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ABSTRACT

Aims: Test the putative contribution of 17-β-estradiol in the development of 
spreading depression (SD) events and head pain in awake, non-restrained rats.

Main Methods: Female, Sprague-Dawley rats were intact or underwent 
ovariectomy followed one week later by surgery to place electrodes onto the dura to 
detect epidural electroencephalographic activity (dEEG). dEEG activity was recorded 
two days later for 12 hours after systemic administration of 17-β-estradiol (180 μg/
kg, i.p.). A separate set of rats were observed for changes in exploratory, ambulatory, 
fine, and rearing behaviors; periorbital allodynia was also assessed.

Key Findings: A bolus of 17-β-estradiol significantly elevated serum estrogen 
levels, increased SD episodes over a 12-hour recording period and decreased rearing 
behaviors in ovariectomized rats. Pre-administration of ICI 182,780, an estrogen 
receptor antagonist, blocked 17-β-estradiol-evoked SD events and pain behaviors; 
similar results were observed when the antimigraine therapeutic sumatriptan was 
used.

Significance: These data indicate that an estrogen receptor-mediated mechanism 
contributes to SD events in ovariectomized rats and pain behaviors in both 
ovariectomized -and intact- rats. This suggests that estrogen plays a different role 
in each phenomenon of migraine where intense fluctuations in concentration may 
influence SD susceptibility. This is the first study to relate estrogen peaks to SD 
development and pain behaviors in awake, freely moving female rats, establishing a 
framework for future preclinical migraine studies.

INTRODUCTION

Migraine is one of the most common neurological 
disorders in the world, affecting 14.2% of US adults [1]. 
Overall, migraineurs spend nearly 2.5 times more than 
non-migraineurs in direct healthcare costs, and recurrent 
episodes result in approximately 11 days of missed work 
that costs up to $10,000/case annually [2, 3]. Roughly two-
thirds of migraineurs are female suggesting a potential role 
for estrogens in migraine pathophysiology [4], yet very 
few preclinical studies have used female subjects [5, 6].

According to the International Classification of 
Headache Disorders, two types of migraine exist: migraine 
with and without aura. Migraine with aura (MA), a focal 
neurological disturbance exhibiting predominantly visual 
symptoms, affects one-third of all migraineurs [7–9]; 
this phenomenon is closely associated with spreading 
depressions (SD). SD events are self-propagating waves of 
membrane depolarization that travel at rates of 2-5 mm/
min followed by a negative shift of the direct current (DC) 
potential, reduction in EEG amplitude, and often, increases 
in cerebral blood flow [10–12]. In MA, cortical SD events 
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(CSDs) are thought to occur during the aura phase of 
migraine and precede the headache phase in a subset 
of migraineurs [13]. CSD susceptibility (e.g., reduced 
CSD thresholds) and probabilities of migraine attack are 
enhanced by increases in cortical excitability [14–16] and 
result in an increased BOLD signal on fMRI [15, 17–20]. 
Female reproductive hormones, including estrogen and 
progesterone, are implicated in migraine development both 
clinically and pre-clinically [21–23]. Clinically, the onset of 
migraine attacks coincides with hormonal fluctuations such 
as those associated with puberty, some oral contraceptives, 
pregnancy, and menopause [22, 24–26]. Moreover, it is well 
accepted that migraine without aura can be triggered by 
steeply declining levels of ovarian hormones, whereas MA 
is exacerbated by increasing levels of female reproductive 
hormones [6, 21, 27–30]. Preclinical studies have shown 
that estrogens, acting through both nuclear α- and 
β-estrogen receptors as well as GPR30 [31, 32], increase 
cortical excitability and CSD susceptibility in brain slices 
[33]. In anesthetized rodent models of CSD, estrogen 
fluctuations reduced the CSD threshold and increased the 
frequency and velocity of CSD events [14, 34, 35]. Yet, 
questions of whether the anesthetic or invasiveness of 
intracortical recordings altering the CSD events have been 
raised [36, 37]. Non-invasive epidural EEGs have been 
used to determine brain activity in rats since 1979 [12, 
38–41]. Over time, the implantation technique has been 
substantially improved upon to yield highly reproducible 
and stable recordings [12, 41] with successful epidural 
EEG recordings of CSD events by a number of groups 
in the context of migraine [42–44]. SD events in humans 
can be detected with traditional EEG leads on the cortical 
surface [45] or using scalp AC-EEG [46] intracortical and 
subdural recordings are only obtained during procedures 
with patients requiring intracranial pressure relief (i.e., 
TBI) or tissue removal [47–50].

To date, no studies have investigated the contribution 
of estrogens to SD induction and headache pain behavior 
in awake, freely moving, female rats. Here, we addressed 
this gap in knowledge and study the contribution of 
17-β-estradiol to SD and headache pain using our non-
anesthetized rodent model [43, 51, 52] including estrogen-
receptor dependence and responsivity to sumatriptan, 
the leading abortive antimigraine. 17-β-estradiol 

administration induced SDs and behaviors associated with 
headache pain. Both SDs and pain behavior were inhibited 
by the non-selective estrogen receptor antagonist/GPR30 
agonist ICI 182,780 and sumatriptan, confirming both 
estrogen receptor dependence and responsivity to the 
leading abortive antimigraine, respectively.

RESULTS

Serum estrogen (E2) levels

Fluctuations in estradiol serum concentrations are 
associated with CSD and migraine [6, 27]. We injected 
a supraphysiological dose of 17-β-estradiol (180μg/kg, 
ip) to maximize the rapid rise and fall of serum estradiol 
levels in order to capture multiple stages of estrogen 
activity, including a peak upswing to model pregnancy 
levels and downfall in levels to mimic sharp fluctuations 
in estrogen [53], or vehicle (castor oil, ip) 7 days post-
OVX or in intact rats. Intact rats served as a control for 
ovariectomy; high dose estradiol did not effect cytology 
in any group. Serum samples were drawn before (t=0) 
and 30 min, 2, 4, 6, 12, and 24 hour after injection to 
quantify estrogen levels (Table 1). In naturally cycling 
female rats injected during the diestrus-2 phase of the 
estrogen cycle, basal serum estrogen levels were 3.53 ± 
0.76 pg/mL (n=6). Vehicle injection did not significantly 
increase serum levels over 24 h as compared to baseline 
(Table 1, n=3). Administration of 17-β-estradiol (180μg/
kg) significantly elevated serum estrogen levels (993.44 
± 498.3 pg/mL, n=3, p<0.01) after 30 min and remained 
significantly elevated for 4 hours (203.77 ± 50.29 pg/
mL, n=3, p<0.0001) before returning to baseline levels 
after 24 hours (3.29 ± 0.01 pg/mL, n=3) in intact rats. We 
next determined if 17-β-estradiol administration similarly 
elevated serum estrogen levels in OVX rats. OVX rats 
had basal serum estrogen levels of <3.0 pg/mL (n=6) 
consistent with previous reports and below the limit of 
detection of our kit (Calbiotech, Spring Valley, CA). Acute 
administration of 17-β-estradiol elevated serum estrogen 
concentration that peaked 30 min post-injection (441.35 ± 
47.10 pg/mL, n=3, p<0.0005) and remained significantly 
elevated for 6 hours (164.05 pg/mL ± 48.58, p=0.005). 
Within 24 h, estrogen levels returned to baseline (4.07 

Table 1: Serum estradiol levels in intact and OVX animals following i.p. administration of 17-β-estradiol (180μg/kg) 
or vehicle

Surgery Treatment BL 30 min 2 h 4 h 6 h 12 h 24 h

Intact Vehicle 3.53 ± 0.76 10.24 ± 4.58 8.72 ± 2.64 9.12 ± 2.92 8.26 ± 2.39 8.16 ± 3.75 11.84 ± 5.19

17-β 993.44 ± 498.30 857.50 ± 75.42 203.77 ± 50.29 103.51 ± 36.74 57.63 ± 43.83 3.29 ± 0.01

OVX Vehicle 2.57 ± 0.32 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0 < 3.0

17-β 441.35 ± 47.12 204.45 ± 95.55 157.08 ± 77.78 164.05 ± 48.58 8.40 ± 2.5 4.07 ± 0.48

Data are mean ± SEM (pg/mL).
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pg/mL ± 0.48, n=3). No significant fluctuation in serum 
17-β-estradiol level was observed in vehicle-treated, OVX 
rats (n=3) at any time over the 24 h post-injection.

17-β-estradiol induces SD events

Elevated estradiol levels are associated with 
an increase in MA frequency but not in migraineurs 

without aura. Moreover, MA is typically associated with 
SD events. Therefore, we next asked if 17-β-estradiol 
induced SD events in awake, freely moving, female 
rats. Dural electroencephalogram traces were recorded 
for 12 hours following either 17-β-estradiol (180μg/kg) 
or vehicle administration, according to the timeline in 
Figure 1A. Although 1/8 of intact rats treated with vehicle 
experienced a single SD event, no intact animals treated 

Figure 1: 17-β-estradiol administration induces SD events and pain behaviors in ovariectomized rats. (A) Schematic timeline of the 
procedures involved; electrode placement surgery is performed 1 week after ovariectomy and two days before dEEG recording. (B) 
Diagram of the electrode placement surgery. (C) A representative dEEG trace displaying a SD event with a propagation speed of 4mm/min. 
(D) 17-β-estradiol induced 1.1 ± 0.35 CSDs per animal (n=10) in ovariectomized rats, while none were elicited in intact rats (n=7). Vehicle 
had no significant effect on OVX (0.1 ± 0.1 SDs/animal, n=10) or intact (0.13 ± 0.13 CSDs per animal, n=8) rats over 12 hours. (E) Facial 
withdrawal threshold (FWT) is reduced by administration of 17-β-estradiol. Vehicle treated intact rats have a FWT of 7.85 ± 0.16 g (n=8), 
which is significantly reduced following estradiol administration (4.22 ± 1.11 g, n=8) or OVX and 17-β-estradiol administration 7 days later 
(3.99 ± 1.04 g, n=9). (F) Number of rearing events in 5 min following vehicle or 17-β-estradiol treatment in sham-operated animals was 
not significantly different from intact animals. 17-β-estradiol treated OVX animals (n=11) have significantly reduced rearing compared to 
estradiol treated intact animals (n=8). *p<0.05, **p<0.005 as compared to vehicle-treated, intact female rats (Kruskal-Wallis statistic = 26.8; 
Dunn’s multiple comparisons).
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with 17-β-estradiol had detectable SD events (n=7, Table 
2). We also observed a single SD event in 1/10 vehicle-
treated animals. In contrast, 6/10 OVX rats (60%) 
experienced SD events in 12 hours post administration 
of 17-β-estradiol compared to (Table 2). A total of 11 
estrogen evoked SD events observed in 6 OVX rats spread 
mainly parietal to frontal (8/11); 3/11 traveled frontal to 
parietal. Overall, 17-β-estradiol SD events propagated at a 
velocity of 9.26 ± 1.15 mm/min. Negative DC-shifts had 
amplitudes of 1.30 ± 0.12 mV and durations of 65.01 ± 
10.78 s (Table 2). Increases in the number of SDs induced 
was dependent on the interaction of the gonadal state 
and administration of exogenous 17-β-estradiol (2-way 
ANVOA, Interaction: F-value=8.318, p=.007, Figure 
1D) suggesting that removal of the ovaries increases 
susceptibility to 17-β-estradiol-induced SD events.

17-β-estradiol elicits pain behaviors after OVX

Induced SD events are not always associated with 
pain behaviors such as periorbital allodynia [52], and 
headache can occur independent from SD. Therefore, we 
evaluated pain behaviors in intact or OVX rats exposed to 
17-β-estradiol or castor oil. Animals were evaluated for 
periorbital mechanical allodynia with calibrated von Frey 
filaments; baseline mechanical thresholds were 7.85 ± 0.15 
g. Castor oil (vehicle) had no effect on facial sensitivity 
in naturally cycling (n=8) as compared to baseline values 
but administration of 17-β-estradiol significantly reduced 
mechanical threshold at 2 h in 5/8 intact rats (4.22 ± 1.11 g, 

p<0.05). Although OVX alone reduced facial withdrawal 
thresholds in 3/8 rats as compared to baseline values, 
overall hypersensitivity was not significantly different. 
17-beta estradiol administration further reduced facial 
withdrawal thresholds in 6/9 OVX rats (OVX: 3.99 ± 1.03 
g, p<0.005; Figure 1E). These data suggest that while loss 
of ovaries increases the percent of animals experiencing 
periorbital allodynia, administration of 17-β-estradiol 
induced periorbital allodynia regardless of gonadal state.

In addition to periorbital allodynia, suppression 
of exploratory behaviors was recently linked to 
preclinical migraine [54–56]. We determined if total 
times of exploration, ambulation, and fine movement, 
as well as rearing events, were decreased in rats 2 hours 
after exposure to high dose 17-β-estradiol or vehicle. 
Exploratory behaviors such as transitional exploratory 
events (i.e., chamber to chamber), ambulatory events, and 
fine movements were not significantly different between 
17-β-estradiol and vehicle controls suggesting that these 
behaviors were not suppressed (p = 0.05, 0.12, and 0.25, 
respectively) 2h after administration of 17-β-estradiol. 
The total number of rearing events was assessed over 30 
minutes, 2 h after vehicle or 17-β-estradiol administration. 
Rearing behavior was not significantly different between 
intact vehicle- and 17-β-estradiol- treated animals (52.73 
± 10.74, n=11 and 44.30 ± 6.21, n=10 respectively, p=0.85 
Bonferroni). The total number of rearing events over a 30 
min time course was significantly reduced in OVX vehicle 
treated rats (19.38 ± 5.23, n=8, p<0.05) and for OVX 
animals treated with 17-β-estradiol (9.857 ± 1.98, n=7, 

Table 2: CSD characteristics amongst groups

Surgery Group % Animals with 
SD

Speed of propagation 
(mm/min) Amplitude (mV) Duration (s)

Intact Vehicle 1/8
(12.5%) 7.70 1.05 43.00

17-β 0/7
(0.0%) N/A N/A N/A

OVX Vehicle 1/10
(10.0%) 7.70 2.64 118.00

17-β 6/10
(60%) 9.26 ± 1.15 1.30 ± 0.12 65.01 ± 10.78

ICI 0/6
(16.6%) N/A N/A N/A

17-β/ICI 0/6
(0.0%) N/A N/A N/A

Suma 0/6
(0.0%) N/A N/A N/A

17-β/Suma 0/6
(0.0%) N/A N/A N/A

17-β, 17-β-estradiol; ICI, ICI 732,138; Suma, sumatriptan; OVX, ovariectomy; SD, spreading depression.
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p<0.005 Bonferroni) compared to intact vehicle treated 
animals.

We next assessed if rearing reductions in OVX 
animals were due to exacerbation of post-surgical pain 
or a result of hormone fluctuations. A separate set of 
animals was generated in which sham-OVX surgeries 
were performed with rearing assessed before surgery and 
in the presence and absence of 17-β-estradiol (180 μg/kg). 
The total number of rearing events observed after sham-
OVX + vehicle was not significantly different from intact, 
vehicle treated rats (Figure 1E, 64.5± 7.7, n=6 vs. 52.7 
± 10.7, p>0.99, Bonferroni). Likewise, administration 
of 17-β-estradiol to sham-OVX rats did not significantly 
reduce rearing over the 30 min observation period (33.5 
± 5.6, p>0.99, Bonferroni). Thus, suppressed rearing 
observed in OVX + 17-β-estradiol animals was not likely 
due to exacerbation of post-surgical pain.

To determine if reduced rearing correlated to 
exploring new environment, we assessed events in 5 min 
bins. Most rearing events occurred in the first 5 minutes 
(Figure 1F), consistent with exploring a new environment 
and subsided to very few (i.e., 0-2 events) over the 30 min 
regardless of treatment. Consistent with the total rearing 
data, both vehicle (8.25 ± 1.79, n=8, p<0.05; Figure 1C) 
and 17-β-estradiol (3.00 ± 0.65, n=7, p<0.005) treated 
OVX animals reared less over the first 10 min as compared 
to intact, vehicle-treated rats. No differences were seen 
between sham-OVX rats and intact rats at any time point. 
Suppression of rearing was dependent on gonadal state 
only. These data, together with periorbital allodynia, 
indicate that 17-β-estradiol induced distinct manifestations 
of pain behaviors in both intact and OVX rats.

17-β-estradiol evoked CSD events and 
suppressed rearing requires estrogen receptors

Focusing on the OVX rats, which had a significantly 
higher number of SDs and prominent pain behavior, we 
asked if estrogen receptor activation was required for 

17-β-estradiol-induced SDs and suppression of rearing 
behaviors. We administered the estrogen antagonist ICI 
182,780 (10 mg/kg, i.p.) 2 hr before 17-β-estradiol or 
vehicle. 17-β-estradiol evoked SD events were blocked 
in the presence of ICI 182,780 (Table 1, Figure 2A). 
Importantly, ICI 182,720 did not elicit SD events when 
administered alone. Similarly, pretreatment with ICI 
182,780 significantly prevented 17-β-estradiol-induced 
suppression of rearing events in rats (12.5 ± 2.26, n=6, 
p<0.05; Figure 2B) within the 0-5 min period. Thus, 
17-β-estradiol induced SD events and pain behaviors 
required activation of estrogen receptors in OVX rats.

Sumatriptan prevents 17-β-estradiol evoked 
CSD events and suppressed rearing

We assessed the ability of the abortive anti-migraine 
therapeutic sumatriptan (0.6mg/kg, i.p.) to prevent 
17-β-estradiol SD events or rearing behaviors. Pre-
treatment with sumatriptan 2 hours before 17-β-estradiol 
prevented the induction of SD events (n=6; Table 1, 
Figure 3A) and did not induce SDs on its own. Since the 
majority of rearing events occurred within the 0-5 min bin 
of the 30 min total observation period, we evaluated the 
effects of sumatriptan intervention within this time-period. 
Sumatriptan pretreatment increased the number of rears in 
17-β-estradiol treated OVX animals (10.6 ± 1.95, n=10) 
back to that of OVX-vehicle treated rats (12.27 ± 3.14, 
n=6, p=0.21; Figure 3B).

DISCUSSION

Migraine with aura affects nearly 8% of 
migraineurs, the majority of whom are female [57–59]. 
In addition to the aura and headache, the patients suffer 
from a greatly diminished quality of life as evidenced by 
a greater absenteeism from work/school, less productivity, 
and less overall energy [60]. Increases in estrogen levels 
are implicated in the development of MA, but preclinical 

Figure 2: ICI 182,780 prevents estrogen induced SD and estrogen induced reduction in rearing. (A) 17-β-estradiol 180μg/kg induces 
SD events in OVX rats over 12 hours (1.4 ± 0.4 SDs, n=10) which is inhibited by ICI 182,780 10mg/kg, i.p. (0 ± 0 SDs, n=10). (B) 
17-β-estradiol reduction of rearing behavior over 5 minutes (n=6) is inhibited by pretreatment with ICI 182,780 10mg/kg, i.p. (n=6). 
*p<0.05; **p<0.005 (One-way ANOVA).
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studies of this phenomenon in female subjects are few 
[6]. Here, we examined the role of 17-β-estradiol in 
the induction of SD events and headache-like pain, two 
characterizing features of MA, in non-anesthetized female 
rats. We show that exogenous application of 17-β-estradiol 
elicits SD events and corresponding pain behaviors in a 
gonadal state (intact versus OVX) dependent manner. 
These events were prevented with both estrogen receptor 
antagonist and administration of the anti-migraine 
therapeutic sumatriptan.

Women are 3 times more likely to suffer from 
migraine headaches than males with reports of higher pain 
levels and incidence of aura [5, 61–64]. Plasma estradiol 
and progesterone levels in non-migrainous women not 
taking hormonal birth control are lower throughout the 
menstrual cycle compared to migraineurs [65], implicating 
these hormones in migraine pathology. Interestingly, 
female migraineurs without aura taking combined oral 
contraceptives (i.e., those containing estrogen) reportedly 
have increased migraine attacks in between courses- when 
serum estrogen levels drop or are at the lowest point [66]; 
serum estradiol levels peak following administration 
of oral contraception between 100-120 pg/ml [67–69]. 
In contrast, in migraineurs with aura, contraceptives 
with estrogen are associated with increased frequency 
and severity of migraine attack as well as increased risk 
of ischemic stroke [70] and are thus contraindicated; 
conversely, progesterone-only pills are not [71]. These 
clinical findings highlight the idea that fluctuations in 
ovarian hormones (e.g., estrogen) can differentially affect 
migraineur sub-populations [62].

In the present study, we found that a single 
supraphysiological dose of 17-β-estradiol (180 μg/kg) 
increased serum concentrations of 17-β-estradiol in both 
intact and OVX rats for up to 6 hrs. Observed serum 
17-β-estradiol levels were supraphysiological in animals 
mimicking reproductive (intact) and non-reproductive 
states (OVX) at values in line with patients with 
gonadotropinomas and other anterior pituitary tumors [72, 

73]. This use of a bolus, supraphysiological dose allowed 
for assessment of SD events and pain behaviors across 
a sharp increase and decrease in estrogen levels During 
migraine without aura, these can be times of headache 
relief. However, elevated levels of estradiol in women with 
MA, are associated with increases in migraine frequency 
and severity [74] and induction of CSD events [6, 14, 15, 
19, 75]. In our current investigation, SD events occurred 
30 min after 17-β-estradiol administration in OVX rats 
suggesting that changing estrogen levels were required 
to induce SD events; this was dependent on gonadal 
state and administration of 17-β-estradiol. Interestingly, 
SDs persisted after estradiol levels had returned to 
baseline values in some rats (up to 12 hours) indicating 
an increased susceptibility to neuronal dysregulation 
after 17-β-estradiol. These observations align with work 
done by Sachs and colleagues showing acute estrogen 
alone was able to induce CSDs in rat neocortical slices 
[33], as well as studies showing that chronic estrogen can 
reduce the threshold for initiation of KCl-induced CSDs in 
anesthetized, OVX rats [34]. Likewise, our findings align 
with Chauvel et al., showing that OVX plays a role in SD 
susceptibility and frequency in non-anesthetized, female 
rats after 17-β-estradiol.

CSD events are linked to the aura that precedes 
migraine headache in 30% of migraineurs and are separate 
phenomena from headache-like pain behaviors [43]. In 
assessing headache pain behaviors, this investigation shows 
that 17-β-estradiol induces periorbital allodynia in both 
naturally cycling and OVX rats to similar degrees. However, 
17-β-estradiol only suppressed spontaneous rearing behavior 
in OVX rats. Although OVX-vehicle treated rats reared less 
than intact rats at baseline, this was not an exacerbation of 
post-surgical pain [76, 77]. Our observations align with a 
recent study by An et al., showing that estrogen administered 
to OVX rats enhanced incision evoked tactile sensitivity 
[78] and suggests that estrogen fluctuation coupled to 
state of intactness may contribute to pain sensitivity. 
Given that periorbital allodynia (a reflex) and rearing 

Figure 3: Sumatriptan prevents estrogen induced SD and estrogen induced reduction in rearing. (A) Sumatriptan 0.6mg/kg, i.p. (0 ± 0 
SDs, n=6) inhibited 17-β-estradiol induced SD events in 12 hours with 2 h pretreatment. (B) 17-β-estradiol suppression of rearing behavior 
over 5 minutes (n=6) was inhibited by 2h pretreatment with sumatriptan 0.6mg/kg, i.p. (n=6). *p<0.05, **p<0.005 (One-way ANOVA).
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(a spontaneous behavior that is suppressed during pain) 
represent two independent perceptions [79], it is plausible 
that the underlying mechanisms driving the two behaviors 
in the presence of E2 differ and account for the different 
presentations observed in intact and OVX rats. While we 
observed periorbital allodynia for all rats receiving 17-beta-
estradiol, not all migraineurs experience this symptom [80]. 
Interestingly, presence of allodynia in patients corresponded 
with higher disability (suppression of normal behaviors); it 
is more prevalent in migraineurs with aura. These clinical 
observations may explain the dissociation of pain behaviors 
we observed (i.e., rearing behaviors only in OVX animals) 
and indicate a heterogeneous presentation of estradiol-
induced head pain in rats.

Estradiol acts at nuclear α- and β-estrogen receptors 
as well as the membrane receptor GPR30 [31, 32]. These 
estrogen receptors are located throughout the craniofacial 
pain axis and the central nervous system [81–84]. 
Fluctuations in estrogen levels or total loss of endogenous 
estrogens can lead to changes in receptor expression in 
migraine relevant regions [82, 85–87]. We show that the 
non-selective estrogen receptor antagonist ICI 182,780 
effectively prevented the induction of SD events and 
suppressed rearing behavior by 17-β-estradiol suggesting 
that estrogen receptors are required for these phenomena; 
identification of receptor sub-types responsible will 
require additional studies beyond the scope of this paper.

Triptans are first-line, abortive therapies for 
episodic migraine associated with high therapeutic gains 
and favorable side-effect profiles [88–91]. In the current 
study, we showed that pretreatment with sumatriptan 
prevented 17-β-estradiol induced SD events. In contrast 
to our observation, acute sumatriptan did not reduce 
cGMP- or KCl-induced CSD events in previous studies 
[92, 93]. Interestingly, sumatriptan effectively slowed 
propagation and reduced the amplitude/duration of retinal 
SD events in vitro [94, 95] suggesting that sumatriptan 
is capable of suppressing SD events. Differences in 
observations as reported within the migraine literature 
may reflect variability in subject sex, gonadal state (intact 
versus OVX), alertness (i.e., anesthetized/awake), model 
of SD induction (multiple/single events), and/or CNS 
penetration of sumatriptan under experimental conditions 
[89, 93, 96–99]. In addition to preventing SD induction, 
sumatriptan restored natural rearing behaviors to OVX, 
17-β-estradiol treated rats suggesting that this behavior 
was sensitive to migraine therapeutics and relevant 
toclinical manifestations of pain [60, 91–93, 100, 101]. 
These data are consistent with reports that triptans need 
to be on-board during prodrome for effect in migraineurs 
with aura, and that triptans are ineffective when taken 
during the headache phase [88, 91, 102–106].

Limitations of this study

While we provide a novel model of hormone-
mediated SD sensitivity, a few limitations to this study 

exist. First, although EEG recordings have been shown 
in animals and humans to represent a SD event, we do 
not have direct evidence using intracortical recordings that 
observed SD are cortical. In two animals (intact + vehicle 
and OVX+ vehicle), a single SD event was observed. 
While it is not possible to rule out induction of events 
in these animals due to endogenous factors such as the 
innate stress response or focal ischemia [107–109], no 
events occurred during the 2 h baseline recording nor at 
injection times suggesting that the stress associated with 
experimental execution was not responsible. Given that 
focal ischemia tends to produced negative shifts in DC 
potential of approximately 20mV in cortical recordings 
or 1-5mV shifts coupled with reduction in epidural EEG 
amplitudes during recordings [12], and our observed 
negative shifts were 1.05 and 2.64 mV, respectively, 
we cannot rule out a focal ischemic event triggering the 
observed SD events in these 2 rats. However, “energy–
compromised” tissue (e.g., ischemic) induced events 
are typically evidenced by non-spreading depression or 
by peri-infarct depression where a negative shift in DC 
potential is not coupled to a reduction in ECoG amplitude 
[12]. Second, intact rats were assessed only in diestrus 
when estrogen levels are at their lowest [6, 110]; only 
OVX rats exhibit estradiol-induced SDs lending credence 
to use of intact rats during this phase. This provides a 
proof of concept that female sex hormones can induce 
highly reproducible SD. Third, we used a high dose of 
estradiol to induce SD events; this does not preclude the 
efficacy of lower doses in this model. Fourth, the acute 
administration and rapid onset of 17-β-estradiol in our 
model does not replicate most migraineurs but does allow 
for the induction and analysis of SD across estrogen peaks 
and falls.

MATERIALS AND METHODS

Animals

Female, Sprague Dawley rats (275-300g) purchased 
from Harlan (Indianapolis, IN) were housed in a climate 
controlled room on a regular 12 hour light/dark cycle with 
lights on at 7:00 am with food and water ad libitum. All 
procedures were performed during the 12-hour light cycle 
and according to the policies and recommendations of the 
International Association for the Study of Pain, the NIH 
guidelines for laboratory animals, and were approved by 
the IACUC of the University of Arizona.

Drugs

Ketamine/xylazine was purchased from Western 
Medical Supply (Arcadia, CA). 17-β-estradiol, ICI 
182,780 and sumatriptan were purchased from Tocris 
(Ellisville, MO). 17-β-estradiol and ICI 182,780 were 
dissolved in castor oil to appropriate concentrations the 
day of experiments. Sumatriptan was dissolved in saline. 
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Castor oil and sterile saline (0.9%) served as appropriate 
controls. All drugs were administered via intraperitoneal 
(i.p.) injections.

Removal of ovaries

Rats were anaesthetized with ketamine:xylazine 
(dose: 80:12 mg/kg, 1ml/kg) and ovariectomized [54]. 
The ovaries were removed via a bilateral side approach, 
whereby a 3-5 mm incision is made through the skin, 
fascia and muscle. Ovarian arteries were ligated and the 
ovary excised. Prophylactic gentamicin 8mg/mL, 1mL/kg 
was delivered i.p. following surgery. The rats recovered 
for 7 days before implantation of recording electrodes and/
or any experiments (Figure 1A).

Vaginal smears

Estrous cycles of intact female rats were monitored 
by daily vaginal smears. The vaginal smears were 
interpreted as described by Goldman et al [110]. Briefly, 
vaginal openings were flushed with 200 μL of sterile 
saline. Fresh samples were evaluated for cytology at the 
same time daily for 8 days using a Zeiss Axioskop 40 
(10x/0.3 numerical aperture EC Plan-Neofluar objective). 
CSD events, serum concentrations, and pain behaviors 
were assessed in the morning on diestrus day 2 by 
cytology.

Serum estrogen concentration

Serum concentrations of E2 before and at 30 min, 
2, 4, 6, 12 and 24 hours post injection of either a dose of 
17-β-estradiol (180 μg/kg, i.p., n=3/time-point) [55, 113] 
or vehicle (castor oil, 1ml/kg) were determined. Briefly, 
blood samples were drawn via intracardiac puncture under 
isoflurane anesthesia (5% induction, 2.5% maintenance 
in air- 2L/min); animals were then decapitated. Samples 
were allowed to clot for 30 min at RT then spun in 
microcentrifuge tubes at 10,000 RPM for 30 min at 4°C to 
separate serum from erythrocytes. Serum was collected, 
flash frozen in liquid nitrogen, and kept frozen at -80°C 
until day of concentration determination. An enzyme 
linked immunosorbent assay (ELISA) kit for rat estrogen 
(E2) was purchased (Calbiotech, Spring Valley, CA) and 
performed according to manufacturer’s instructions.

Implantation of recording electrodes

Silver chloride (AgCl) electrodes were prepared by 
flaming 0.25mm Ag wire (A-M Systems, Inc., Everett, 
WA) into spherical tips (1mm diameter) and subsequently 
coating the tips with chloride as previously reported 
[43]. Rats were anaesthetized with ketamine/xylazine, 
as above, 7 days post-ovariectomy. The rats were fixed 
to a stereotaxic frame (Stoelting) and three burr holes 
were drilled through the skull using a manual drill to 

allow placement of the AgCl recording electrodes. The 
frontal and parietal lead electrodes were placed in the 
right hemisphere 2 mm lateral and 1.5 mm anterior to 
bregma and 2 mm lateral and 2.5 mm posterior to bregma, 
respectively; the reference electrode was placed 7.5mm 
posterior to bregma (Figure 1B). Two screws (#MPX-080-
3F-1M, Small Parts Inc., Miami Lakes, FL) were fastened 
into the left hemisphere of the skull separated by 2mm 
without going through the skull. The front screw served 
as a mounting support to assist in anchoring the multi-pin 
connector. The back screw served as a ground electrode, 
which was made by soldering silver wire onto the head 
of the screw. The four electrodes (three silver chloride 
electrodes and one ground electrode) were soldered 
into the bottom of a multi-pin connector (Continental 
Connector, Hatfield, PA) and the apparatus was fixed into 
place using dental cement.

Electrophysiological recordings

Forty-eight hours after dural electrode implantation, 
rats were placed in a recording chamber (40 cm L x 49 
cm W x 37 cm H) and the multi-pin connector attached 
to an electro-cannular swivel (#CAY-675-6 commutator, 
Airflyte, Bayonne, NJ) mounted in the ceiling of the 
chamber. The swivel allowed rats to move freely about the 
chamber during the recording period. Animals habituated 
to the chamber for two hours prior to any pharmacological 
intervention to permit electrical recordings to stabilize. 
Only those rats with stable electrical recordings were 
included in experimental groups. Signals led to separate 
DC and AC amplifiers (Grass Model 15 amplifier system, 
15A12 DC and 15A54 AC amplifiers, West Warick, 
RI) through insulated cables and collected with dEEG 
recording analysis software Gamma v.4.9 (Astro-Med, 
Inc. West Warick, RI). Following 17-β-estradiol or vehicle 
injection, the rats were observed for 12 hours without 
interruption. Subsequent to dEEG recordings, animals 
were sacrificed and cemented electrodes were carefully 
removed to ensure there was no damage to the dura. 
Data from rats with damaged dura were excluded from 
analysis.

Electrophysiological recording analysis

Following electrophysiological recording, the 
data were reviewed with Gamma Reviewer (Astro-Med, 
Inc. West Warick, RI) and analyzed for the SDs offline. 
SD events were determined by the DC shifts that were 
calculated from both the frontal and parietal electrodes 
that recorded the shifts. Cortical activity was defined as 
depressed during these events by measuring the significant 
reductions in both the power and amplitude of the dEEG 
tracings (i.e., recorded electrical activity was only 
considered an SD event when in both frontal and parietal 
electrodes: 1) the AC current was reduced by half; 2) the 
DC current exhibited a downward shift by a minimum of 
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1mV; and 3) for a minimal duration of 30 s [12, 41, 42, 
44, 50]; Figure 1C). The velocity of SD propagation was 
determined by analyzing the difference in time of onset 
of DC current depression between the frontal and parietal 
electrodes and dividing into 4mm (the distance between 
the two electrodes).

Activity testing

Activity testing was conducted using behavioral 
techniques similar to those previously described [43, 
51, 56, 114, 115]. Rats were acclimated to the testing 
room, but not to the activity recording chambers for 1 
hour prior to injection. Rats were then administered an 
estrogen antagonist (ICI 182,780), sumatriptan, or vehicle 
2 hours prior to 17-β-estradiol or vehicle injection. Two 
hours after the second injection, animals were placed in 
individual recording chambers (41 cm long X 41 cm wide 
X 39 cm high, Tru Scan Photobeam system: Coulbourn 
Instruments or 27.5 in long X 8.75 in wide X 13.125 in 
high, Place Preference system: San Diego Instruments). 
Each Tru Scan chamber has 2 photobeam sensor rings 
that measure all movements in 3 dimensions. One ring 
is located near the floor of the chamber measuring all 
horizontal movements including time, distance, and 
velocity of movements. The second ring is at the same 
fixed height across all chambers and records the vertical 
movements (i.e. rearing behavior) including the number 
of plane breaks and time the rat is vertical. Locomotor/
exploratory activity was recorded and analyzed using 
Tru Scan software v.3.11 (Coulbourn Instruments). The 
Place Preference system records movement with a 4 X 16 
photobeam array providing x,y movement, captured into 
PAS Software (San Diego Instruments) which displays 
the information as exploration, ambulation, and fine 
movements. Vertical rears were counted each time a rat 
stood on both hind paws without grooming.

Periorbital mechanical allodynia

Rats were acclimated to testing box 1 hour prior to 
evaluation of periorbital mechanical allodynia with von 
Frey filaments as previously described [43]. Behavioral 
responses were determined by applying calibrated von 
Frey filaments perpendicularly to the midline of the 
forehead at the level of the eyes with sufficient force 
to cause the filament to slightly bend while held for 5 
seconds. A response was indicated by a sharp withdrawal 
of the head. Mechanical thresholds were evaluated at 
baseline, 6 days post OVX before drug administration, and 
2 hours post 17-β-estradiol (180 μg/kg) or vehicle (castor 
oil, 1ml/kg) administration by an observer blinded to drug 
administration.

Statistical analysis

Prism software was employed to perform statistical 
analysis. All data are expressed as mean ± standard error of 
the mean (SEM). SD data was statistically compared using 
a one-way ANOVA and Student’s-Neuman-Keul’s post-
hoc test. Statistical significance of periorbital allodynia 
was determined by repeated measure two-way ANOVA 
to analyze differences among treatment groups with a 
Bonferroni test applied post-hoc. In rearing experiments, 
data were expressed as mean ± SEM. A one-way ANOVA, 
Bonferroni post-hoc was used or an unpaired t-test with 
Welch’s (2 group) correction to determine statistical 
significance. Data were accepted as statistically significant 
when p ≤ 0.05.

CONCLUSION

While estrogen withdrawal is associated with 
induction of migraine without aura in humans [67], 
elevated estradiol likely contributes to MA. Here, 
utilizing awake adult-female rats measuring both pain 
behaviors and cortical spreading depression as a marker 
for MA, we link 17-β-estradiol levels [111, 112] to 
induction of CSD events and generation of pain behaviors 
in OVX rats. Our studies validate 17-β-estradiol as an 
exogenous stimulus that recapitulates several aspects of 
clinical migraine with aura including induction of pain 
behaviors and therapeutic responsiveness suggesting that 
both the direction, rate of change, and basal set point of 
estrogen levels may influence migraine pathogenesis 
[14, 43].
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