujuan Zhuang6, Zhongyang Zhang7,8, Jun Wang9 
and Yun Fang9

1College of Information Engineering, Changsha Medical University, Changsha, Hunan, P. R. China
2Department of Mathematics, Shanghai Ocean University, Shanghai, China
3School of Mathematics and Information Science, Henan Polytechnic University, Henan, P. R. China 
4Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
5Geneis (Beijing) Co. Ltd., Beijing, P. R. China
6Department of Mathematics, Dalian Maritime University, Dalian, Liaoning, P. R. China
7Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
8Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
9Department of Mathematics, Shanghai Normal University, Shanghai, P. R. China
*These authors contributed equally to this work

Correspondence to: Yun Fang, email: fangyun0919@shnu.edu.cn

Keywords: aging; anti-aging drug prediction; gene co-expression; liquid association; GTEx

Received: August 23, 2017     Accepted: November 17, 2017     Published: December 08, 2017
Copyright: Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 
3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Aging is a major risk factor for age-related diseases such as certain cancers. 

In this study, we developed Age Associated Gene Co-expression Identifier (AAGCI), 
a liquid association based method to infer age-associated gene co-expressions at 
thousands of biological processes and pathways across 9 human tissues. Several 
hundred to thousands of gene pairs were inferred to be age co-expressed across 
different tissues, the genes involved in which are significantly enriched in functions 
like immunity, ATP binding, DNA damage, and many cancer pathways. The age 
co-expressed genes are significantly overlapped with aging genes curated in the 
GenAge database across all 9 tissues, suggesting a tissue-wide correlation between 
age-associated genes and co-expressions. Interestingly, age-associated gene co-
expressions are significantly different from gene co-expressions identified through 
correlation analysis, indicating that aging might only contribute to a small portion 
of gene co-expressions. Moreover, the key driver analysis identified biologically 
meaningful genes in important function modules. For example, IGF1, ERBB2, TP53 
and STAT5A were inferred to be key genes driving age co-expressed genes in the 
network module associated with function “T cell proliferation”. Finally, we prioritized 
a few anti-aging drugs such as metformin based on an enrichment analysis between 
age co-expressed genes and drug signatures from a recent study. The predicted drugs 
were partially validated by literature mining and can be readily used to generate 
hypothesis for further experimental validations. 
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diseases. The incidences of a number of diseases increase 
with age including certain cancers, cardiovascular 
diseases, type II diabetes, Parkinson’s disease, Alzheimer’s 
disease, arthritis, and so on [1, 2]. As a result, aging study 
contributes to both human longevity and health.  

As usually a first step towards aging study, 
identification of reliable aging biomarkers is critical to 
revealing the secrets behind aging as well as identifying 
drugs for longevity and age-related diseases (ARDs). 
Different types of biomarkers have been proposed to 
quantify human aging, varying from physical parameters 
like visual acuity, grey hair, and skin wrinkles [3] 
to molecular biomarkers like telomere length, gene 
expressions, and methylations [4, 5]. For example, the 
association between epigenetic variation (e.g., DNA 
methylation and histone modification) and age has been 
reported [6]. In addition, gene expression and methylation 
profiles of blood [5, 7, 8], gene expression profile of brain 
[9], and telomere length [10, 11] are good indicators for 
age in human and other primates. Recently, using GTEx 
pilot phase data, Yang et al. identified age-associated genes 
for 9 human tissues and showed an intimate association 
between aging and ARDs at gene expression level [4]. 

However, despite many important findings, 
previous studies are mostly focused on single biomarkers, 
e.g. single gene expressions and methylations. The 
binary relationships between biomarkers (e.g., gene co-
expressions and gene regulations) perturbed by aging 
are more or less ignored. It is known that co-expressions 
of genes also change with age and contribute to the 
development of ARDs [12]. Thus, the identification of 
age-associated gene co-expressions will add an additional 
layer of capacity to understand aging, ARDs, and their 
connections.

Generally speaking, co-expressed genes are 
expected to be involved in the same functional processes 
[13]. Due to their biological importance, a lot of methods 
have been proposed to identify gene co-expressions and 
co-expression networks, most of which calculate simple 
statistical measures between the expressions of two genes 
across samples, such as the Pearson’s correlation, rank 
correlation, the Euclidean distance, and angle between 
expression vectors [14]. Other algorithms like weighted 
gene co-expression network analysis (WGCNA) transform 
the simple Pearson correlation or Spearman correlation 
of a pair of genes into topological overlap information 
to incorporate neighbouring genes [15]. There are also 
methods to infer gene co-expression based on linear 
regression models [16] or tree based methods [17]. After 
gene co-expressions have been quantified, clustering 
algorithms are useful for identifying groups of genes with 
similar expression profiles. For example, Eisen et al. used 
the hierarchical clustering to group co-expressed genes, 
and found that genes within a group were functionally 
related [13]. Smet et al. adopted K-means method to 
cluster gene expressions [18]. Other gene clustering 

methods include self-organizing map [19], graph based 
methods [20], and so on. 

However, gene co-expression might be a 
consequence of various mechanisms. It is very difficult to 
determine those resulted from a single biological process 
like aging via gene expression matrix. Fortunately, Li 
proposed a concept called liquid association (LA) to 
describe how the dynamics of the association between 
two variables is mediated by a third one [21]. As an 
example, he studied the association of gene pair with 
an LA-scouting gene Z as a surrogate for the intrinsic 
cellular state that may affect the LA activity. There are 
two classical approaches using the liquid association: (i) 
for a given gene pair, screen the genome to detect the LA-
scouting genes; (ii) for a given gene, screen the genome 
to find the liquid association pairs (LAPs). In addition, 
the mathematical definition of LA was given and a 
simplified formula for calculation was proven under some 
conditions. After the proposal of LA, many literatures 
have demonstrated the validity of the method in biology. 
For example, liquid association has been applied to find 
candidate genes for multiple sclerosis [22]. It has also been 
verified to be useful in performing dimension reduction in 
survival analysis [23]. Li and Yuan combined drug activity 
and gene expression profiles together and employed LA to 
find potential drug target genes [24]. 

In this study, we proposed an LA based method 
called Age Associated Gene Co-expression Identifier 
(AAGCI) to identify co-expressed genes whose 
association dynamics is correlated with age. Considering 
that the aging process has strong effects on many specific 
biological processes like mitochondria functions and 
inflammation pathways, we also restricted our methods 
into gene sets associated with terms defined by Gene 
ontology (GO) [25] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [26]. We then compared our 
results with general gene co-expressions inferred by the 
Pearson correlation, cross-checked genes involved in 
age-associated co-expressions with known aging genes, 
and performed function enrichment analysis. Finally, we 
prioritized anti-aging drugs based on a simple enrichment 
analysis between aging co-expressed genes and drug 
perturbation signatures from a recent study [27].  

RESULTS 

AAGCI: an LA based model to identify aging 
associated gene co-expressions  

We presented an overview of the AAGCI framework 
in Figure 1. Specifically, we first restricted our study into 
protein-coding genes and normalized the age and raw 
expression profiles across samples. We then overlapped 
the remaining genes with Gene Otology (GO) terms or 
KEGG pathways to form functional modules. For each 
module, we calculated liquid association score (LAS) 
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dependent on age for each gene pair and tested its 
significance by a permutation study, which was further 
adjusted by the Benjamini-Hochberg method [28] to 
control the false discovery rate (FDR) for multiple testing. 
The gene pairs with FDR less than or equal to 0.1 were 
considered as age co-expressed and their key drivers were 
inferred by key driver analysis [2] on the protein-protein 
interaction subnetwork defined by the module genes. In 
addition, a gene involved in any liquid associated gene pair 
in any module is defined to be an age co-expressed gene. For 
a clear view, we also illustrated the calculation of LA scores, 
the assessment of LA significance by permutation analysis, 
and key driver analysis in Figure 1B–1D respectively. The 
readers were referred to Materials and Methods section for 
more details on each step.   

Identification of tissue specific age-associated 
gene co-expressions using the GTEx data

We applied AAGCI into the Genotype-Tissue 
expression (GTEx) pilot phase data to identify gene co-
expression varied with age. The GTEx pilot phase (v3) 
provided 1,641 whole transcriptome profiles in more than 
40 tissues from nearly two hundred post-mortem human 
donors [29]. Nine tissues had sample sizes of greater 
than 80, namely, adipose subcutaneous (adipose), artery 
tibial (artery), heart left ventricle (heart), lung, muscle 
skeletal (muscle), nerve tibial (nerve), skin sun exposed 
lower leg (skin), thyroid, and whole blood respectively. 
We considered these nine tissues in our study. We also 
obtained the GO terms and KEGG pathways using R 
package ‘org.Hs.eg.db’ and ‘KEGG.db’ (on June 13, 
2016). To avoid too general functions, we only used GO 
terms and KEGG pathways with less than 500 genes, 
resulting in 12199 GO terms and 279 KEGG pathways.

It was found that some gene pairs were identified 
as significantly liquid associated in multiple GO terms or 

KEGG pathways. We listed in Table 1 the top 20 most 
frequently occurring liquid associated gene pairs in GO 
terms for adipose. The details of LA pairs of all tissues 
based on GO terms and KEGG pathways were shown in 
Supplementary Table 1. We are fully aware that GO terms 
and KEGG pathways might be overlapped, however it 
may not be a critical issue since our objective is to identify 
age-associated gene co-expressions at specific GO terms 
or KEGG pathways. Besides, it was suggested that the 
overlapping GO terms will not change the results a lot in 
a few network studies [2, 30].

To ensure that the co-expressions of the identified 
gene pairs in Table 1 are indeed associated with age, we 
separated the samples into 3 groups, namely young (age 
< = 35), middle (age between 35 and 55), and old (age 
> = 55) according to their age, and checked gene-gene 
correlation at the 3 groups (see Supplementary Figure 
1). As two examples, we also illustrated in Figure 2 the 
group-based gene-gene correlation of the top two pairs, 
i.e., “PTPN6, STAT5A” and “ADORA2B, UNC13D”. 
It is clear that the co-expressions of “PTPN6, STAT5A” 
gradually change from negative to positive as sample age 
increases. In contrast, the co-expressions of “ADORA2B, 
UNC13D” decrease with the increase of age.     

Interestingly, we also find that most genes in Table 
1 have been reported to be associated with aging or 
age-related biological processes. For example, PTPN6, 
also known as SHP-1 or tyrosine-protein phosphatase 
non-receptor type 6, regulates a variety of cellular 
processes like cell growth, differentiation and oncogenic 
transformation [31]. It was inferred to be age-associated 
in human [4] and mouse [32]. STAT5A, is a transcription 
factor mediating cellular responses to growth factors 
and promoting transcription of genes associated with 
proliferation, differentiation, and survival of cancer 
cells [33]. STAT5A was selected as a potential human 
aging gene in GenAge due to its close relationships with 

Figure 1: (A–D) An overview of the AAGCI algorithm. 
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known aging genes including GHR, GH1, and IGF1 
(http://genomics.senescence.info/genes/entry.php?hgnc = 
Stat5a). In addition, PTPN6 interacts with JAK2, which is 
very important in the function of STAT5A [34]. Similarly, 
CITED2 and WT1, the second pair in the list, have been 
shown to interact with each other to stimulate expression of 
the nuclear hormone receptor Sf-1 (Nr5a1) in the AGP to 
ensure adrenal development [35]. The co-function of these 
gene pairs in aging-related cellular or biological processes 
indicates that they might be indeed age co-expressed. 
Besides the top two pairs, a few genes in the list like TP53 
and IGF2 are known aging genes in GenAge [36].

Functional annotation of age co-expressed genes 
leads to a large collection of biological processes

To present an overview of age co-expressed genes, 
we annotated them by the David tools (version 6.8). 
As two representative examples, we plotted in Figure 
3A and 3B the word-cloud maps of the enrichment for 
tissues adipose and heart respectively. We also showed 
a few top representative annotations for adipose in Table 
2 and provided the enrichment results for all 9 tissues 
in Supplementary Table 3. As can be seen from Table 2, 
the term “immunity” is most enriched in adipose with 
FDR 1.32E-48. It is widely known that the aging process 
deteriorates the immune system and the immune system 
in turn affects longevity and age-related diseases [37]. 
Other top terms in the list such as “ATP-binding”, “DNA 
damage”, and “DNA repair” are also well known to be 
critical in the aging process. 

By examining the function annotations across all 
tissues (see Supplementary Table 3), we identified a 
few common terms (Figure 4). For example, the terms 
“Immunity” and “Innate immunity” are significantly 
enriched across all tissues, which recaptures the critical 
roles of immunity in aging process. Other terms like 

“IPR017441:Protein kinase, ATP binding site” are also 
enriched in most tissues. In addition, we observed that 
many cancer pathways are significantly enriched in multiple 
tissues, for example, “hsa05217:Basal cell carcinoma” 
(adipose, artery tibial, lung, nerve tibial, skin, thyroid), 
“hsa05218:Melanoma” (adipose, lung, skin, thyroid, whole 
blood), “hsa05213:Endometrial cancer” (adipose, lung, 
thyroid, whole blood) and “hsa05215:Prostate cancer” 
(adipose, lung, skin). It is no surprise since aging and cancer 
share many common biology such as genomic instability, 
immune response, and autophagy [38].

 Age co-expressed genes inferred by AAGCI 
significantly overlap with known aging genes 

Given the age-associated gene co-expressions, 
one natural question is how they are related to known 
aging genes. To answer this question, we compared age 
co-expressed genes with GenAge genes. GenAge is a 
benchmark dataset of aging genes, in which 305 aging 
genes were curated from over 1000 references (on 12-30-
2016) [36]. We listed the enrichment results in Table 3. As 
can be seen, the ratios of age co-expressed GenAge genes 
vary from 15.41% to 45.25% across different tissues. 
We also implemented the one-sided Fisher’s exact test to 
assess the overlapping significance between the two sets. 
As a result, the p-values for the tests range from 5.91E-14 
(skin) to 5.21E-51 (adipose) for all 9 tissues, indicating a 
tissue-wide correlation between age-associated genes and 
co-expressions.

Age-associated gene co-expressions are different 
from general gene co-expressions 

One of the conventional methods to infer gene co-
expressions is through the Pearson correlation coefficient 
(PCC) [14]. We compared the age associated gene co-

Table 1: Top 20 most frequent age-associated gene co-expressions for modules defined by GO 
terms in adipose

Gene 1 Gene 2 Occurrence* Gene 1 Gene 2 Occurrence
PTPN6 STAT5A 37 IGF2 PPP1R3F 19
CITED2 WT1 34 STAT5A TBX21 19
CARD11 TLR4 28 ABR ADORA2B 18
IKZF1 STAT5A 28 STAT6 TBX21 18

CARD11 TNFRSF21 24 GTSE1 UBA52 17
ADORA2B UNC13D 20 POLD3 RPA3 17

STAT5A SYK 20 PSMC3 TP53 17
SYK UNC13D 20 PSME1 UBA52 17

CD3E TNFRSF21 19 GTSE1 PSMB4 16
CD86 IL13 19 POLD1 RFC4 16

*Occurrence counts the number of network modules (by GO terms), in which Gene1 and Gene2 are significantly age  
co-expressed   
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expressions with strongly correlated gene pairs detected 
by PCC. For a fair comparison, the co-expression study 
via PCC was conducted in the same process of identifying 
age-associated gene co-expressions, i.e., highly correlated 
gene pairs were detected in GO or KEGG modules. The 
Benjamini-Hochberg method [28] was used to control FDR 
at level 0.1. Then in each GO term or KEGG pathway, the 
one-sided Fisher’s exact test was carried out to test whether 
the gene co-expression studies through LA and PCC were 
consistent. Finally, the Benjamini-Hochberg method 

were employed to correct multiple testing across all GO 
and KEGG terms and adjusted p-values were reported in 
Supplementary Table 2. As can be seen, age-associated LA 
gene pairs and PCC gene pairs were significantly overlapped 
only in 13 (over an overall of 12478) modules for heart, in 
1 module for adipose and 0 module for the other 7 tissues. 
Though small sample size and sequencing quality might 
contribute to the inconsistency, the results generally suggest 
that age-associated gene co-expressions are different from 
gene co-expressions.

Figure 2: Group-based gene-gene correlation of “PTPN6, STAT5A” (A) and “ADORA2B, UNC13D” (B). 

Table 2: Functional enrichment of age co-expressed genes in adipose 
Module p-value FDR

Immunity 8.96E-50 1.32E-48
ATP-binding 1.45E-39 2.13E-38

Nucleotide-binding 1.69E-36 2.49E-35
nucleotide phosphate-binding region:ATP 1.02E-34 1.96E-33

GO:0005886 plasma membrane 9.65E-32 1.52E-30
DNA damage 1.14E-28 1.68E-27

GO:0000122 negative regulation of transcription from RNA 
polymerase II promoter 9.09E-29 1.81E-27

Innate immunity 3.75E-27 5.53E-26
GO:0050852 T cell receptor signaling pathway 9.88E-27 1.97E-25

Kinase 1.09E-25 1.60E-24
GO:0005524 ATP binding 2.38E-25 4.09E-24

DNA repair 7.78E-25 1.15E-23
binding site:ATP 1.23E-22 2.37E-21

Cell cycle 1.55E-21 2.29E-20
Transferase 2.90E-20 4.27E-19

IPR011009:Protein kinase-like domain 1.12E-19 2.01E-18
IPR017441:Protein kinase, ATP binding site 1.17E-19 2.10E-18

Activator 2.01E-19 2.96E-18
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Identification of key driver genes

For the modules where aging co-expressed genes 
were recognized, it is important to identify their key 
driver (KD) genes in the module network, which could 
be drug targets. We applied a similar approach with Yang 
et al. [39], in which we used protein-protein interaction 
(PPI) network defined by the HPRD database (http://
www.hprd.org) as the reference network (see Materials 
and Methods for details). We used module GO:0042098 
“T cell proliferation” as an example to illustrate. The 
network of the KDs and their connectivity was shown 
in Figure 5 via Cytoscape, in which KDs were drawn in 
red and other genes in green. As can be seen, there are 7 
key driver genes including IGF1, ERBB2, TP53, STAT5A, 
CASP3, SYK, and ZAP70, among which IGF1, ERBB2, 
TP53 and STAT5A are known GenAge genes [36]. IGF1 
(insulin-like growth factor 1 receptor) has been shown to 
be associated with lifespans of fruit flies and nematodes 

[40]. TP53 is probably the most studied tumor suppressors 
and aging genes, which is also a key regulator of the DNA 
damage responses [41]. Moreover, though CASP3, SYK, 
and ZAP70 are not GenAge genes, there are evidences for 
them to be related with aging and ARDs. For example, 
CASP3 is important in the development of Alzheimer’s 
disease in senescent brains [42]. As a conclusion, the key 
driver analysis on aging co-expressed genes is capable 
of prioritizing critical aging or ARD genes for further 
experimental validation.   

 Prioritize anti-aging drugs using aging 
associated LA genes

Finally, we utilized the genes involved in age-
associated gene co-expressions to prioritize anti-aging 
drugs based on drug perturbation signatures from a 
recent study [27]. For each aging co-expressed gene, 
we first calculated the Pearson correlation between its 

Table 3: Overlap between age co-expressed genes and GenAge genes  

Tissue
#Age
co-expressed
genes

#GenAge
genes

Background 
genes

#Overlap
genes Ratio* P-value#

adipose 2563 305 16516 155 50.82 5.21E-51
Artery 821 305 16096 56 18.36 4.45E-18
heart 2490 305 15721 137 44.92 8.02E-37
lung 1157 305 16853 80 26.23 3.68E-27
muscle 2025 305 15928 117 38.36 3.60E-33
nerve 769 305 16557 56 18.36 3.68E-20
skin 774 305 16733 47 15.41 5.91E-14
thyroid 1260 305 16737 69 22.62 1.09E-17
whole blood 1035 305 16025 69 22.62 1.09E-17
*Ratio is calculated as the number of overlap genes divided by that of the GenAge genes. #P-value is calculated by the one-
sided Fisher’s exact test. 

Figure 3: Word-cloud plots of the functional annotation of age co-expressed genes in two tissues (A) adipose and (B) heart. 
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expression profile and age (across samples), and carried 
out a significance test (two-sided t-test) for correlation 
coefficients with p-value adjusted by Benjamini-
Hochberg method [28]. The aging co-expressed genes 
with false discovery rate under 0.1 were kept. In addition, 
an aging co-expressed gene is called up-regulated (or 
elevated) with age if the correlation coefficient is positive, 
otherwise it is called down-regulated (or repressed). In 
[27], Wang et al. manually curated lists of 4,295 single-
drug perturbations and 8,620 single-gene perturbations 
from Gene Expression Omnibus. Specifically, we try to 
infer either drug or gene perturbations that could possibly 
reverse the aging signatures (i.e., perturbations that 
up-regulate those repressed aging gene expressions or 

down-regulate those elevated aging gene expressions). In 
practice, we performed the enrichment analysis between 
the repressed (elevated) aging co-expressed genes and up-
regulated (down-regulated) drug perturbation genes using 
the Fisher’s exact test. A similar analysis is also performed 
on gene perturbation signatures. The drugs (genes) were 
then ranked based on the p-value for the test. We listed the 
results for all tissues in Supplementary Table 4 (except for 
thyroid since no significant up- or down-regulated aging 
co-expressed genes could be found). 

Since metformin, a type 2 diabetes medicine, 
is one of the best studied and promising anti-aging 
drugs [43, 44], we listed our prediction results for this 
drug across multiple tissues in Table 4. We can see that 

Figure 4: Top 40 frequently enriched GO terms and KEGG pathways of age co-expressed genes across multiple 
tissues. Normalized log(FDR) is defined as [max(log(FDR))-log(FDR)]/[max(log(FDR))-min(log(FDR))]. A large “normalized log(FDR) 
” indicates a more significantly enriched item. 

Table 4: Predicting the anti-aging effect of metformin across tissues

Tissue
Up-regulated

Tissue
Down-regulated

Rank* P value Rank P value
lung 198 0.0022 muscle 63 0.0808

artery 1039 0.0540 nerve 130 0.0723
lung 416 0.0063

adipose 294 0.0001
*Rank is inferred based on p-values for all 4295 drugs with low p-value ranks first.
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metformin locates at top 10% out of the 4295 drugs at 
several tissues. Interestingly, metformin is ranked high 
for both up-regulated (p = 0.0022, ranked at 198th) and 
down-regulated (p = 0.0063, ranked at 416th) aging co-
expressed genes in lung. This is consistent with a few 
literatures that metformin possesses protective effect on 
lung cancer [45–47]. Besides lung, metformin also ranks 
63th in muscle, 130th in nerve, and 294th in adipose, 
suggesting its possible anti-aging effect on whole human 
body.  

Besides metformin, we also prioritized a few other 
potential drugs to slow down or reverse aging and age-
associated diseases. For example, insulin related drugs are 
listed at top for most tissues (see Supplementary Table 4). 
It is known that excess insulin is one of the main causes 
of accelerated aging, and thus drugs controlling insulin 
levels might have potential anti-aging effects. The reader 
are referred to Supplementary Table 4 for more prioritized 
drugs.

DISCUSSION  

Gene co-expression is an important mechanism as 
well as a strong evidence for genes to function corporately. 
There are a number of computational methods to infer gene 
co-expression including correlation based methods [14], 
WGCNA [15], regression-based methods [16], and so on. 
However, almost all existing methods focus on general 

gene co-expressions, while those results from specific 
mechanisms like aging are more or less ignored possibly due 
to data limitation and computational complexity. Recently, 
the GTEx project generated multiple tissue gene expression 
data for hundreds of post-mortem individuals with a wide 
range of age (20-70), providing a very good resource for 
aging study. Thus, we applied an LA-based method to infer 
age-associated gene co-expression into the GTEx pilot 
phase data on 9 human tissues. The LA-based method is 
capable of catching the dynamics of the association between 
two gene expressions mediated by aging.

 We inferred thousands of age-associated gene 
co-expressions for different tissues and each tissue has 
different numbers of significant gene co-expressions. 
This result is consistent with our previous study on 
age-associated gene expressions [4]. The top genes 
involved in age-associated gene co-expressions are 
enriched in biological functions like immunity, ATP 
binding, DNA damage, and so on. We also prioritized 
a few anti-aging drugs based on a similar strategy to 
connectivity map [48]. It is worth noting that the drug 
signatures from CROWD suffer from false-positives 
and incompleteness, and thus the drugs predicted in 
this study might not be very accurate. Nevertheless, our 
study predicted a few known anti-aging drugs and a few 
meaningful candidates.

 There are some limitations of our method. First 
of all, our method measures the absolute mean of the 

Figure 5:A network view of key drivers of aging co-expressed genes for the module GO:0042098 “T cell proliferation”. 
In the PPI network. Red nodes represent key drivers and light green nodes represent other genes. Node size represents the rank of key 
drivers. 
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derivative of the covariance of two gene expressions 
given age, which in theory will cause false-negatives. For 
example, when the age-associated gene co-expression 
is positive for an individual from 20-50 and negative 
from 50-70, the absolute mean might be close to 0 and 
will be insignificant. Nonetheless, AAGCI is capable 
of capturing most age-associated gene co-expressions 
and presents meaningful results. Second, AAGCI does 
not account for the overlap in the GO and KEGGs. It is 
known that Gene Ontology has a hierarchical structure 
and thus some GO terms are highly overlapped. We 
will mine the effect of this factor to our method in the 
future. Third, we used only the overlapping of the drug 
signatures and age-associated co-expressed genes to infer 
anti-aging drugs. The simple method does not consider 
the weight of genes and also the intrinsic interaction 
(like PPI interactions) among genes. A more complex 
method involving this information is highly desirable. 
Fourth, there are many other co-regulation patterns like 
gene regulations and protein co-expressions, however 
we focus on age-associated gene co-expressions in 
this paper since the gene expression data is most 
accessible. Bayesian network is widely used to infer 
gene regulations, however it usually needs additional 
information like transcription factors and expression 
quantitative trait loci (eQTLs) to help determine the 
regulation direction.   

Finally, it is worth mentioning that though we 
studied age-associated gene co-expressions in this 
study, the proposed method may have a few further 
applications. In principle, they could be used to study 
gene co-expressions dependent on any quantitative trait. 
For example, by replacing age to BMI, one can study the 
obesity association gene co-expressions. Similarly one 
can study drug sensitivity associated gene co-expressions 
from studies like Cancer Cell Line Encyclopedia (CCLE) 
[49] and Library of Integrated Network-based Cellular 
Signatures (LINCS, http://lincsproject.org/). Another 
interesting topic is to study the gene co-expressions 
associated with environmental factors (like smoking, 
drinking or microbes) and diseases. However, it is out of 
the scope of this study.   

MATERIALS AND METHODS 

Data source  

GTEx data: GTEx data (v3, December 2012 
release) provides expression levels of 41,298 genes in 
nine human tissues: adipose, artery, heart, lung, muscle, 
nerve, skin, thyroid, and whole blood. The sample 
size of each tissue ranges from 83 to 156. The detailed 
information on sample collection, RNA collection, RNA-
Seq experiment, gene expression estimation, quality 
control, and gene expression normalization was provided 
elsewhere [29].

Liquid association 

The terminology “liquid association” (“liquid” as 
opposed to “solid”), was first proposed to conceptualize the 
internal change of association patterns for a pair of genes 
(X,Y) in response to constant changes with of cellular state 
variables [21]. Since the relevant cellular states are unknown, 
in the literatures the cellular state was often assumed to be 
associated with the expression of a certain gene Z, called as 
LA-scouting gene. Many other factors which influence the 
cellular state can take the place of the scouting gene Z. In 
this paper, we use “age” as the scouting variable to search the 
gene pairs that have the liquid association patterns. 

The mathematical definition of liquid association 
was given based on the three random variables X, Y 
and Z [21]. It was assumed that X, Y and Z are random 
variables with mean 0 and variance 1. The liquid 
association score (LAS) of X, Y with respect to Z is 
defined by LA(X,Y│Z)=Eg' (Z), where g(Z)=E(XY|Z). 
Furthermore, if Z follows the standard normal distribution, 
the equivalent expression of LA has been proved that  by 
using the celebrated Stein Lemma [50]. So the calculation 
can be dramatically simplified. Then when Z is standard 
normal, the LAS can be calculated by the formula, 

LAS X Y Z
X YZ
n

i

n
i i i, |( ) = =∑ 1

where Xi,Yi denotes the expressions of the genes X 
and Y respectively for the i-th individual,Zi represents for 
the scouting variable, and n is the sample size, i.e., the 
number of individuals (measurements).

Data pre-processing including quantile 
normalization and filtration 

In the pre-processing, we planned to do some 
adjustment by regression to the raw data. However, 
considering that the adjustment to the gene expressions 
by a regression model with some covariates like age, 
gender and etc., is possible to remove some useful 
information regarding the liquid association between 
genes, we finally chose to use the raw data for the 
normalization and filtration. In fact, all the gene 
expression profiles and age were inverse-normal 
transformed to the standard normal distribution to satisfy 
the distribution assumption in the liquid association 
definition [21]. Furthermore, taking into account that 
only the protein coding genes have biological meaning 
in the protein synthesis and the subsequent biological 
functions, after normalization we then filtered the genes 
to get the overlap with 20069 protein coding genes 
downloaded from HGNC (http://www.genenames.org/
cgi-bin/statistics). Finally, 15721 to 16853 genes were 
reserved for the 9 tissues in the further analysis.
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Search for liquid association based on GO and 
KEGG functional modules 

To avoid the huge burden of screening LA pairs 
(LAPs) across the whole gene expression data, and due 
to the phenomenon of gene functional modulization, we 
focused on LAPs screening in functional modules defined 
by Gene Ontology (GO) terms and Kyoto Encyclopedia 
of Genes and Genomes (KEGG). Specifically, for every 
tissue, each module of GO and KEGG was taken to 
overlap with the processed data and only the modules 
containing less than 500 genes were considered. The 
intra-module search for LAPs were implemented. The 
genes within each GO term and KEGG pathway were 
obtained using R package “org.Hs.eg.db” and “KEGG.
db”, respectively on June 13, 2016. 

Permutation test and false discovery rate (FDR) 

In order to detect the gene pairs with significant 
liquid association score (LAS), we used the permutation 
test as suggested by [21]. Specifically, the observations of 
the age were shuffled, and which consequently generated 
a corresponding new LAS value. Due to the enormous 
amount of genes and the huge computational cost, 100 
permutations were implemented. We denoted the new 
LASs generated from permutations by
LAS X Y LAS X Y1 100

* *, ,..., ,( ) [ ]{ } , which could be regarded as 
a random copy of LAS(X,Y). Then the p-value of the 
significance test was the probability of |LAS*| greater than 
|LAS|. However, to avoid the rough p-value with the 
magnitude of 10–2, we did not compared LAS(X,Y) with the 
empirical distribution of the LAS* values. Instead, we 
assumed that the distribution of LAS(X,Y) is normal with 
mean  and standard deviation σ. The estimates μ̂ and σ̂ 
were calculated by the values of LAS X Y LAS X Y100 100

* *, ,..., ,( ) ( ){ }
. Consequently, by the cumulative distribution function 
(CDF) of the standard normal distribution, the p-value 
could be expressed as, 

p
LAS X Y LAS X Y

= −
−





+
− −





1 φ
µ

σ
φ

µ
σ

( , ) ( , )

where ϕ (.) refers to the CDF of the standard normal 
distribution 

Naturally, the gene pairs in the same module lead to 
a multiple testing problem. To control the false discovery 
rate (FDR), Benjamini-Hochberg method [41] was applied 
to adjust the p-values of the test problem (T1) for all gene 
pairs across the same module. We took the level of false 
rate as 0.10. The gene pairs with adjusted p-value not 
greater than 0.10 were finally considered as LAPs. 

Functional enrichment analysis 

We carried out the functional enrichment analysis on 
the liquid associated genes for each tissue separately by 
David tools (http://david.abcc.ncifcrf.gov/summary.jsp). 

FDR score was used to control the false discovery rate 
and a gene set was considered to be significant if the FDR 
score is less than or equal to 0.10. 

Test the consistency of liquid associated genes 
and aging genes 

We downloaded the list of 305 aging genes (on 12-
30-2016) from the database GenAge (http://genomics.
senescence.info/genes/) [36]. The one-sided Fisher’s 
exact test was adopted to check the consistency of aging 
genes and liquid associated genes. The p-value not greater 
than 0.05 can support that liquid associated genes are 
consistent with aging genes. The test was carried out for 
all tissues. 

Key driver analysis 

The LA genes identified in the same GO or KEGG 
module was treated as a gene set. The protein-protein 
interaction (PPI) network was obtained from the HPRD 
database (http://www.hprd.org). We carried out key driver 
(KD) analysis to search the key drivers of the gene set, 
with the PPI network integrated. The KD analysis aimed 
to find the important genes for a gene set based on a given 
network. A gene whose neighbour genes in the network are 
significantly enriched for genes in the gene set consisting 
of LA genes is defined as a KD. We mapped the gene set 
into the PPI network. For each gene in the PPI network, 
we retrieved its directly connected genes (1st layer 
neighbour genes) to form a neighbouring subnetwork of 
the gene. Then, the Fisher’s exact test was used to evaluate 
the enrichment of the subnetwork genes. The genes in the 
PPI network with the neighbouring subnetworks which 
reached FDR adjusted p-value not greater than 0.05 were 
reported as KDs. The Cytoscape (http://www.cytoscape.
org/) was adopted to draw the plots for the KDs and their 
connectivity in the PPI network. 

Data access

The GTEx genotype and gene expression data were 
downloaded from dbGap under dbGaP Study Accession 
number phs000424.v3.p1. 
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