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ABSTRACT
O-GlcNAc Transferase (OGT) resides in both cytosolic and nuclear compartments 

and catalyzes O-GlcNAcylation of myriad proteins. Numerous excellent reviews 
concerning roles of OGT in organismal and cellular physiology have exist, and aberrant 
OGT and protein O-GlcNAcylation have been implicated in progression and metastasis 
of different cancer types. Thus, understanding the regulation mechanisms of OGT 
and O-GlcNAcylation in tumor cells and their difference compared to non-tumor cells 
may elucidate new mechanisms related to tumor generation and development, could 
provide a new marker to diagnosis and prognosis in patients with cancer and indicate 
a new target to cancer chemotherapy. While it has become evident that OGT plays 
critical roles in cancers, it remains unclear how they are deregulated. This review 
provides an overview of our current knowledge about the known/potential regulation 
of OGT, and also discusses the inhibition of OGT as a potential novel therapeutic target 
for cancer treatment.

INTRODUCTION

O-GlcNAcylation is the covalent connection of 
O-GlcNAc sugars to serine or threonine residues of 
nuclear and cytoplasmic proteins in metazoans [1–5]. 
Like phosphorylation, O-GlcNAcylation is an inducible, 
reversible, and dynamic posttranslational modification. 
To date, more than 4,000 O-GlcNAcylated proteins have 
been detected [6] and these proteins have been involved 
in nearly every aspect of the cellular physiology [7], 
including gene expression [8–11], metabolism [12–16], 
cellular stress responses [17, 18], signal transduction 
[19, 20], and proteostasis [21–24] in response to nutrient 
availability [7, 25]. Given the myriad functions concerned 
with O-GlcNAcylation, it is exceedingly reasonable that 
this posttranslational modification plays a fundamental 
role in the etiology of tumors [6, 14, 26–28]. Indeed, 
O-GlcNAcylation is deregulated in many cancer types, 
including breast [29, 30], pancreatic [31], prostate [32, 
33], colorectal [34, 35], lung [34], liver [36], gastric 
[37, 38], laryngeal [39], bladder [40], endometrial [41], 

esophageal squamous cell carcinoma [42], and nonsolid 
cancers such as chronic lymphocytic leukemia [43], and 
contributes to cancer cell metabolic reprogramming, cell 
proliferation, survival, angiogenesis, invasion, metastasis 
and cancer cell epigenetics [14, 44]. 

Unlike phosphorylation, which is orchestrated 
by hundreds of phosphatases and kinases, O-GlcNAc 
cycling is regulated by a unique pair of highly conserved 
enzymes that add and hydrolyze O-GlcNAc moieties 
from target proteins. OGT catalyzes the transferal of 
O-GlcNAc moieties from the donor substrate UDP-
GlcNAc to proteins and OGA removes the sugar [45]. 
Thus it can be seen that both OGT and OGA are essential 
to biological processes in which O-GlcNAc participates 
and alteration of either of them plays a decisive role in 
O-GlcNAc-induced carcinogenesis. Actually, deregulation 
of OGT appears to be an important cause of tumorigenesis 
and tumor aggravation, as levels of OGT are positively 
correlated with O-GlcNAcylation in all cancers examined 
except for live cancer [29, 31, 32, 34–38, 42, 43, 46–48]. 
Understanding how OGT is regulated will be helpful in 
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clarifying the whole process that OGT and subsequent 
O-GlcNAcylation are involved in cancers. This review 
highlights findings on OGT regulation, focusing on the 
regulation of OGT expression, degradation, enzyme 
activity, substrate selectivity and cellular localization. 

FUNCTIONAL ROLE OF OGT AND 
O-GLCNACYLATION 

Many OGT targets implicated in diversified cellular 
processes have already been explored and to date, many 
excellent reviews on O-GlcNAc functions have been 
published [7, 49–56]. Thus, in this review, the main 
functions of OGT and O-GlcNAcylation are summarized 
briefly as follows: 

Regulation of transcription 

More than 25% of O-GlcNAcylated proteins 
are involved in transcriptional regulation [52]. This 
modification can affect the functions of transcription 
factors by several means, including protein-protein 
interaction (e.g., NF-κB, STAT5a, CREB, YY1, PGC-
1α, etc.), protein stability (e.g., p53, ER-α, ER-β, etc.), 
nucleo-cytoplasmic translocation (e. g., NeuroD1, 
CRTC2, NFATc1, Elf-1, etc.), transcriptional activity 
transactivation (e.g., c-Myc, FoxO1, etc.), DNA binding 
activity (e.g., Pdx-1, C/EBPβ, etc.) and expression (e.g., 
MafA, Id2, USF, etc.) [49, 52]. 

Regulation of epigenetic programmes

Histones are modified by O-GlcNAc and histone 
O-GlcNAcylation regulates mitosis, chromatin dynamics 
and gene expression [28]. Moreover, diverse proteins 
which are related to the regulation of histone modification 
and DNA methylation such as HCF-1, EZH2 and TET 
are regulated by OGT [28, 57–59]. HCF-1 can interact 
with several kinds of histone modifying enzymes such as 
histone methyltransferases MLL5, demethylase LSD1, 
HATs and HDACs, and recruit these enzymes to chromatin 
[28]. Recently, OGT is found to promote proteolytic 
maturation of HCF-1, thus OGT can mediate these histone 
modifications indirectly via HCF-1 [60, 61]. EZH2 is a 
histone methyltransferase which can catalyze the formation 
of H3K27me3 by transfering methyl groups to the K27 
residue of histone H3 [62]. OGT interacts with EZH2, 
glycosylates it at Ser75 and improves its protein stability [62]. 
TET proteins catalyze the hydroxylation of 5-methylcytosine 
(5 mC) to 5-hydroxymethylcytosine (5 hmC) and further 
to 5-formylcytosine (5 fC) and 5-carboxylcytosine (5caC) 
[63]. TET1, TET2 and TET3 are all O-GlcNAcylated by 
OGT and OGT promotes the cytoplasmic relocation of 
exogenous TET3, the protein stability of TET1 [64]. In turn, 
TET2 and TET3 recruit OGT to the chromatin and facilitate 
O-GlcNAcylation of histone H2B [65, 66]. 

Regulation of cell signalling

O-GlcNAc modification palys a fundamental role in 
regulating nutrient- and stress-induced signal transduction 
[67]. The crosstalk between O-GlcNAcylation and 
O-phosphorylation of proteins controls insulin signalling. 
Upon insulin stimulation, PIP3 targets AKT and PDK1 
to the cell membrane, where AKT is phosphorylated and 
activated by PDK1. Interestingly, insulin stimulation also 
causes PIP3 to drive the localization of OGT from the 
nucleus to the plasma membrane, then OGT is tyrosine 
phosphorylated by insulin receptor (IR), leading to 
increase OGT activity [68]. Multiple downstream targets 
of this signaling pathway including IR-β, IRS-1 and AKT, 
are O-GlcNAcylated and inhibited by activated OGT, 
resulting in an attenuation of insulin signal transduction 
[19, 69–71]. 

Response to stress 

Global O-GlcNAc levles are induced by diverse 
forms of cellular stress; for instance, thermal stress [72]. 
Knockout of OGT gene using the Cre/loxP system or 
knockdown of OGT by RNAi reduces cells’ tolerance to 
stress [72]. These findings suggest that O-GlcNAcylation 
protects cells against stress. O-GlcNAc mediates stress 
tolerance by different mechanisms, including inhibiting 
protein degradation or protein deposition [73, 74], 
inducing the expession of Hsp70 and Hsp40 [72], 
promoting interactions of Hsp70 with O-GlcNAcylated 
proteins during stress [23] and reducing capacitive calcium 
entry [56]. 

Regulation of cell cycle 

Ogt deletion in mouse embryonic fibroblasts 
increases levels of p27, a cyclin-dependent kinase 
inhibitor, blocks cell division and causes cell death 
[75]. In Hela cells, altered O-GlcNAc level caused by 
overexpression of OGT or O-GlcNAcase prolongs M 
phase, disrupts mitotic phosphorylation and alters the 
expression of cyclins A and B in the Late M Phase [76]. 
Raising levels of O-GlcNAc by PUGNAc delays G2/M 
progression; conversely, lowering O-GlcNAc level by 
DON (a glutamine fructose-6-amidotransferase inhibitor) 
promotes the course of cell cycle [76]. Together, these data 
indicate that O-GlcNAc plays a critical role in cell cycle 
progression and cell division. 

Regulation of O-GlcNAc signalling 

As a nutrient/stress sensor, O-GlcNAc signaling 
can response to various endogenous and exogenous cues 
transiently, thus its dynamic process must be controled 
tightly and temporally. According to various reports, 
increased O-GlcNAc levels increase OGT expression and 
decrease OGA expression, suggesting that a feedback loop 
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exists to maintain O-GlcNAc homeostasis [77–79]. It can 
thus be inferred that modulation of gene expression of 
OGT and OGA is likely to be one mode of moderation for 
the O-GlcNAc cycling. However, fluctuations in cellular 
O-GlcNA levels often occur in minutes, which are faster 
than gene expression regulation [19, 80, 81]. For example, 
stimulating Jurkat T cells with T-cell receptor (TCR) 
for 5–10 min, the O-GlcNAc level of the transcription 
factor NFATC1 increases~14-fold; similarly, O-GlcNAc-
modified NFATc1 levels are rised evidently after 5–10 
min in BJAB cells and primary human T lymphocytes 
which are stimulated by IgM and TCR respectively [80]. 
Thus, the factors affecting activities of OGT and OGA 
such as their posttranslational modifications may be the 
primary regulators of O-GlcNAc signalling under transient 
response.

FUNCTIONAL SIGNIFICANCE OF OGT 
AND O-GLCNACYLATION IN NORMAL 
BIOLOGY

OGT is found in all metazoans [82]. Ogt-1 is 
the Caenorhabditis elegans homolog of OGT, and is 
important for worms’ embryogenesis at high temperatures 
[83]. However, under normal physiological conditions, 
Ogt-1 is not essential for development and morphogenes 
of Caenorhabditis elegans [84]. It doesn’t mean that OGT 
is not important in the course of Caenorhabditis elegans’ 
life, because OGT-1 modulates their metabolism and 
longevity [84–86]. Knockout of ogt-1 in Caenorhabditis 
elegans suppresses dauer formation and lipid stores [84], 
elevates trehalose levels and glycogen stores [84], and 
reduces median adult lifespan [85, 86]. OGT-1 removal 
also appears to promote autophagosome maturation in a 
nutrient-dependent manner [87] and deregulate UV stress- 
and immune-responsive genes [85, 88]. 

Super sex combs (sxc) is the Drosophila homolog 
of OGT, and is necessary for larval development during 
embryogenesis because sxc mutation in larvae results 
in posterior displacement of most segments, and no 
sxc- homozygotes can survive beyond the completion of 
embryogenesis [89]. Maternally rescued sxc- Drosophila 
which will deplete the maternally supplied sxc several cell 
divisions later, can grow from the embryonic stage to the 
pupal stage [89–91], although can not enter the mature 
period (adults) [89, 92]. These results indicate that, in 
Drosophila, OGT is not essential in dividing cells [82].

Different from what we find in Caenorhabditis 
elegans and Drosophila, OGT is indispensible for cellular 
viability in mammalian systems and complete knockout 
of OGT results in embryonic lethality due to incomplete 
embryogenesis [75, 93]. Conditional knockout of mouse 
Ogt gene using the Cre/loxP system in thymocytes 
significantly inhibits the production of mature T cells and 
induces apoptosis [75]. Fibroblasts derived from floxed 
Ogt embryos and transfected with the Cre recombinase 

to block Ogt expression, exhibit no alteration in protein 
synthesis and degradation, but grow old rapidly and die 
after 12 days [75]. Neuron-specific knockout of Ogt in 
mice reduces their size, deprives their locomotor activity, 
increases the level of total tau and hyperphosphorylated 
tau, and causes death within 10 days of birth [75]. Only 
12% of the cardiomyocyte-specific OGT knockout 
(cmOGT KO) mice survive to weaning age and only 
5% of male mice survive to adult [94]. Freshly weaned 
cmOGT KO male mice are observably smaller, undergo 
fibrotic, dilated cardiomyopathy [94].

ALTERED LEVELS OF OGT AND 
O-GLCNACYLATION IN CANCERS AND 
THEIR INVOLVEMENT IN MALIGNANT 
TRANSFORMATION AND CANCER 
PROGRESSION 

The contribution function of alterations in O-GlcNAc 
signaling in the onset, progression and metastasis of cancer 
has been heavily reported recently [27, 45, 54] (Table 1). 
Elevated O-GlcNAcylation and OGT levels are existed in 
breast cancer cell lines and patient tissues [29, 30, 95, 96], 
and induce tumorigenesis and metastasis via FoxM1 and 
E-cadherin respectively [29, 30]. O-GlcNAcylation, OGT 
and hexosamine biosynthetic pathway (HBP, a branch of 
glucose metabolism, controls the level of intracellul UDP-
GlcNAc) related proteins are all up-regulated in prostate 
cancer tissues [33, 97], and the hyper-O-GlcNAcylation 
causes invasion through inhibiting the formation of the 
E-cadherin/catenin complex and inducing the expression of 
MMP-2 and MMP-9 [32, 33]; in addition, targeting OGT 
reduces angiogenic potential and VEGF expression via 
FoxM1 in prostate cancer [32], and increased O-GlcNAc 
level associates with the poor prognosis of prostate cancer 
patients [98]. OGT and O-GlcNAcylation elevations are 
examined in lung and colon cancer tissues and cell lines, 
and contribute to the etiology and progression of cancer 
[34, 35]. Tumor reoccurrence in patients undergoing liver 
transplantation results in rising O-GlcNAc levels and 
reducing OGA expression in the cancerous region, but has 
no significant correlation for OGT levels [36]. Moreover, the 
migrating and invasive capability of HepG2 is heightened 
by elevated O-GlcNAcylation, because this modification 
decreases E-cadherin expression and increases MMP-1, 
MMP-2 and MMP-3 expression [36]. OGT mRNA level and 
protein O-GlcNAc modification are progressively increased 
during the carcinogenesis of gastric cancer, and patients 
with hyper-O-GlcNAcylation have poor prognosis [37, 38, 
99]. Reduction of O-GlcNAcylation by OGT siRNA inhbits 
and increment of this modification by OGA inhibitors 
enhances cell proliferation and tumor growth of gastric 
cancer through regulating the activation of ERK signaling 
pathway and the expression of CDK-2 and cyclin D1 [37]. 
OGT silencing also induces apoptosis of gastric cancer by 
inducing the expression of PUMA and cleaved caspase-3 
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[99]. Upregulation of O-GlcNAcylation by Thiamet-G, an 
OGA specific inhibitor, enhances invasion of gastric cancer 
cells in vitro partially via PI3K/AKT signaling pathway 
[100]. Increased HBP flux, elevated OGT level and reduced 
OGA level lead to hyper-O-GlcNAcylation in human 
pancreatic ductal adenocarcinoma [31]. Downregulation 
of O-GlcNAcylation via OGT knockdown suppresses cell 
proliferation in vitro and tumor growth in vivo, and induces 
apoptosis through decreasing transcriptional activity of 
NF-κB [31]. The levels of O-GlcNAc, OGT and OGA 
are all up-regulated in laryngeal cancer tissues, and they 
boost tumor enlargement and lymph node metastasis, 
indicating that hyper-O-GlcNAcylation acts as a poor 
prognostic marker [39]. The mRNA expression of OGT 
in bladder cancer patients is higher that that in healthy 
persons, and the OGT level is positively related to degree 
of histological differentiation (grade II and III > grade I) 
[40]. Moreover, hyper-O-GlcNAcylation may trigger 
invasion of bladder cancers because the amount of OGT 
expressed in invasive or advanced cancers is larger than 
that expressed in early cancers [40]. Similar phenomena is 
identified in endometrial cancer, that the expression of OGT 
and OGA is visibly higher in tumors of grade II and III than 
in grade I, and they contribute to myometrial invasion [41]. 
Compared to the normal tissues, OGT and O-GlcNAcation 
are higher in esophageal squamous cell carcinoma 
samples [42]. Although OGT expression isn’t discovered 
clear correlation with tumor size, the clinical stage and 

metastatic lymph nodes, O-GlcNAcation level is higher in 
esophageal squamous cell carcinoma tissues with lymph 
node metastasis [42]. Changes in O-GlcNAc, OGT and 
OGA in anaplastic thyroid cancer have not been described, 
however several research groups have found that increased 
O-GlcNAcation is closely related to the development of 
this cancer [101–103]; Krzeslak et al. showed that up-
regulation of O-GlcNAc level by PUGNAc or OGA siRNA 
increased cell proliferation of anaplastic thyroid cancer 
via the stimulation of IGF-1/AKT1/GSK3β/cyclin D1 
pathway partially [101]; Cheng and colleagues determined 
that O-GlcNAcylation enhanced not only cell proliferation 
but also colony formation ability, migration and invasion 
of anaplastic thyroid cancer cells in vitro [102], and Zhang 
et al. observed that elevated O-GlcNAcylation acquired 
by OGA inhibition or OGT overexpression induced the 
invasion of anaplastic thyroid cancer cells rather than 
cell proliferation partially by PI3K/AKT signaling [103]. 
Increased O-GlcNAcylation, OGT and UDP-GlcNAc levels 
are also detected in lymphocytes of chronic lymphocytic 
leukemia patients [43]; unlike what we have obtained in 
above-mentioned tumor types, higher O-GlcNAc levels 
in chronic lymphocytic leukemia patients depress CD38 
expression, prolong ymphocyte doubling times and 
indicate a relatively good prognosis [43]. Distinguishingly, 
O-GlcNAcylation is decreased in ovarian tumors compared 
with normal tissue [104]; however, O-GlcNAcylation 
augments the migration and invasion of SKOV3 and 59M 

Table 1: Cancer type-specific expressions and functions of OGT and O-GlcNAcylation

cancer type OGT/ O-GlcNAc 
expression targeted pathways targeted proteins

Breast [29, 30, 95, 96] ↑/↑ tumorigenesis↑, metastasis↑ FoxM1↑, E-cadherin↓

Prostate [32, 33, 97, 98] ↑/↑ invasion↑, angiogenesis↑ E-cadherin/catenin complex↓, 
MMP-2↑, MMP-9↑, FoxM1↑

Lung [34] ↑/↑ progression↑, invasiveness↑ unknown
Colon [34, 35] ↑/↑ progression↑, invasiveness↑ unknown

Liver [36] -/↑ metastasis↑, invasion↑ E-cadherin↓, MMP-1↑, MMP-2↑, 
MMP-3↑

Gastric [37, 38, 99, 100] ↑/↑ cell viability↑, apoptosis↓, 
invasion↑

CDK-2↑, cyclin D1↑, pERK1/2↑, 
PUMA↓, caspase-3↓, pAKT↑

Pancreatic [31] ↑/↑ cell proliferation↑, apoptosis↓ NF-κB↑
Laryngeal [39] ↑/↑ Tumor growth↑, metastasis↑ unknown
Bladder [40] ↑/↑ invasion↑ unknown
Endometrial [41] ↑/↑ invasion↑ unknown
Esophageal [42] ↑/↑ metastasis↑ unknown

Anaplastic thyroid [101–103] unknown cell viability↑,
invasion↑ pAKT↑

CLL [43] ↑/↑ aggression↓ pAKT↓, TNF-α↓, pJNK↓
Ovarian [48, 104, 105] ↓/↓ migration↑, invasion↑ RhoA↑, E-cadherin↓
pERK1/2, phosphorylated ERK1/2; pAKT, phosphorylated AKT; CLL, chronic lymphocytic leukemia; pJNK, c-Jun 
N-terminal kinase; -, no change; ↑, upregulated; ↓, downregulated.
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ovarian cancer cells via the RhoA/ROCK/MLC signaling 
pathway [105] or E-cadherin [48]. 

REGULATION OF OGT EXPRESSION AND 
PROTEIN STABILITY IN NORMAL CELLS

Transcription 

In colon macrophages, the transcription factor 
Nrf2 binds to the OGT promoter region and increases 
gene transcription [106]. Elevated OGT protein mediates 
the up-regulation of STAT3 O-GlcNAcylation at 
Thr717 and this modification leads to decreased STAT3 
phosphorylation, which is accompanied by exacerbated 
colonic inflammation and inflammation-driven 
tumorigenesis [106]. Interestingly, Cullin-3 can depress 
Nrf2-induced OGT expression via Nrf2 degradation, 
inhibit STAT3 O-GlcNAcylation, promote STAT3 
phosphorylation correspondingly and then protect against 
intestinal inflammation [106].

Post-transcription 

Several miRNAs have been validated to interact 
with 3’-UTRs of OGT mRNAs and lead to the suppression 
of OGT expression [107, 108]. MiR-423-5p can induce 
apoptosis of cardiomyocytes through binding to OGT 
mRNA and decreasing OGT protein level [107]. miR-
15b has also been described as negative regulator of OGT 
[108]; Liu et al. documented that miR-15b can target 
OGT and inhibit O-GlcNAcylation of NF-kB, resulting in 
differentiation suppression of Th17 cells both in vivo and 
in vitro [108].

Protein stability 

OGT is observed to interacts with the 
tetratricopeptide repeat binding site of Hsp90 in 
endothelial cells and inhibition of Hsp90 destabilizes 
OGT and enhances its degradation by the proteasome 
[109]; however, the precise mechanism underlying 
Hsp90-induced OGT protein stability remains unclear. 
Hypoxia or hypoxia-mimetic agents can reduce OGT 
protein levels rather than its gene expression to induce 
endothelial inflammatory response [110]; hypoxia 
stimulates generation of ROS/RNS which heightens 26S 
proteasome activity [110]; activated 26S proteasome 
works in coordination with E3 ubiquitin ligase β-TrCP1 
to achieve proteasomal degradation of OGT [110]. 

Unknown mechanisms 

In human aortic smooth muscle cells, high glucose 
increases OGT expression, however Cr3+ significantly 
inhibites glucose-induced OGT expression and exhibits 
antioxidant and antiproliferative effects [111]. 

REGULATION OF OGT EXPRESSION AND 
PROTEIN STABILITY IN CANCER

Transcription 

The elevation of OGT mRNA levels in non-small 
cell lung cancer and prostate cancer cells is partly due 
to the hyper-activated MAPK/ERK signaling [112]. 
Over-expression of constitutively activated MEK1DD 
induces OGT transcription via transcription factor Elk-
1, while suppression of MAPK/ERK signaling by a 
MEK inhibitor U0126 greatly reduces OGT mRNA level 
[112]. Moreover, elevated O-GlcNAcylation rescues the 
inhibitory effect of ERK inactivation on cell proliferation 
and clone-forming ability of H1299 cells [112]. In 293T 
cells, E2F1 transcription factor can directly bind to the 
OGT promoter and repress endogenous OGT protein 
level and RB1 is required for E2F1-mediated suppression. 
[113]. It is reported that glucose deprivation increases 
protein O-GlcNAcylation through up-regulation of OGT 
in cancerous cells [78, 79, 114]; Cheung et al. discovered 
that, in Neuro-2a neuroblastoma cells, the increase of 
OGT mRNA and protein expression induced by glucose 
deprivation was due to the activation of AMPK [77]; 
however, Taylor et al. found that, in contrast to HepG2 
cells cultured under normal condition, glucose-treated 
HepG2 cells expressed increased OGT through decreasing 
hexosamine flux rather than activating AMPK pathway 
[78, 79].

Protein stability 

OGT protein can be degraded by the ubiquitin-
proteasome pathway and the autophagy pathway [60, 
109, 110, 115]. As mentioned earlier, beyond its well-
known role as the O-GlcNAc transferase, OGT also can 
hydrolyze HCF-1 to achieve the maturation of HCF-1 [60, 
61]. HCF-1, in turn, stabilizes OGT against proteasomal 
degradation in several kinds of tumor cells [60] (Figure 
1A). Nearly one half of the total nuclear OGT forms 
stable complexes with HCF-1 in Hela cells [60]. And a 
positive correlation exists between HCF-1 and OGT 
protein levels; a decrease in HCF-1 leads to a decrease 
in OGT, correspondingly, an increase in HCF-1 causes an 
increase in OGT [60]. The change in OGT levels caused 
by HCF-1 is not at the level of mRNA or promoter but at 
the protein level [60]. The above results suggest that HCF-
1 inhibits protein degradation of OGT. Deubiquitinating 
enzyme BAP1 is mutated in diverse malignant tumors 
[116]. Strikingly, Bap1 deletion can decrease the levels of 
OGT and HCF-1, suggesting that BAP1 is propitious to 
stabilize these epigenetic regulators [116]. Studies show 
that BAP1 not only stabilizes HCF-1 by preventing HCF-
1 proteasomal degradation, but also deubiquitinates and 
stabilizes OGT. Together, BAP1, HCF-1 and OGT can 
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form a ternary complex to preserve normal hematopoiesis 
by recruiting additional histone-modifying enzymes 
to regulate gene expression [116]. PI3K/AKT/mTOR 
pathway stimulates the expression of OGT and the level 
of global O-GlcNAcylation in breast and live cancer 
cells [115, 117]. This pathway increases the expression 
of the oncogenic transcription factor c-Myc which 
induces the transcription of Hsp90 in breast cancer [117]; 
Hsp90 interacts with OGT and inhibits its proteasomal 
degradation, which is consistent with previous findings 
in endothelial cells [117] (Figure 1B). In addition to by 
the proteasome pathway, PI3K/AKT/mTOR pathway also 
can promote OGT degradation by the autophagy pathway, 
although the underlying mechanism is not fully clear [115, 
117]. The histone demethylase LSD2 can perform as an 
E3 ubiquitin ligase to promote proteasome-dependent 
degradation of OGT [118] (Figure 1C). Overespression 
of LSD2 increases the ubiquitination of OGT in 293T 
and H1299 cells [118]. Reduction of LSD2 by shRNA 
promotes colony-forming ability of 293T and H1299 cells 
via OGT inhibition, and up-regulation of OGT rescues 
LSD2-inhibited cell growth [118].

Unknown mechanisms 

As described above, a variety of stimuli can induce 
OGT and O-GlcNAc levels by unknown molecular 
mechanisms [55, 72]. Insulin can stimulate the expression 
of OGT [119] [120] and enhances cytosolic staining 
of OGT [119] in H-411E and HepG2 hepatoma cells. 
In addition, rapidly elevated global O-GlcNAcylation 
displays a feedback inhibition of OGT levels in several 
types of cancer cells [18, 76, 82, 121]; pharmacologic 
inhibition of OGT leads to OGT protein levels either 
remain constant [122] or increase slightly [123]; 
correspondingly, pharmacologic inhibition of OGA 
results in a decrease of OGT at protein levels rather 
than at mRNA level in HeLa cervical carcinoma, SH-
SY5Y neuroblastoma, and K562 leukemia cells [121]. 
Information on how the global O-GlcNAcylation regulates 
OGT is limited, appearing to regulate OGT’s protein 
stability.

REGULATION OF OGT GLYCOSYLTR 
ANSFERASE FUNCTIONS IN NORMAL 
CELLS

UDP-GlcNAc 

UDP-GlcNAc is an end product of HBP and acts as 
the donor substrate of OGT. Its levels are responsive to 
flux through metabolic pathways of glucose, nucleotide, 
fatty acid and amino acid [124–126]. UDP-GlcNAc 
concentration dominates the affinity of OGT for peptides 
[2, 127, 128]; in vitro studies show that, aiming at different 
protein substrates of OGT, UDP-GlcNAc displays 

different values of Km; for example, the Km values of 
UDP-GlcNAc for Nup62 and CaMKIV are about 1μM 
and 25 μM respectively [129, 130]. This phenomenon 
may be explained at least partly by the contact mode 
exhibited in the crystal structures between UDP-GlcNAc 
and protein substrates. Structural analyses show that 
UDP-GlcNAc and protein substrate bind to OGT in an 
ordered sequential manner, and UDP-GlcNAc combines 
with OGT firstly then the target protein binds to the amino 
acids surrounding the UDP-binding cleft subsequently 
[126]. Thus, UDP-GlcNAc which has binded to OGT 
preferentially may alter the three-dimensional structure 
of OGT which affects the subsequent binding of protein 
substrates.

AMPK 

Pharmacological and genetic inactivation of AMPK 
in endothelial cells or knock out of AMPK in mice 
increases 26S proteasome activity [131]. Conversely, 
activation of AMPK effectively suppresses 26S 
proteasomes [131]. The inhibition of 26S proteasome 
caused by AMPK activation is realized through increasing 
the interaction between 26S proteasome and OGT which 
can O-GlcNAcylate 26S proteasome and suppress its 
assembly and activity [131]. In general, these data 
show that AMPK regulates OGT by some ill-defined 
mechanism and further blocks the proteasome [131]. As 
reported, compared with undifferentiated myoblastic cells, 
differentiated myotubes display a significant increase 
OGT localized in cytoplasmic [132]. However, activated 
AMPK can directly phosphorylate OGT at Thr444 [132, 
133] and OGT Thr444 phosphorylation increases its 
nuclear localization [132].

Insulin 

Insulin triggers the tyrosine phosphorylation of 
OGT in T3-L1 adipocytes, probably through stimulating 
the interaction of OGT with PDK1 [69], and results in 
the increase of catalytic activity and nucleo-cytoplasmic 
translocation of OGT [68]. In addition, insulin treatment 
of 3T3-L1 adipocytes also stimulates self-GlcNAcylation 
of OGT and this modification may also contribute to the 
activity of OGT [68].

Salts 

OGT activity and its affinity for UDP-GlcNAc can 
be restrained by several salts [134–136]. The inhibitory 
effects of NaCl, KCl, and NaH2PO4 have be determined 
and IC50 values of them are 45, 50, and 4 mM individually 
[134, 135]. Another study extends this observation by 
revealing that Na3VO4 is more potent in inhibiting OGT 
activity (IC50 of 55 μM in brain cytosol and 150μM in 
nucleosol) [136].
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REGULATION OF OGT GLYCOSYLTR 
ANSFERASE FUNCTIONS IN CANCER

UDP-GlcNAc 

Oxidative phosphorylation replaced by aerobic 
glycolysis (the Warburg effect) is one of the critical 
features in cancer [137]. The product of aerobic glycolysis, 
acetyl-CoA, is required to biosynthesize UDP-GlcNAc. 
Thus, this especial metabolic model of cancer causes an 
increase in flux through the HBP [45, 138]. As mentioned 
above, besides glucose flux, amino acid flux, especially 
glutamine can remarkably affect the concentration of 
intracellular UDP-GlcNAc levels. Interestingly, cancer 
cells have a clear preference for glutamine and glutamine 
consumption in cancer cells is much higher than that in 
normal cells [139], thereby letting glutamine be the other 
major metabolic material into the HBP. Actually, elevated 
HBP flux and HBP related enzymes have been confirmed 
to contribute to hyper-O-GlcNAcylation in human tumors, 
suggesting that an increase in UDP-GlcNAc level might 
an incentive to the hyper-O-GlcNAcylation in cancer cells 
[31, 33, 97].

Protein interactions 

OGT associates with multiple protein partners 
and the interactions influence OGT’s substrate 
selectivity, chromatin association, cellular localization 
and glycosyltransferase activiity (Table 2). It has 
well-documented that OGT’s substrate selectivity 
is altered by associations with the mitochondrial 
trafficking protein Trak1, the transcriptional corepressor 
mSin3A, the transcriptional coactivator PGC-1α, the 
subunit of myosin phosphatase MYPT1, the arginine 
methyltransferase CARM1 and the kinases p38MAPK 
and AMPK. Trak1 (previously known as OIP106) 
interacts with the tetratricopeptide repeats (TPRs) of 
OGT [140, 141]. Meanwhile, Trak1 has been verified 
to localize to nucleus and co-localize with RNA 
polymerase II in Hela cells [140, 141]. These results 
suggest that Trak1 may recuit OGT to  the promoter 
of different genes for O-GlcNAcylation of RNA 
polymerase II and transcription factors [140, 141]. A 
specific interaction between the OGT (TPR 1–6) region 
and the mSin3A PAH4 domain (amino acids 888–967) 
is ascertained in HepG2 cells [142, 143]. MSin3A also 
can draw OGT to chromatin to depress the activity 
of RNA polymerase II and transcription factors by 
O-GlcNAc modification, which plays a synergistic role 
with histone deacetylation to silence gene expression 
[142, 143]. Under hyperglycemic conditions, the 
interaction between PGC-1α and OGT boosts the 
O-GlcNAc modification of the transcription factor 
FoxO1 [144, 145]. MYPT1 and CARM1 both interact 
with OGT and a mutual regulation is existed between 

them; OGT can O-GlcNAcylate MYPT1 and CARM1 
and moderates their activity, MYPT1 and CARM1 in 
turn affect OGT substrate specificity in vitro [146]. 
And besides, MYPT1 knockdown by siRNA results 
in changes in O-GlcNAcylation of partial proteins in 
Neuro-2a neuroblastoma cells, indicating that MYPT1 
decides OGT substrate specificity in vivo [146]. OGT 
interacts directly with p38MAPK using its C terminus; 
although p38MAPK don’t phosphorylate OGT, it can 
target OGT to specific targets, including neurofilament 
H under the condition of glucose starvation in Neuro-
2a neuroblastoma cells [77]. As we know, AMPK 
phosphorylates OGT at Thr444 and increases its nuclear 
localization in non-tumor tissues (myotubes) [132]. 
Similarly, AMPK also phosphorylates OGT at Thr444 
in 293T and HepG2 cells [132, 133]. Differently, 
phosphorylation of OGT at Thr444 triggered by AMPK 
in tumor cells alters the substrate selectivity of OGT 
[132] and reduces its affinity for chromatin, thereby 
suppressing O-GlcNAcylation of histone H2B and 
downstream gene expression [133]. The chromatin 
localization of OGT is regulated not only by AMPK, 
but also TETs and OGA. TETs associate with OGT at 
transcription starting sites and facilitate OGT localization 
on chromatin [65, 147–150]. TET2 directly interacts 
with OGT in vivo, despite their specific interactions 
doesn’t alter the enzymatic activity of TET2, they are 
propitious to OGT-dependent histone O-GlcNAcylation 
[147–149]. TET3 is reported to interact with OGT via its 
H domain and stabilizes the protein levels of OGT, the 
stabilization of OGT protein enhances its recruitment to 
chromatin [65, 148–150]. OGA and OGT can associate 
strongly through specific domains and this OGA-OGT 
complex locates to repressed promoters [151]. LXR, 
PIP3 and Aurora B regulate OGT activity through 
affecting its cellular localization. The interaction of 
LXR and OGT increases the nuclear location of OGT 
and that LXRs deficiency strikingly reduces nuclear 
O-GlcNAc signaling [152]. After induction with insulin, 
PIP3 interact with the phosphoinositide-interaction 
domain of OGT (PPO) and facilitates the nuclear-
cytoplasmic transport of OGT, then OGT catalyses 
dynamic O-GlcNAcylation of insulin signaling related 
proteins at the plasma membrane [19, 120]. Extensive 
research data show that dynamic O-GlcNAc cycling 
controls cellular growth [75, 76, 153–155]. Interestingly, 
in mammalian cells OGT localizes to the mitotic spindle 
at M phase and during cytokinesis OGT relocates to the 
midbody [76]. Further studies in Hela cells show that 
during cytokinesis, OGT forms a transient complex 
with PP1, OGA, and Aurora B at the midbody [156]. 
The activity of Aurora B, which is an essential regulator 
of mitotic progression, determines correct cellular 
localization of this quaternary complex because Aurora 
B repression blocks localization of the complex to the 
midbody [156]. The quaternary complex can regulate 
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both the O-GlcNAcylation and phosphorylation state 
of midbody substrates vimentin at M phase [156]. 
Finally, URI, OGT and PP1γ can form a heterotrimeric 
complex [157]. Glucose deprivation induces the 
phosphorylation of URI at Ser-371 and the release 
of PP1γ from the complex and then promotes URI-
mediated OGT inhibition, resulting in a decrease 
of c-Myc-dependent survival [157]. These results 
show that OGT associates with and is regulated in 
different ways by distrinct groups of binding partners 
in response to distrinct signals, which may provide 
reasons why no conservel sequence motifs involved in 
the peptide substrate binding is founs in OGT protein.

Post-translational modification 

OGT is modified by phosphorylation [2, 68, 81, 
158, 159], O-GlcNAcylation [2, 68, 158, 160–162], 
S-nitrosylation [158, 163] and ubiquitination [60] 
(Table 3). All these posttranslational modifications 
have been proposed to regulate OGT, although the 
functional sites of these modifications have not 
been elucidated clearly. Active Ca2+/CaMKIV can 
phosphorylate OGT and then  elevate its activity in 
NG-108–15 cells [81]. Activated AMPK can directly 
phosphorylate OGT at Thr444 [132, 133] and OGT 
Thr444 phosphorylation does not alter the enzymatic 
activity of OGT, but promotes its dissociation from 
chromatin and alters its substrate selectivity in 293T, 
HepG2 and HeLa cells [132, 133] (mentioned in 
“Protein interactions” sections). OGT is found to 
be phosphorylated on Ser3 or Ser4 (data could not 

distinguish between these potential sites) by GSK3β 
and the phosphorylation enhances OGT activity [159]. 
Interestingly, Mass Spectrometer analysis also reveals 
that both Ser3 and Ser4 of OGT can be O-GlcNAc 
modified. Hence, phosphorylation by GSK3β and 
O-GlcNAcylation must compete with and regulate 
each other at this N-terminal site of OGT [159]. Seo 
et al. identified that Ser389 is the major O-GlcNAc 
modification site of OGT, this O-GlcNAc modification 
doesn’t alter the enzyme activity and protein-protein 
interaction but regulates the nuclear localization 
of OGT through exposure of hidden NLS of OGT 
and its association with Importin α5 and β [164]. In 
resting cells, OGT is S-nitrosylated, however the 
innate immune response induced by LPS can trigger 
its denitrosylation and heighten its catalytic activity 
[163]. As mentioned above, HCF-1 can stabilize OGT 
and this process is achieved through inhibiting the 
ubiquitination of OGT which leads to its proteasomal 
degradation [60]. 

Besides the moderators mentioned above, stress 
stimulation also affects the activity of OGT. Thermal 
stress increases the activity of OGT remarkably by 
currently unknown mechanisms [72] and facilitates OGT 
to translocate from cytoplasm to the nucleus [18].

THERAPEUTIC EFFECTS OF OGT 
MODULATION

Exploring credible biomarkers for diagnosis, 
prognosis, and confirmation of recurrence is a 
critical aspect of treating human cancer. In fact, 

Table 2: OGT-interacting partner in cancer
Partner Binding location of OGTa Function
Trak1 [140, 141] TPRs 2– 6 recruits OGT to RNA polymerase II and transcription factors
mSin3A [142, 143] TPR 1–6 targets OGT to transcription factors and RNA polymerase II
PGC-1α [144, 145] unknown facilitates OGT activity on the transcription factor FoxO1
MYPT1 [146] unknown enhances OGT substrate specificity in vivo
CARM1 [146] unknown increases OGT substrate specificity in vitro
p38MAPK [77] C- Terminus (979–1036 aa) targets OGT to neurofilament H

AMPK [132, 133] unknown alters the substrate selectivity of OGT and promotes its dissociation 
from chromatin

TET 2 [147–149] TPR5 and 6 enhances the chromatin association of OGT in vivo
TET 3 [65, 148–150] The N- and C-terminal regions enhances OGT’s recruitment to chromatin
OGA [151] N- Terminus (1–286 aa) colocalizes in the repressed promoters
LXR [152] unknown colocalizes in the nucleus
PIP3 [19, 120] C- Terminus (958–1001 aa) recruits OGT from the nucleus to the plasma membrane
Aurora B [156] unknown translocates OGT to the midbody during cytokinesis
URI [157] unknown inhibits OGT activity in vitro and in vivo
aMost binding locations, specifically the listed regions of OGT, have not been localized, thus, these locations provide an 
upper bound of the binding region; aa, Amino acid.
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Table 3: Regulation of OGT glycosyltransferase functions by post-translational modification in 
cancer
Post-translational 
modifications

Sites Regulator Functions

Phosphorylation

unknown Ca2+/CaMKIV activates OGT activity [81]
S3/S4 GSK3β enhances OGT activity [159]

T444 AMPK promotes OGT’s dissociation from chromatin and alters 
its substrate selectivity [132, 133]

O-GlcNAcylation
S3& S4 OGT competes with phosphorylation by GSK3β and regulates 

each other [159]
S389 OGT regulates the nuclear localization of OGT [164]

S-nitrosylation unknown NO decreases catalytic activity of OGT in resting cells [163]
Ubiquitination unknown Ubiquitin ligase E3 leads to OGT’s proteasomal degradation [60]
NO, nitric oxide.

Figure 1: Regulation of OGT stability in cancer OGT catalyzes site-specific proteolysis of HCF-1, and HCF-1, in turn, 
stabilizes OGT against proteasomal degradation. BAP1 promotes the interaction between HCF-1 and OGT (A) Hsp90 associates 
with OGT and inhibits its proteasomal degradation, and this process is enhanced by the PI3K/mTOR/Myc pathway (B) LSD2 not only is a 
well-known histone H3K4me1/me2 demethylase but also can promote ubiquitylation and degradation of OGT as an E3 ubiquitin ligase (C).
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hyper-O-GlcNAcylation has been detected in many 
different types of cancer and contributes to the 
formation and progression of tumors. As the unique 
O-GlcNAc transferase, OGT is elevated together with 
O-GlcNAcylation in almost all cancers examined. 
An inhibition of OGT results in a corresponding 
downregulation of tumor cell survival rate, division 
and invasion [31]. Thus, discovering the specific 
inhibitor of OGT will be conducive to further 
comprehensive elucidation of the biological function 
of O-GlcNAcylation and may obtain a potential 
therapeutic agentia against cancer. 

In fact, in the last 15 years, researchers have 
discovered and designed several categories of OGT 
inhibitors (Table 4). The first category means the donor 
substrate and product analogues. UDP, as a product of 
O-GlcNAcylation processes, can inhibit OGT in vitro 
with an IC50 of 1.8 μM [165, 166]. Unfortunately, it 
is inapposite for cell biology researches because it is 
unable to cross cellular membranes and is a substrate for 
extensive other enzymes. Then C-UDP, a UDP minic, is 
discovered and reported to perturb O-GlcNAc in vitro 
(IC50 = 9 μM) [165]. Moreover, two UDP-GlcNAc 
analogues UDP-S-GlcNAc (IC50 = 93 μM) and UDP-
C-GlcNAc (IC50 = 41 μM) are  demonstrated to inhibit 
OGT activity [165]. However, the three compounds 
are also not cell-penetrant. Substrate analogue Ac4-5S-
GlcNAc (IC50 = 5 μM) is cell-permeable and has been 
used in a number of studies [31, 120, 123, 167], but the 
main pitfall of it is that it depresses the intracellular 
deposits of UDP–GlcNAc by impeding the HBP [122]. 
The uracil analogue alloxan (IC50 = 18 μM) was the 
first OGT inhibitor reported and is cell-permeable 

[168–171]. Sadly, alloxan has potential off-target 
effects and general cellular toxicity [172]. Finally, a 
N-acetylgalactosamine (GalNAc) mimic, BADGP, is 
shown to target OGT usually but suppresses the flux 
of the HBP [173, 174]. The second category is high-
throughput screening-derived inhibitors, such as 
ST045849 (IC50 = 53 μM) [175], BZX (IC50 = 10 μM) 
[175] and OSMI-1 (IC50 = 2.7 μM) [122]. ST045849 
(also named compound 4) is used to prove the function 
of O-GlcNAcylation in pancreatic β-cell development 
[176], insulin production [176], gluconeogenesis 
[177], embryonic stem cell self-renewal [177], and 
protein stability [178]. BZX (also named compound 
5) has been used to test if O-GlcNAcylation induces 
growth and invasion in breast cancer cells [29] and if 
the stability of the oncogene c-Myc is controled by 
O-GlcNAcylation in human prostate cell lines [97]. 
OSMI-1 decreases global O-GlcNAc levels in various 
mammalian cell lines [122] and has recently been used 
to discuss the effects of O-GlcNAc in the reproduction 
of Herpes Simplex Virus [179]. Unfortunately, these 
compounds also have potential toxic and off-target 
effects. Bisubstrate inhibitors, including goblin 1 (IC50 
= 18 μM) and goblin 2, are the third categories [180]. 
They are designed by replacing the GlcNAc moiety 
of UDP-GlcNAc with an acceptor peptide, aiming 
to achieve selective inhibition. The major current 
limitation with this class of compounds is the lack of 
cell permeability. Based on the above analysis, future 
work requires optimizing the current tools or creating 
novel molecules to gain a cell-permeable, specific OGT 
inhibitor which is apropriate for laboratory experiments 
and even clinical cancer therapy. 

Table 4: The available OGT inhibitors
Categories Compound IC50 Advantages and limitations

Substrate and product 
analogues

C-UDPb [165] 9 μM lack of cell permeability
UDP-S-GlcNAcc [165] 93 μM

lack of cell permeability
UDP-C-GlcNAcc [165] 41 μM
Ac4-5S-GlcNAcc [31, 120, 123, 167] 5 μM cell-permeable, but reduces intracellular pool 

of UDP–GlcNAc
Alloxand [168–172] 18 μM cell-permeable, but has potential off-target 

effects and general cellular toxicity 
BADGPe [173, 174] unknown reducing intracellular pool of UDP–GlcNAc

HTS-derived inhibitora
ST045849 [175–178] 53 μM having potential toxic and off-target effects
BZX [29, 97, 175] 10 μM
OSMI-1 [122, 179] 2.7 μM

Bisubstrate inhibitors
goblin 1 [180] 18 μM lack of cell permeability
goblin 2 [180] unknown

ahigh-throughput screening-derived inhibitors; b UDP analogue; c UDP-GlcNAc analogues; d Uracil analogue; e GalNAc 
analogue.
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CONCLUSIONS

In the last 30 years, extremly large number 
of publications have elaborated the significance of 
O-GlcNAc in manifold cellular functions and diseases. 
Deregulation of O-GlcNAcylation is an event detected in a 
variety of cancer types and this aberrant O-GlcNAcylation 
is conducive to tumorigenesis, cell proliferation, invasion 
and metastasis, and resists to therapy. Considering the 
modification’s involvement in cancer, OGT has become 
attractive candidates for pharmacological targeting. 
However, the research on the regulatory mechanism 
of OGT is still in the early stage. In this review, we 
summarize the regulation of OGT expression and 
glycosyltransferase functions in cancer (Figure 2). OGT 
can be regualted by multiple ways to increase cell growth 
and survival, including OGT expression, degradation, 
localization and posttranslational modification. 
Interestingly, a large proportion of the moderators of OGT 
are also the downstream targets of OGT, such as Trak1 
[140, 141], mSin3A [142, 143], PGC-1α [144, 145], HCF-
1 [60, 61], TET2/3 [65, 147–150], c-Myc [181], MYPT1 
[146], CARM1 [146], 26S proteasome [131], AMPK 
[132] and GSK3β [129]. This endows it with the ability 
to regulate cellular physiology in a feedback loop. The 
existing research results show that the regulation of OGT 
is extremely complicated and OGT operates as a central 
hub for controlling multiple important physiological 
processes such as metabolism and cell cycle progression.
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O-GlcNAc, O-linked β-D-N-acetylglucosamine; 
OGT, O-GlcNAc transferase; UDP-GlcNAc, Uridine 
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2; PUMA, BCL2 binding component 3; RhoA, ras homolog 
family member A; ROCK, Rho-associated protein kinase; 
MLC, myosin light chain; PDK1, 3-phosphoinositide-
dependent kinase 1; IRS-1, insulin receptor substrate 1; 
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ETS domain-containing protein; RB1, Retinoblastoma-
associated protein 1; Nrf2, NF-E2 related factor 2; AMPK, 
AMP-activated protein kinase; miRNA, microRNA; Hsp90, 
heat shock protein 90; ROS/RNS, reactive oxygen or 
nitrogen species; β-TrCP1, β-transducin repeat-containing 
protein 1; LSD2, Lysine-specific histone demethylase 
1B; Nup62, Nuclear pore glycoprotein p62; CaMKIV, 
calcium/calmodulin-dependent protein kinase IV; Trak1, 
trafficking kinesin protein 1; LPS, lipopolysaccharide; 
PGC-1α, Peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha; FoxO1, Forkhead box protein 
O1; MYPT1, myosin phosphatase target subunit 1; 
CARM1, coactivator associated arginine methyltransferase 
1; LXR, Liver X receptor; PIP3, Phosphatidylinositol 
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protein phosphatase 1 catalytic subunit gamma; GSK3β, 
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Figure 2: Schematic illustration of mechanisms of regulation of OGT expression and enzyme functions in cancer OGT 
expression is inhibited by E2F1 and increased by Elk-1 and glucose deprivation at the transcriptional level; MAPK/
ERK signaling induces OGT via Elk-1; glucose deprivation increases OGT mRNA levels via the activation of AMPK 
or decreased hexosamine fluxs. OGT protein degradation is suppressed by HCF-1, BAP1 and PI3K/mTOR /Myc/Hsp90 pathway, 
and triggered by LSD2. In additon, OGT level can be induced by several forms of stress, insulin and global O-GlcNAcylation by unknown 
mechanisms. OGT’s substrate selectivity is altered by UDP-GlcNAc, Trak1, mSin3A, PGC-1α, p38MAPK, AMPK, MYPT1 and CARM1. 
The cellular localization of OGT is regulated by AMPK, TET, OGA, LXR, PIP3 and Aurora B; AMPK decreases OGT localization on 
chromatin; TET family and OGA facilitate OGT localization on chromatin; LXR and OGT colocalize in the nucleus; PIP3 recruits OGT 
to the plasma membrane; Aurora B translocates OGT to the midbody during cytokinesis. URI associates with OGT and mediates OGT 
inhibition. OGT is modified by phosphorylation, O-GlcNAcylation, S-nitrosylation and ubiquitination. OGT is phosphorylated and 
activated by active Ca2+/CaMKIV in vitro and GSK3β (at S3 or S4) in vivo. AMPK phosphorylates OGT at Thr444 and promotes its 
dissociation from chromatin and alters its substrate selectivity. O-GlcNAcylation of OGT at S3 and S4 competes with phosphorylation by 
GSK3β. O-GlcNAc modification of OGT at Ser389 regulates the nuclear localization of OGT through exposure of hidden NLS of OGT 
and its association with Importin α5 and β. OGT is S-nitrosylated in resting cells and its denitrosylation following induction of the innate 
immune response results in increased catalytic activity. The ubiquitination of OGT leads to its proteasomal degradation. Finally, heat stress 
can increase the activity of OGT and promotes the translocation to the nucleus. HBP, Hexosamine Biosynthesis Pathway; S, substrate; G, 
O-GlcNacylation; P, phosphorylation; SS, Specific substrate; N, S-nitrosylation; Ub, Ubiquitination.
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