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ABSTRACT
Testicular germ cell tumor (TGCT), the most common cancer in men aged 18 to 

45 years, has a strong heritable basis. Genome-wide association studies (GWAS) have 
proposed single nucleotide polymorphisms (SNPs) at a number of loci influencing 
TGCT risk. To further evaluate the association of recently proposed risk SNPs with 
TGCT at 2q14.2, 3q26.2, 7q36.3, 10q26.13 and 15q21.3, we analyzed genotype data on 
3,206 cases and 7,422 controls. Our analysis provides independent replication of the 
associations for risk SNPs at 2q14.2 (rs2713206 at P = 3.03 x 10–2; P-meta = 3.92 x 
10–8; nearest gene, TFCP2L1) and rs12912292 at 15q21.3 (P = 7.96 x 10–11; P-meta = 
1.55 x 10–19; nearest gene PRTG). Case-only analyses did not reveal specific associations 
with TGCT histology. TFCP2L1 joins the growing list of genes located within TGCT risk 
loci with biologically plausible roles in developmental transcriptional regulation, further 
highlighting the importance of this phenomenon in TGCT oncogenesis.

INTRODUCTION

Testicular germ cell tumor (TGCT) is the most 
common cancer in men aged between 18 and 45, with 
more than 52,000 men diagnosed annually worldwide [1]. 

Known risk factors include a family history of the disease, 
a previously diagnosed germ cell tumor, subfertility, 
undescended testis (UDT) [2] and testicular microlithiasis 
[3], characterized by intratesticular calcification. 
Histologically, TGCT can be divided into two main 
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subtypes: seminomas, which resemble undifferentiated 
primordial germ cells and nonseminomas, which show 
varying degrees of differentiation toward embryonal and 
extraembryonal structures. Some tumors show features of 
both classes (mixed histology). Both subtypes are thought 
to arise from progenitor germ cells through a pre-invasive 
phase of intratubular germ cell neoplasia (ITGCN) [4].

The cancer has a strong heritable basis, which 
is reflected in an observed four to eight -fold familial 
relative risk [5–8] and, from heritability analyses utilizing 
familial data, it has been estimated that genetic factors 
contribute to nearly half of all disease risk [9]. Despite 
the sizable heritable component, high penetrance TGCT 
susceptibility variants accounting for a sizeable proportion 
of genetic susceptibility have not been identified. We 
recently described enrichment in familial TGCT using 
exome sequencing of rare disruptive mutations in genes 
relating to ciliary and microtubule functions; however, 
these variants account for only a minor fraction of disease 
heritability [10]. In contrast, interrogation via genome-
wide association studies (GWAS) for common variants of 
more modest effect size has proved vastly more fruitful, 
with a total of 50 independent risk loci proposed to date 
[11–22].

The two most recent, contemporaneously published 
TGCT GWAS reported a total of 26 novel TGCT 
susceptibility loci, more than doubling, from 24 to 49, 
the number of regions identified by preceding efforts [21, 
22]. In Litchfield et al., (2017) [21], we performed a new 
GWAS in UK TGCT cases using the OncoArray platform 
(UK OncoArray study, 3,206 cases, 7,422 controls). These 
data were combined in meta-analysis with two previously 
published GWAS datasets from the UK and Scandinavia 
(2,313 cases, 11,633 controls), followed by replication 
genotyping performed for the most strongly associated 
loci (1,801 cases, 4,027 controls). In this analysis, in total 
comprising 7,319 cases and 23,082 controls, we identified 
19 new loci associated with TGCT susceptibility (1p36.22, 
2p13.3, 4q21.1, 4q35.2, 6q25.1, 7p14.1, 8p23.1, 11q24.2, 
12p11.21, 12q15, 14q22.3, 15q22.31, 15q25.2, 16p13.11, 
18p11.32, 19q11, 19q13.42, 20q13.2 and 22q11.21).

In the contemporaneously published study reported 
by Wang et al., (2017) [22], under the auspices of the 
TEsticular CAncer Consortium (TECAC), meta-analysis 
of data from five TGCT GWAS datasets (totaling 3,558 
TGCT cases and 13,970 controls and inclusive of the 
UK/Scandinavian datasets used in Litchfield et al. 2017) 
identified associations at eight loci (2q14.2, 3q26.2, 
4q35.2, 7q36.3, 10q26.13, 15q21.3, 15q22.31 and Xq28), 
two of which were also identified in the UK OncoArray 
study (4q35.2 and 15q22.31). Additional associations were 
also reported in the TECAC meta-analysis at previously 
established TGCT loci at 9p24.3 and 19p12.

In the present study, we sought independent 
evidence of replication at the five novel autosomal loci 
unique to the TECAC meta-analysis (2q14.2, 3q26.2, 

7q36.3, 10q26.13, 15q21.3) using the UK OncoArray 
GWAS data.

RESULTS

The UK OncoArray GWAS includes data from 
10,628 UK individuals, comprising 3,206 TGCT cases 
and 7,422 controls. The final number of SNPs passing 
quality control filters was 371, 504, which were used to 
impute genotypes at over 10 million SNPs. We looked for 
evidence of association for the five index SNPs reported 
in the TECAC meta-analysis using a frequentist approach 
under an additive model. We also performed meta-analysis 
combining data from the UK OncoArray GWAS and the 
TECAC meta-analysis using a fixed-effects model.

The strongest evidence for an association amongst 
the five loci in the UK OncoArray GWAS dataset was 
at 15q21.3 (Table 1; Figure 1). The reported index SNP 
from the TECAC meta-analysis, rs12912292, showed 
a highly significant association in the UK OncoArray 
dataset (P = 7.96 × 10−11), as did its most strongly linked 
directly genotyped tagging SNP (rs12899976, r2 > 1.0, 
D′ > 1.0, P = 2.34 × 10−11). Notably, SNPs in this region 
did show evidence of association in the meta-analysis 
undertaken in Litchfield et al., including rs12912292. 
However, due to poor phet and I2 values associated with 
rs12912292, an alternative SNP (rs7175728) had been 
chosen for replication genotyping in 1,801 cases and 
4027 controls, which failed to replicate (P = 0.97, OR = 
0.9986). The reported index SNP at 2q14.2, rs2713206, 
was not significant in the UK OncoArray dataset after 
correcting for multiple testing (i.e. five tests), though it 
was significant at a nominal threshold (P = 3.03 × 10−2; 
Table 1; Figure 1). Of note, a nearby directly genotyped 
tagging SNP in strong LD with rs2713206 (rs2713207; r2 
> 0.7, D′ > 0.9) showed a stronger level of association 
(P = 9.44 × 10−3). For the reported index SNP at 2q14.2, 
the point estimate for the effect size was smaller in the 
UK OncoArray dataset than reported in the TECAC 
meta-analysis, likely a reflection of “winner’s curse”. 
For the reported index SNP at both loci, genome-wide 
significance (P < 5 × 10−8) was achieved in meta-analysis 
of the UK OncoArray data with the constituent TECAC 
datasets (Table 2).

Analysis of the UK OncoArray data did not find 
any evidence of association with TGCT risk for the loci at 
3q26.2, 7q36.3 and 10q26.13 and did not achieve genome-
wide significance when combined with the TECAC data 
at meta-analysis (Table 1, Table 2). Directly genotyped 
tagging SNPs at these three regions did not show any 
evidence of association with TGCT risk.

Finally, we investigated whether the two SNPs 
showing evidence of association in the current study 
(rs12912292 and rs2713206) showed differences in risk 
allele frequency in phenotypically-defined subgroups of 
TGCT cases (Table 3). Neither of the two SNPs showed 
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Figure 1: (A–B) Regional plots for loci 2q14.2 (A) and 15q21.3 (B) based on the UK OncoArray GWAS data. Triangles indicate directly 
genotyped SNPs while circles indicate imputed SNPs, with their position on the y axis indicating their -log10 association P values and their 
position on the x axis indicating their SNP build 37 coordinates. The intensity of red shading indicates the strength of linkage disequilibrium 
(LD) with the index SNP (enlarged circle). Recombination rates are plotted on the z axis (light blue). The Index SNP at each locus and its 
mostly strongly linked tagging SNP are labelled.
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a significant difference in frequency between cases with 
seminoma (n = 1,120) compared to nonseminoma/mixed 
histology (n = 643), cases with testicular maldescent (n = 
308) compared to those with normal descent (n = 2,837), 
cases with a family history of TGCT (n = 53) compared 
to those without (n = 3,122) or cases with unilateral (n = 
3,028) compared to bilateral (n = 78) disease.

DISCUSSION

In summary, we present independent evidence 
supporting associations between loci at 2q14.2 and 
15q21.3 and susceptibility to TGCT.

rs2713206 at 2q14.2 localizes to the intron of 
TFCP2L1 in an LD block of ~50 kb. TFCP2L1, a 
member of the CP2 family of transcription factors, is a 
component of a complex transcriptional network involved 
in the establishment and maintenance of pluripotency in 
embryonic stem cells. TFCP2L1 is highly expressed in 
primordial germ cells during embryogenesis [23] and is 
downregulated during transition of fetal gonocytes into 
spermatogonia [24]. TFCP2L1 is not expressed in normal 
adult testes, though it is in intratubular germ cell neoplasia 
unclassified (ITGCN, formerly known as carcinoma 
in situ, CIS) [24], a non-invasive precursor lesion 
from which TGCT is widely accepted to originate. As 
previously reported, there are eQTL variants in LD with 
the index SNP. The TGCT risk allele is associated with 
reduced TCFP2L1 expression, supporting transcriptional 
regulation of this gene as the functional mechanism 
through which the association may be mediated [22].

rs12912292 at 15q21.3 resides in a 130 kb region 
of LD that only contains PRTG (protogenin), which 
encodes an immunoglobulin superfamily transmembrane 
protein expressed in the developing nervous system [25]. 
rs12912292 displays strong eQTL effects for PRTG in 

muscle-skeletal (GTEx data, P = 1.9e-13) and thyroid 
(P = 5.1e-12) tissues; there is, however, no evidence for 
association of rs12912292 with expression of PRTG in 
either normal testes or TGCT [22].

Our data did not provide evidence supporting 
association with TGCT risk for SNPs at three of the 
loci analyzed (rs3755605 at 3q26.2, rs11769858 at 
7q36.3 and rs61408740 at 10q26.13). The absence 
of demonstrable association for these loci in the UK 
OncoArray dataset could be due to power, sampling error 
and winner’s curse. Variable LD between genotyped 
marker and causal variants and/or their frequency, hidden 
population substructures not accounted for by principal 
component analysis, differences in effect modifiers 
and technical artefacts induced by the use of different 
genotyping platforms or quality-control criteria may also 
be contributory. More detailed and/or larger studies are 
required to further explore the observed differences.

We investigated whether the loci at 2q14.2 and 
15q21.3 are associated with different risks in subgroups 
of TGCT cases characterized by specific phenotypic 
characteristics. Neither locus showed a significant 
difference in effect for the subtypes analyzed. For 
bilaterality, maldescent and family history, there was 
very limited power to detect a difference because of 
the small numbers examined. However, analysis of 
seminoma compared to nonseminoma was better powered, 
with > 95% power to detect effect difference of ≥ 1.5 
fold; absence of difference of effects is consistent with 
observations for SNPs identified in earlier GWAS [11, 
13] suggesting that, despite their distinct histological and 
biological features, these two subclasses of TGCT share a 
common biological pathway of oncogenesis.

TFCP2L1 joins the growing list of candidate 
genes within TGCT risk loci linked to developmental 
transcriptional regulation, a key disease mechanism 

Table 1: UK OncoArray GWAS data for index SNPs identified in the TECAC meta-analysis and 
their strongest linked tagging SNP

Locus
Nearest 

gene SNP Type r2 Dʹ
Position 
(HG19) INFO Alleles

Case 
RAF

Control 
RAF OR (95% CI) P-value

2q14.2 TFCP2L1 rs2713206 Imputed 122007941 0.97 C/T 0.16 0.15 1.09 (1.01–1.18) 3.03E-02

rs2713207 Genotyped 0.7 0.9 122007858 1.00 G/A 0.17 0.15 1.11 (1.03–1.20) 9.44E-03

3q26.2 GPR160 rs3755605 Imputed 169756119 0.99 C/T 0.40 0.39 1.05 (0.99–1.11) 1.32E-01

rs7651441 Genotyped 0.6 0.8 169738278 1.00 C/T 0.37 0.35 1.08 (1.01–1.15) 1.81E-02

7q36.3 NCAPG2 rs11769858 Imputed 158501492 0.94 T/C 0.32 0.32 0.99 (0.92–1.05) 6.47E-01

rs2290393 Genotyped 0.6 0.9 158438186 1.00 G/A 0.39 0.38 0.97 (0.91–1.03) 2.81E-01

10q26.13 LHPP rs61408740 Imputed 126274612 0.99 C/G 0.03 0.03 0.97 (0.81–1.16) 6.72E-01

rs1006535 Genotyped 0.2 0.8 126277624 1.00 C/T 0.07 0.07 0.97 (0.86–1.09) 5.98E-01

15q21.3 PRTG rs12912292 Imputed 56038707 0.97 G/A 0.58 0.53 1.21 (1.14–1.29) 7.96E-11

rs12899976 Genotyped 1.0 1.0 55984439 1.00 A/C 0.57 0.53 1.22 (1.15–1.30) 2.34E-11

RAF, risk allele frequency. Risk allele in bold and underlined. INFO, information score indicating certainty of imputation (0-1). Reported P-values are 
from a test for trend using SNPTEST.
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Table 2: Meta-analysis of the UK OncoArray GWAS and the constituent TECAC datasets

Study INFO Case RAF Control RAF OR (95% CI) P-value Phet I2(%)

rs2713206 at 2q14.2
NCI 0.92 0.20 0.15 1.45 (1.18–1.79) 4.19E-04
UK 0.98 0.17 0.15 1.15 (1.00–1.31) 4.43E-02
PENN 0.90 0.20 0.16 1.32 (1.06–1.64) 1.25E-02
Norway/Sweden 0.93 0.17 0.14 1.25 (1.09–1.44) 1.74E-03
Denmark 0.85 0.21 0.17 1.41 (0.98–2.03) 6.39E-02
UK OncoArray 0.97 0.16 0.15 1.09 (1.01–1.18) 3.03E-02
Combined    1.16 (1.09–1.22) 3.92E-08 0.065  51.8

rs3755605 at 3q26.2
NCI 0.97 0.44 0.41 1.14 (0.98–1.33) 9.31E-02
UK 0.98 0.43 0.39 1.21 (1.09–1.33) 2.25E-04
PENN 0.97 0.43 0.41 1.08 (0.92–1.27) 3.54E-01
Norway/Sweden 0.98 0.44 0.40 1.24 (1.12–1.37) 2.08E-05
Denmark 0.99 0.43 0.39 1.19 (0.91–1.55) 1.94E-01
UK OncoArray 0.99 0.40 0.39 1.05 (0.99–1.11) 1.32E-01
Combined 1.11 (1.06–1.15) 1.10E-07 0.041 56.7

rs11769858 at 7q36.3
NCI 0.93 0.35 0.33 1.12 (0.94–1.32) 1.86E-01
UK 0.95 0.35 0.31 1.19 (1.06–1.32) 1.51E-03
PENN 0.88 0.40 0.36 1.23 (1.04–1.47) 1.69E-02
Norway/Sweden 0.91 0.34 0.30 1.22 (1.10–1.37) 3.89E-04
Denmark 0.90 0.36 0.32 1.22 (0.93–1.61) 1.59E-01
UK OncoArray 0.94 0.32 0.32 0.99 (0.92–1.05) 6.47E-01
Combined 1.08 (1.03–1.13) 1.54E-04 0.004 71.0

rs61408740 at 10q26.13
NCI 0.99 0.04 0.02 1.68 (1.09–2.60) 1.89E-02
UK 0.95 0.04 0.03 1.64 (1.22–2.20) 1.05E-03
PENN 0.94 0.04 0.03 1.92 (1.22–3.03) 4.92E-03
Norway/Sweden 1.00 0.03 0.02 1.53 (1.12–2.09) 7.79E-03
Denmark 0.96 0.03 0.02 1.61 (0.69–3.76) 2.75E-01
UK OncoArray 0.99 0.03 0.03 0.97 (0.81–1.16) 6.72E-01
Combined 1.15 (1.00–1.30) 1.27E-04 0.003 72.2

rs12912292 at 15q21.3
NCI 0.95 0.55 0.51 1.25 (1.07–1.46) 4.76E-03
UK 0.99 0.55 0.53 1.09 (0.99–1.20) 9.18E-02
PENN 0.95 0.56 0.47 1.44 (1.23–1.70) 8.74E-06
Norway/Sweden 0.95 0.58 0.52 1.26 (1.14–1.39) 3.42E-06
Denmark 0.95 0.57 0.51 1.30 (1.00–1.69) 4.81E-02
UK OncoArray 0.97 0.58 0.53 1.21 (1.14–1.29) 7.96E-11
Combined 1.21 (1.16–1.26) 1.55E-19 0.074 50.2
RAF, risk allele frequency. Reported P-value derives from the fixed-effects inverse-variance method implemented in META. 
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implicated in TGCT oncogenesis [21]. Further 
functional evaluation is required to explore the 
cellular mechanisms through which the associations 
are mediated. The set of 50 GWAS loci identified to 
date are more strongly predictive of disease than the 
SNP sets for cancer types such as breast, colorectal and 
prostate cancer despite much larger GWAS in these 
cancer types having identified much greater numbers 
of SNPs: those in the highest centile for risk estimated 
from the TGCT SNP set have a relative risk of > 14 
compared to the population risk [21, 26]. The continued 
success of GWAS in TGCT provides a strong rationale 
for continuing studies to identify additional risk loci via 
these methods.

MATERIALS AND METHODS

Sample description

TGCT cases (n = 3,206) were ascertained via two 
UK studies: (1) a UK study of familial testicular cancer 
and (2) a systematic collection of UK TGCT cases. 
Case recruitment was via the UK Testicular Cancer 
Collaboration, a group of oncologists and surgeons 
treating TGCT in the UK (Supplementary Note). The 
studies were coordinated at the Institute of Cancer 
Research (ICR). Samples and information were obtained 
with full informed consent and Medical Research and 
Ethics Committee approval (MREC02/06/66 and 06/
MRE06/41). 

Control samples for the primary GWAS were all 
taken from within the UK. Specifically 2,976 cancer-free, 
male controls were recruited through two studies within 
the PRACTICAL Consortium (Supplementary Note): 
(1) the UK Genetic Prostate Cancer Study (UKGPCS) 
(age <65), a study conducted through the Royal Marsden 
NHS Foundation Trust and (2) SEARCH (Study of 
Epidemiology & Risk Factors in Cancer), recruited via 
GP practices in East Anglia (2003–2009). 4,446 cancer-
free female controls from across the UK were recruited 
via the Breast Cancer Association Consortium (BCAC).

GWAS

Genotyping was conducted using a custom Infinium 
OncoArray-500K BeadChip (OncoArray) from Illumina 
(Illumina, San Diego, CA, USA), comprising a 250K 
SNP genome-wide backbone and 250K SNP custom 
content selected across multiple consortia within COGS 
(Collaborative Oncological Gene-environment Study). 
OncoArray genotyping was conducted in accordance with 
the manufacturer’s recommendations by the Edinburgh 
Clinical Research Facility, Wellcome Trust CRF, Western 
General Hospital, Edinburgh EH4 2XU.

OncoArray data was filtered as follows: we 
excluded individuals with low call rate (< 95%), with 
abnormal autosomal heterozygosity (> 3 SD above the 
mean) or with > 10% non-European ancestry (based on 
multi-dimensional scaling); we excluded SNPs with minor 
allele frequency < 1%, a call rate of < 95% in cases or 

Table 3: Case-only subtype analysis of UK OncoArray GWAS for the two replicated TGCT risk 
SNPs
Phenotype Subcategory rs2713206 at 2q14.2 (C/T) rs12912292 at 15q21.3 (G/T)
Tumor Type Seminoma (RAF) 0.17 0.58

Nonseminoma (RAF) 0.17 0.56
OR (95% CI) 1.00 (0.84–1.21) 0.92 (0.80–1.06)

P-value 0.96 0.25
Bilaterality Unilateral (RAF) 0.16 0.58

Bilateral (RAF) 0.16 0.57
OR (95% CI) 0.99 (0.64–1.52) 0.98 (0.71–1.35)

P-value 0.95 0.90
Family History Negative (RAF) 0.16 0.58

Positive (RAF) 0.19 0.60
OR (95% CI) 1.20 (0.73–1.96) 1.09 (0.74–1.62)

P-value 0.46 0.64
UDT Absent (RAF) 0.16 0.57

Present (RAF) 0.17 0.59
OR (95% CI) 1.09 (0.87–1.35) 1.05 (0.88–1.24)

P-value 0.45 0.59
RAF, risk allele frequency. Reported P-values are from a test for trend using SNPTEST.
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controls or with a minor allele frequency of 1–5% and 
a call rate of < 99%; we excluded SNPs deviating from 
Hardy-Weinberg equilibrium (P > 10−12 in controls and 
10−5 in cases). The final number of SNPs passing quality 
control filters was 371,504. These data are deposited 
at European Genome–phenome Archive [EGA] under 
accession code EGAS00001001836.

Imputation

Genome-wide imputation was performed for all 
GWAS datasets. The 1000 genomes phase 1 data (Sept-13 
release) was used as a reference panel, with haplotypes 
pre-phased using SHAPEIT2 [27]. Imputation was 
performed using IMPUTE2 software [28].

Statistical analyses 

OncoArray data tests of association between 
imputed SNPs and TGCT was performed under an 
additive genetic model in SNPTESTv2.5 [29], adjusting 
for principal components. Inflation in the test statistics 
was observed at only modest levels, λ1000 = 1.03 [21]. The 
inflation factor λ was based on the 90% least-significant 
SNPs [30]. The adequacy of the case-control matching and 
possibility of differential genotyping of cases and controls 
were formally evaluated using Q-Q plots of test statistics 
[21]. Population ancestry structure for the cohort was 
assessed through visualization of the first two principle 
components [21]; stable ancestral clustering was observed. 
Unadjusted case-only analyses on binary phenotypic 
characteristics were performed under an additive genetic 
model in SNPTESTv2.5, arbitrarily assigning one 
subdivision for a given phenotype to control status. Meta-
analyses were performed using the fixed-effects inverse-
variance method based on the β estimates and standard 
errors from each study using META v1.7 [31]. Cochran’s 
Q-statistic to test for heterogeneity and the I2 statistic 
to quantify the proportion of the total variation due to 
heterogeneity was calculated [32]. Regional plots were 
generated using visPIG software [33]. Power calculations 
were performed using the methods described by Skol et 
al. 2006 [34], implemented via the web interface at http://
csg.sph.umich.edu/abecasis/cats/gas_power_calculator/
index.html.
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