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ABSTRACT
Microglia cells are the unique residential macrophages of the central nervous 

system (CNS). They have a special origin, as they derive from the embryonic yolk 
sac and enter the developing CNS at a very early stage. They play an important role 
during CNS development and adult homeostasis. They have a major contribution to 
adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis 
of neurodegenerative diseases and contribute to aging. They play an important role 
in sustaining and breaking the blood-brain barrier. As innate immune cells, they 
contribute substantially to the immune response against infectious agents affecting 
the CNS. They play also a major role in the growth of tumours of the CNS. Microglia 
are consequently the key cell population linking the nervous and the immune system. 
This review covers all different aspects of microglia biology and pathology in a 
comprehensive way.

INTRODUCTION

Microglia cells belong to the innate immune 
system and are the resident tissue macrophages of the 
central nervous system (CNS), including the brain, the 
spinal cord, the retina and the olfactory bulb. The term 
“microglia” was coined by Del Rio-Hortega in the first 
half of the 20th century [1]. More recently, the embryonic 
yolk sac macrophages have been identified as microglia 
precursors that migrate into the CNS [2]. Microglia 
have a multitude of functions, including support of CNS 
development and synaptogenesis, sustaining homeostasis 
and structure, contribution to an immune response against 
infectious agents and participation in adult neurogenesis, 
neuroinflammation, degenerative diseases, stroke, trauma 
and regeneration [3]. Resting ramified microglia build a 
dense steady-state network of dynamic and reactive cells 
throughout the nervous tissue that they monitor, scan and 
control [4]. They interact with all different cell types of 
the CNS, including neurons [5, 6] and oligodendrocytes 
[7]. They are important phagocytes and essential for the 
development of the CNS, as they eliminate apoptotic 

neurons, produce growth factors and contribute to function 
and structural organisation of the nerve tissue [8, 9]. Later 
in life, microglia play a major role in adult neurogenesis 
[10] and in remodelling of the CNS, especially by 
contributing to synapse structure and function [11, 12]. 
Various danger signals can activate microglia, including 
intrinsic factors derived from cellular and tissue damage, 
like stroke [13–15] and traumatic injury [16], as well as 
extrinsic inflammatory factors like cytokines or microbial 
products [17, 18]. Thereby, microglia responses may be 
very diverse with a broad range between the two opposite 
functions, i.e. pro-inflammatory and pro-regeneration 
responses [19–26]. Microglia often change shape 
upon activation and may even become migratory [27]. 
However, activated microglia are the major players in 
neuroinflammation with possible induction of substantial 
damage to CNS function and structure. In addition, 
microglia play an important role in various CNS diseases, 
including encephalitis [28], Alzheimer’s [29–31] and 
Parkinson’s disease [32], multiple sclerosis (MS) [33], 
amyotrophic lateral sclerosis (ALS) [34] and even in 
mental conditions [35]. Microglia help to sustain the 
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blood-brain barrier (BBB) and upon activation are often 
responsible for its functional and structural disruption 
[36, 37] with consecutive invasion of various immune cell 
types into the CNS [38–41], including blood monocytes 
[42], granulocytes [43] and lymphocytes [44]. In addition, 
chronically activated microglia may also be responsible 
for age-related cognitive and structural decline of the 
brain [45]. Microglia play also a major role in the immune 
response against infectious agents that invade the CNS, 
including viruses [46, 47], bacteria [48] and parasites [49]. 
Microglia have also a major contribution to development 
and growth of primary brain tumours, including glioma 
and glioblastoma, as well as tumour metastasis [50]. Due 
to the emerging importance of microglia in health and 
disease of the CNS, various in silico, in vitro and in vivo 
research models have been developed [51], which resulted 
in the generation of plenty of new recent knowledge [52] 
that is to be translated into various promising therapeutic 
approaches [53]. This review covers all the issues 
mentioned above, but focusing on immune, infection and 
inflammatory perspectives. It includes up-to date review 
articles for important subtopics that are not covered in 
detail and original research articles for emerging topics. 
It also emphasizes gaps of knowledge, raises important 
research related question and suggests areas where more 
research work may be required.

Origin of microglia and their role in brain 
development, synapsogenesis and adult 
neurogenesis 

Microglia are the tissue macrophages of the CNS 
and serve initially its development and subsequently its 
homeostasis [54, 55]. The origin of microglia has only 
recently been discovered [2, 56]. Specialized precursor 
yolk sac macrophages [57–59] migrate at an early 
embryonic stage into the developing CNS within a limited 
time frame, once the cardiovascular development has 
started [60] and before the blood-brain barrier is closed 
[61]. Expression of transcription factor PU.1 is essential 
and defines the microglia lineage, which separates them 
from other tissue macrophages [62, 63]. Most studies have 
been done in mouse models, where microglia populate 
the developing CNS at around E8.5 to E9.5, even before 
astrocytes and oligodendrocytes emerge [64, 65]. More 
recently, also zebrafish has been used as a model to study 
microglia in the embryo, where colonisation takes place 
around 48hpf [66–70]. Much less is known about early 
microglia colonisation of the CNS in humans [71, 72].

Expression of the colony-stimulating factor 1 receptor 
(CD115, M-CSFR, c-fms) [73] and the corresponding 
ligands CSF-1 (M-CSF) and/or IL-34 [74] are essential for 
the maintenance and expansion of microglia [73, 75]. In 
addition, GM-CSF and its receptor, as well as neurotrophins 
sustain survival and proliferation of microglia [76–78]. 
Initially, neuronal cells provide these factors, before later 

emerging astrocytes also contribute to their production. 
However, little is known about spatial expression patterns 
and the regulation of these factors in the CNS.

Microglia have multiple functions in the developing 
CNS [8], as they contribute to (1) elimination of apoptotic 
cells and preventing oversupply of neurons, (2) support 
of neurogenesis, migration and differentiation of neurons, 
(3) axon growth and synaptogenesis, (4) generation and 
maturation of astrocytes and oligodendrocytes and (5) 
angiogenesis (Figure 1). The main mechanisms for these 
functions are phagocytosis and cell-to-cell communication 
through direct intercellular contacts or via soluble mediators, 
which often are still not well understood at cellular and 
molecular level and which require more future research.

Microglia are attracted to and accumulate in 
locations of cell death where they engulf apoptotic cells 
during neurogenesis and migration, differentiation and 
positioning of the newly generated neurons [66, 79, 80]. 
Microglia phagocytosis function will be covered in more 
detail further down. During the early phase of development, 
the density of microglia is rather low, which is compensated 
by their increased mobility [81]. Depending on timing 
and developmental processes, there is a corresponding 
dynamic spatial patterning of microglia [82–84]. First, they 
accumulate around areas with proliferation of neuronal 
precursor cells. Then they line up along the developing 
axons in the white mater. Later, when neurons have formed 
the relevant functional structures and have built their wiring 
connections, supported by astroglia and oligodendroglia, 
microglia density increases, migration decreases and the 
cells become highly ramified and remain in their preferred 
spatial area, whereby as described for the mouse, they are 
not uniformly shaped across the brain regions [85]. There 
is a steady-state condition with dying microglia being 
replaced through proliferation of remaining cells [86]. 
Of note, the areas covered by ramified microglia do not 
overlap, in comparison with the area covered by astrocytes 
[87]. Only little is known about the factors and molecular 
mechanisms controlling colonisation, migration and settling 
of the cells, although α5β1 integrin and fibronectins, 
as well as γ-secretase, seem to play an important role 
[88, 81]. In addition, little is known about the molecular 
mechanisms of the interaction between microglia and 
neurons. However, CX3CL1 (fractalkine) that is expressed 
on neurons and its receptor CX3CR1 that is expressed on 
microglia mediate the intercellular communication [5, 89, 
90]. Of note, absence or functional deficiency of microglia 
or the interaction between microglia and neurons result in 
oversupply of newly generated neurons and accumulation 
of apoptotic cells in the developing brain leading to 
functional and structural brain deficiencies [9, 91–96].

As soon as neurons have found their appropriate 
location, they grow their dendrites and axon, and 
synaptogenesis emerges, in which microglia play an 
important role [9, 11, 12, 97–99]. Microglia are essential 
for the pruning of synapsis, synaptic maturation and 
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the subsequent synaptic communication [4]. In the case 
of glutamatergic excitatory neurons, pre- and post-
synaptic structures are supported and controlled by the 
interaction between the neurons, astrocytes and the 
microglia forming a quad-partite synapse [100, 101]. 
Interestingly, complement factors C1 and C3, as well as 
the corresponding receptor CR3 (also termed CD11b), 
which is a β2-integrin, play an important role in microglia 
mediated synapse modification [102], as such that 
astrocyte-mediated activation of C1q, the initiator of the 
classical complement cascade, has been suggested to result 
in downstream activation of C3b, which then deposits on 
neurites, thus “tagging” synapse for elimination [103].

Microglia link the immune system with the nerve 
system, but also respond to endocrine events. In that 
respect, immune-related or endocrine pathologies may 
affect microglia functions during development, leading 
to subsequent functional or even mental disturbance [104, 
105]. For mammals, these disturbances can happen during 
the foetal phase in the course of maternal inflammation 
or infections, or subsequently because of neonatal 
systemic immune activation and inflammation [106–109] 
or stressful social events [110, 111]. Interestingly, it 
has recently also been proposed that a pathological gut 
microbiome may somehow act on microglia and their 
function, resulting in certain mental diseases [112, 113]. 
However, more neuroimmunology research is needed 
to get better understanding of long-term influence of 
microglia deficiencies and pathologies during development 
on post-natal and adult mental health.

After the embryonic stage, there is a natural 
turnover of bone marrow derived monocytes that find 
their way through the blood circulation into the meninges, 
the perivascular space of the CNS and across the choroid 
plexus into the cerebral liquor space, from where these 
monocytes may be quickly recruited into the CNS if 
required [114–118]. CCR2 expressing monocytes have 
thereby been identified as a key population that immigrate 
into the CNS [119], integrate within the microglia 
network and may no longer be separated from the resident 
microglia population. 

Microglia also contributes substantially to 
adult neurogenesis [10, 120–123], which takes place 
in the dentate gyrus for the hippocampus [124], the 
subventricular zone for the olfactory system [125, 126] 
and in the hypothalamus for the neuro-endocrine system 
[127]. Life-long adult neurogenesis is required for the 
function of memory, olfaction, neuroendocrine system 
and possibly others. As for the development of the CNS, 
in adult neurogenesis, enhanced or reduced generation 
of new neurons and their integration may substantially 
influence the brain function [124]. Neurogenesis is 
influenced by microglia [128] either by producing 
corresponding supporting or suppressing factors, or by 
eliminating new neurons [129], as well as by sustaining 
new neurons alive. Thereby, microglia may be influenced 
in their function by local [130] and systemic factors [131], 
including fractalkine (CX3CL1) [132], TLR9 [133] and 
Wnt signalling [134], LPS [135, 136], progranulin [137], 
allergic reactions [138], systemic inflammation [139], 

Figure 1: Schematic drawing of important functions of microglia during development of the central nervous system. 
In the upper blue area, the contribution of microglia to neurogenesis and synaptogenesis is depicted, including neuronal differentiation and 
elimination of apoptotic neurons, neuronal migration and axonal growth. The blue arrow indicates the direction of neuronal development. 
In the middle green area, the contribution of microglia to astrocytogenesis and oligodendrocytogenesis is depicted. In the lower red area, 
the contribution of microglia to angiogenesis is depicted.
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vaccines [140] and vaccination [141], dietary factors 
[142], exercise [143] and aging [144]. Recently, there are 
also first experimental attempts to control the influence 
of microglia on adult neurogenesis via drug therapies, 
including with indomethacin [145] and minocycline [146]. 
However, more research is required to better understand 
the cellular and molecular mechanism of how microglia 
and systemic immune events influence adult neurogenesis.

Phenotype and function of microglia

Upon their discovery, microglia have been identified 
and differentiated from other CNS-associated myeloid 
cell populations morphologically through histology. 
Thereby complex shape and distribution patterns have 
been described, depending on animal species, location in 
the CNS and activation stage [87]. Despite their different 
origin by early immigration from the yolk sac, microglia 
share many markers with other macrophage populations, 
such as the blood-derived perivascular, choroid plexus 
and leptomeningeal macrophages, including F4/80 
(Figure 2A), CD11b (Figure 2B) [118], but as microglia 
usually represent the majority of immune cells in the 
CNS, some of those markers are routinely used for 
their characterization [147–149]. Iba1 (ionized calcium 
binding adaptor molecule 1), which is highly conserved 
in mammals, has been useful as a specific marker for the 
detection of microglia, since its discovery [150, 151], as 

it is not expressed in blood monocytes, but often also in 
blood-derived tissue macrophages and dendritic cells [118, 
152, 153]. Thus, to distinguish microglia from blood-
derived immigrated macrophage populations, and from 
blood monocytes, reduced expression of the common 
leukocyte antigen CD45 as a marker has been suggested, 
although CD45 is upregulated in activated microglia [152]. 
More recently, a plenitude of membrane proteins has been 
identified in microglia. CX3CR1 (fractalkine receptor) is 
one important functional membrane protein, as its ligand 
(fractalkine, CX3CL1) is expressed on neurons [5, 90] 
and astrocytes [154]. CX3CR1 has been widely used as 
a marker for flow cytometry and immune histochemistry, 
as well as for developing a crucial CX3CR1-GFP mouse 
model, which is functionally very close to the Iba1-GFP 
model [155]. However, when it comes to identifying 
newly immigrated monocytic cells into the CNS and 
to differentiate them from resident microglia, reliable 
markers are still missing.

The transcriptome analysis of mouse microglia 
has revealed a unique signature for the freshly isolated 
brain-derived cells, whereas the cultured cells display 
properties of activated microglia [156]. In addition to 
some transcription factors (Rhox5, Cebpe, E2f6, Hoxc6, 
Phf17, Ppargc1b), several membrane proteins have been 
identified in microglia that are unique and not expressed in 
other macrophages, including the ion transporters Slco4a1, 
Slc30a5, Mcoln3, the lipid-metabolism associated cell 

Figure 2: Microglia cells visualised by immune histochemistry in the mouse brain using antibodies directed against. 
(A) F4/80 (Serotec, Kidlington, UK, clone Cl:A3-1), (B) CD11b (BD Pharmingen, San Diego, USA, cat. no. 553308), and (C and D) Iba1 
(Abcam, UK, cat. no. ab5076). Bars: (A and C) 25 µm, (B) 20 µm, (D) 40 µm.
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membrane molecules Lrp8, Lpcat3, Stab1, Pap2c, and 
the putative efflux cell membrane receptor Mfsd10. 
Unfortunately, reliable antibodies against these proteins, 
for specific histological detection of microglia in the CNS, 
are still missing. Similar work has also been done with 
human brain-derived microglia, which shows substantial 
similarities to the mouse microglia under physiological 
resting conditions [157]. However, activated microglia and 
cells from aged individuals show significant differences 
between mouse and human, as well as depending on 
location and condition [158, 159], making comparison of 
transcriptome studies quite difficult [160].

Microglia build a 3-dimensional network in the 
CNS and they communicate also through hemichannels 
and gap junctions [161, 162]. The hemichannels allow 
secretion and uptake of glutamate and ATP, factors that 
are essential in the communication with neurons and 
astrocytes. The gap junctions allow microglia to react as a 
syncytium. However, the extent of such connections and 
their relevance need further investigation, also in respect 
of possible pharmacological treatment by using functional 
modulators or blockers.

Microglia are the professional phagocytes of the 
CNS. They are able to sense and take up extracellular 
material, like cell debris, apoptotic cells, as well as 
tumour cells and microbes. Consequently, they contribute 
substantially to the function and structure of the CNS. 
They express a variety of sensing and binding receptors 
on their surface membrane [163]. Phagocytosis is 
essential for the control of newly generated neurons 
during development and adult neurogenesis, as well as 
for synapse homeostasis. However, they are able to engulf 
whole or parts of neurons, which may become fatal if 
phagocytosis gets out of control and if live, functional 
neurons are eliminated [164–166]. Microglia use a variety 
of receptors for the recognition of molecules, particles 
and cells that they engulf [167]. Sialic acid binding 
immunoglobulin-like lectins (Siglecs) are important 
regulatory receptors expressed on microglia and binding 
to sialated ligands on neurons or CNS tumor cells [168–
171]. Siglecs signaling modulates activation of microglia 
and thus also phagocytosis activity. Although they also 
serve as binding receptors, signaling through SIRPα 
(signal-regulatory protein alpha; CD172a), complement 
receptor 3 (CR3; CD11b), LRP (low-density lipoprotein 
receptor-related protein; CD90.2) and TREM2 (protein 
triggering receptor expressed on myeloid cells-2) also 
modulates phagocytosis by microglia, indicating that live 
neurons can control phagocytosis through expression 
of corresponding ligands [165, 172–179]. On the other 
hand, activated microglia secret inflammatory cytokines 
or other mediators that are able to regulate expression of 
those ligands on neurons, which may eliminate live and 
functional neurons and induce disease. Consequently, 
fine-tuning of the balance between eat-me and don’t-
eat-me signals, in the interaction between microglia and 

neurons, controls for whether neurons are engulfed and 
eliminated, or not [164]. Interestingly, there seem to be sex 
and age differences, when it comes to microglia functions, 
including phagocytosis, although the mechanisms are not 
well understood [180, 181]. For instance, in experimental 
autoimmune encephalomyelitis (EAE) mouse model 
for MS, which may present with reduced relapses 
during pregnancy, estrogen was found to promote anti-
inflammatory, protective and regenerative microglia [182, 
183]. Further, in experimental stroke, smaller infarcts and 
anti-inflammatory microglia were observed in female, but 
not in male mice [184]. Thus, phagocytosis by microglia is 
crucial for function and structure of the CNS, as well as in 
many pathologies. Therefore, more research on this topic 
is required in the future.

Continuous and sufficient blood supply to the CNS is 
essential and disruption of perfusion results in subsequent 
damage of function and structure [185, 186]. Regional 
perfusion of the CNS is tightly regulated at capillary 
level depending on oxygen and energy needs by the local 
neurons, which control regional perfusion indirectly via 
astrocytes. However, the molecular mechanisms for the 
regional perfusion control are still not well understood. 
Most important is also the tight separation of the CNS 
tissue and intercellular space from the intravascular space, 
which is given by the blood-brain-barrier (BBB) [187, 
188]. The BBB is important to keep serum proteins (e.g. 
complement system, antibodies, etc.) and a plenitude of 
soluble factors (e.g. cytokines, microbial products, etc.) 
in the blood circulation out of the CNS tissue, as many 
of those factors induce immediate and strong activation 
of microglia that results in devastating neuroinflammation 
[189, 190]. In mouse, the CNS vascularisation starts at 
about E8 by endothelial cells forming a capillary network, 
at around the same time of microglia colonisation, but 
before astrocytes emerge. However, CNS pericytes that 
stabilise the endothelial capillaries emerge around the 
same time [191]. Yet unknown neuronal factors and 
the pericytes control differentiation of CNS capillary 
endothelial cells and thus the formation of the first line 
of the BBB by increasing the tight connections between 
endothelial cells and by forcing them to establish 
limited, CNS-specific transcytosis. The functional 
capillary system, forming the internal part of the BBB, 
is composed of a continuous layer of endothelial cells 
interconnected through tight junctions and enclosing the 
lumen containing the blood. A distinct continuous basal 
lamina surrounds the endothelial cells in which pericytes 
are embedded without forming a continuous layer [192]. 
The basal lamina and the pericytes form the perivascular 
space which may also contain immune cells, including 
macrophages, often referred to as perivascular microglia, 
and lymphocytes. The perivascular space is peripherally 
completely covered by endfoot processes of the astrocytes 
forming the glia limitans, a second, external closure of 
the BBB interconnected through yet unknown adhesion 
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molecules [193, 194]. Occasionally, also processes of 
microglia also contribute to the glia limitans layer, called 
the juxtavascular microglia. Whereas the astrocytes 
control the transport of nutrients, oxygen and other 
molecules between the blood vessels and the neurons, the 
role of the perivascular and juxtavascular microglia is not 
well understood. However, they may monitor the interface 
between the first inner and second outer line of the BBB, 
and consequently mediate between the blood and the CNS 
environment, and vice-versa. Most important, activated 
microglia opens up the BBB by releasing inflammatory 
factors, resulting in enhanced neuroinflammation, by 
allowing serum components and immune cells entering 
the CNS tissue [36, 195, 196]. As most recently described 
[197] in healthy condition, the endothelial BBB is closed 
and enforced by claudin (CLDN) 5 and . In inflammation, 
the endothelial part of the BBB downregulates CLDN5 
and opens towards the perivascular space, while the 
astrocytes of the glia limitans upregulate CLDN1, 
CLDN4, and junctional adhesion molecule A (JAM-A), 
and forms an enhanced second barrier, composed of 
reactive astrocytes with tight junctions containing CLDN1, 
CLDN4 and JAM-A subunits. Enhancement of the second 
barrier has been attributed to local microglia secreting IL-
1β, a driver cytokine of lesion pathogenesis in multiple 
sclerosis and the corresponding EAE model. In addition 
to inflammatory diseases of the CNS, stroke and trauma 
of the CNS are extreme cases of the breakdown of the 
BBB with subsequent substantial activation of microglia 
[37, 198, 199]. Activated perivascular microglia may 
also be able to control repair of the damaged BBB [200, 
201], as well as to induce or support angiogenesis, which 
is important in CNS tumours [202, 203] and vascular 
pathologies of the retina [204–207]. First experimental 
therapeutic approaches have been suggested [208], but 
more research is required. Substantial research of this 
topic has used live animal imaging [209, 210], often the 
retina model, as the blood vessels of the eye are easily 
monitored. However, more in vivo research about the 
influence of microglia on the BBB would be needed and 
new models ought to be developed. 

Activation of microglia and their role in 
neuroinflammation, neurodegenerative 
conditions, mental diseases, aging and gender

Under physiological conditions, ramified, resting 
microglia provides a neuroprotective environment 
[211, 212]. However, most CNS pathologies, as well as 
regenerative efforts, include activation of microglia with 
corresponding inflammatory events (Figure 3) [213, 214]. 
Activated, inflammatory microglia are thus neurotoxic 
and kill neurons by engulfing them or releasing various 
neurotoxic molecules and factors, including reactive 
oxygen species (ROS), glutamate, Fas-ligand, tumour 
necrosis factor α (TNFα) and others [215–218]. On the 

other hand, activated neuroprotective microglia may 
secrete neurotrophins that support neuroregeneration 
[219]. Of note, microglia do not act on their own, but 
they coordinate their action with astroglia [27, 220]. 
Recently, a new type of microglia has been described 
under pathological conditions named the ¨dark microglia¨, 
due to their characteristic dark appearance in electron 
microscopy because of ultrastructural changes, which 
are proposed to reflect oxidative stress in a particularly 
hyperactive subset of microglia [221]. Morphologically, 
microglia activation results in increased dynamics of the 
cell processes that are extended and retracted according 
to corresponding signals. In addition, the cells may give 
up their home location and migrate towards the area of 
action close by, where they may accumulate and may form 
a protective enclosure around the pathological or damaged 
area usually seen around damaged CNS tissue after trauma 
or amyloid-β plaques in Alzheimer’s disease [222, 223]. 
Similar to other tissue macrophages, microglia change 
upon activation the pattern of surface proteins and secrete 
various soluble factors [224]. In addition, phagocytosis is 
upregulated upon activation. Depending on continuous 
presence or absence of the cause for the activation, or on 
clearance of the problem, microglia may either display the 
inflammatory properties and remain chronically activated, 
or they may change towards a protective phenotype and 
function where they support tissue repair and restoration 
of structure and function of the CNS [20, 225, 226]. 
Interestingly, severe local or systemic events, external 
to the CNS, like systemic inflammation or bacterial 
infection with sepsis can open and cross the BBB and 
subsequently activate microglia [18, 227] and interfere 
with ongoing CNS processes [228]. On the other hand, 
activation of microglia and neuroinflammation may also 
result in the break-down of the BBB and corresponding 
leakage of complement into the CNS, which results in 
enhanced activation of microglia and neuroinflammation 
[229]. However, chronic neuroinflammation may result in 
neurodegenerative diseases.

Microglia express various pattern recognition 
receptors (PPRs) for sensing endogenous danger-
associated molecular patterns (DAMPs: e.g. heat shock 
proteins) [230] and exogenous pathogen-associated 
molecular patterns (PAMPs: microbial proteins, 
saccharides, lipids, RNA and DNA) [231]. Toll-like 
receptors (TLRs) are such PPRs, transmit danger signals 
and strongly activate microglia in the context of CNS 
damage or infection [232, 233].  Interestingly, galectin-3 
(Gal3) secreted by activated microglia is also a ligand 
of TLR4, which may result in chronic activation of 
microglia [234]. Amyloid-β, which is found in the context 
of Alzheimer’s disease, as well as prions also activate 
microglia [235]. It has also been shown that chromogranin 
A, released by stressed neurons and recognized by 
scavenger receptors on microglia results in their activation 
[217]. Inflammatory activation signals in microglia are 
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then integrated in the inflammasome [236], which results 
in activation of transcription factors for the transcription 
of inflammatory genes [237]. Microglia activation can 
be such a deleterious and destructive event by harming 
structure and function of the CNS that many regulatory 
mechanisms ought to be built in this process, of which few 
have recently been discovered, including TREM2 [238, 
239]. Interestingly, upregulation of macrophage colony-
stimulating factor receptor (CD115, M-CSFR; c-fms) on 
microglia makes them rather neuroprotective [240], as 
well as signalling through P2X7 receptor [241]. Like for 
most immune cells, microglia respond to metabolic and 
energy-related events and activation results in metabolic 
reprogramming of the cells [242], which interestingly 
differs between different activation stages [23], which 
allows accordingly more detailed differentiation between 
microglia activation stages. In addition, chronic activated 
microglia may have substantial epigenetic changes of their 
chromatin, which may then be difficult to reverse [243].

Trauma of the CNS is a frequent pathology, 
including traumatic brain (TBI) and spinal cord (SCI) 
injury. Severity of the damage can range from very 
minute, e.g. in contusion, to substantial tissue damage 
resulting in deleterious loss of function, including 
paresis, paralysis and hemi- or tetraplegia. Microglia are 
immediately activated in such an event [26] and they try 
at first to enclose the damage and minimise the spread 
of it [223]. However, strong activation of microglia 

may damage viable neighbouring neurons [244]. In the 
course of the response to injury, microglia contribute 
first to cleaning debris [245] and later to tissue repair, 
usually resulting in non-functional scar tissue [21, 27]. 
Interestingly, minor recurrent trauma like concussion 
during sport (boxing, soccer, etc.), or injury in a distal 
CNS region, may also activate microglia in otherwise 
healthy tissue and result on a longer term in substantial 
mental disease or chronic pain [246, 247]. One has also 
to consider that injury breaks down the BBB and allows 
immigration of blood derived immune cells, including 
macrophages and lymphocytes that contribute to the acute 
inflammatory reaction and subsequent tissue repair [16, 
248]. Various factors known to contribute to induction 
and regulation of neuroinflammation, as well as to tissue 
repair are involved in the course of CNS injury, including 
CX3CR1-CX3CL1 that mediate communication between 
microglia and neurons or astrocytes [249]. However, the 
detailed molecular mechanisms and the extent of the role 
of microglia in CNS trauma and repair are still not well 
understood and need further future research [250].

CNS ischemia and stroke are events with similar 
tissue responses seen in traumatic injury of the CNS, 
although the cause is different. Correspondingly, microglia 
reacts very similarly to tissue damage and similarly 
supports tissue repair mechanisms [13–15, 251–254], 
also including immigration of peripheral blood leucocytes 
[255, 256]. Most important is of course to consider 

Figure 3: Schematic drawing of important processes where activated microglia play a crucial role. The lower red 
area depicts pathologies induced and/or sustained by microglia activated along the inflammatory and neurotoxic pathway, including 
neurodegenerative and autoimmune-like diseases, as wells as neurogenic pain, infectious encephalitis and break-down of the blood-brain 
barrier. The upper green area depicts microglia activated along the regenerative pathway where the focus is on tissue repair, including injury 
and repair, as well as tumour growth and angioneogenesis. Of note, microglia activation status can be different at different locations at the 
same time. In addition, microglia activation status may change from one polarized status to the other polarized status over time for certain 
pathologies; e.g. in infections at first the inflammatory status is required to eliminate the infectious agent, whereas later a regenerative status 
will support repair of damage caused by the infection.
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the underlying systemic metabolic and inflammatory 
condition, usually contributing to the cardiovascular 
disease and subsequent stroke, which may also influence 
microglia response to ischemia and tissue damage and 
which increases the complexity of the pathology of stroke 
[257, 258].

Activated microglia driving chronic 
neuroinflammation have also been shown to 
substantially contribute to aging of the CNS [259, 260], 
epilepsy [261], chronic neuropathic pain [262], mental 
diseases [35, 263, 264] and neurodegenerative diseases, 
including Alzheimer’s disease [222], Parkinson’s 
disease [265], amyotrophic lateral sclerosis (ALS) 
[34]  and multiple sclerosis [33]. Aging goes in parallel 
with systemic chronic activation of the immune system 
and polarization towards a low-level inflammatory 
status [266, 267]. This process also affects the CNS 
and thus microglia [259, 268], which interferes with 
CNS homeostasis, especially adult neurogenesis 
[269], the function and structure of myelination 
[270] and synapses, as well as the BBB. Mental and 
neurodegenerative diseases have then probably to be 
seen as focal processes of age-related activated and 
dysfunctional microglia [45, 271–274]). However, better 
understanding of the molecular and cellular mechanisms 
in the activation of microglia and the regulation of 
inflammatory processes in the CNS is required and 
more research is therefore needed in these areas of 
neuroimmunology.

The role of microglia in viral encephalitis and in 
brain tumours

Virus infections are the most frequent reason for 
encephalitis. A variety of viruses affect the CNS and 
induce encephalitis, including flaviviruses such as Dengue 
[275, 276], hepatitis C [277], Japanese encephalitis [278, 
279], West Nile [44] and Zika [280–282], as well as 
herpes viruses such as herpes simplex [283], varicella 
Zoster [284] and Kaposi’s sarcoma associated herpes 
virus [285], as well as HIV [286, 287]. All the viruses 
mentioned above may infect microglia [276–278, 280, 
281, 288], whereas flaviviruses and herpes viruses, but 
not HIV [289], may also infect neurons and/or astroglia. 
Infected neurons and astroglia usually respond with 
inflammatory signals that activate surrounding microglia. 
Infected microglia are usually also activated and may 
substantially contribute to the anti-viral immune response 
in the CNS, which results in the recruitment of blood 
monocytes and T-lymphocytes and in the clearance of the 
virus. Virus-dependent neuroinflammation often results in 
the local break-down of the BBB. However, damage of 
the BBB may not be the initial event for the transmission 
of the virus from the blood to the CNS tissue and cells, 
but other mechanisms can be involved. E.g. in the case of 
Japanese encephalitis, somehow astrocytes and microglia 

are first infected, before the BBB opens up [290]. Thus, 
the virus could either get into the CNS via infected 
capillary endothelial cells which release infectious viral 
particles towards the CNS, or via infected leucocytes 
(in HIV) [291] that enter into the CNS and transmit 
the virus to susceptible microglia [292]. There is also a 
broad variety of reactivity between different individuals 
in humans, resulting in a broad spectrum between low 
and severe neuroinflammation and neuronal infection 
and cell death. Correspondingly, the infection outcome 
may vary between asymptomatic and fatal consequences, 
with a broad spectrum between minor mental disorder 
and severe cognitive deficiencies. Viral infection of the 
developing CNS results usually in severe malformation 
which may even result in a non-viable foetus and thus 
lead to abortion, as it has been recently documented 
for Zika [282, 293]. Viral infections of microglia may 
also interfere with their function, which may result in 
enhanced, uncontrolled inflammation and/or immune 
deficiency, of which the mechanisms are still not well 
understood. Fortunately, vaccines have been successfully 
established for some viruses, e.g. Japanese encephalitis, 
which prevents infection in the first instance. However, 
for many of the mentioned viruses, there is still no vaccine 
available and substantial more research is required to 
better understand the role of microglia in corresponding 
viral encephalitis.

Glioma, especially glioblastoma, is the most 
frequent primary brain tumour [50]. Therefore, glioma 
is covered here, representing the principal mechanisms 
of microglia in CNS primary tumours and metastases. 
Gliomas develop from genetically aberrant glia cell 
precursors and are usually monoclonal [294]. Microglia 
play a role in establishing a growing glioma tumour, and 
certainly help glioma to grow together with its vascular 
supply [295–297]. The vascular bed of gliomas has to 
be considered different from the functional BBB [298] 
and allows substantial immigration of CCR2 + blood 
derived monocytes, as well as regulatory/suppressive 
lymphocytes and other leucocytes into the tissue, due to 
CCL2 production of the tumour [299, 300]. Interestingly, 
there is a more immune-suppressive, tumour growth 
promoting population of residential microglia, as well 
as an inflammatory, monocytes-derived macrophage 
population [202]. Together, in the interaction with the 
tumour cells, they provide an optimal environment 
for survival and growth of glioma, by preventing an 
effective anti-tumour immune response, generating 
space in the healthy tissue and providing growth factors 
[301–303]. However, future therapies have probably to 
target, in addition to the tumour cells, also microglia 
and macrophages, as well as the vascular cells [304]. 
In addition to mouse and human in vitro models, the 
zebrafish in vivo model has become very helpful to 
investigate the role and interaction of microglia with 
glioma [305].
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Microglia research models

Microglia research still relies heavily on in vivo [51] 
and ex vivo cellular and tissue models [241], including 
mouse [32, 70, 209, 306, 307], rat [308] and zebrafish 
[70, 309], as these cells are unique and very different from 
other tissue macrophages and bone marrow derived cells. 
However, for research in humans, two in vitro approaches 
have been successfully envisaged: (1) isolation of primary 
microglia from surgical specimens of the brain [310] or 
post-mortem tissue samples [147, 278, 311, 312], or (2) 
differentiation of microglia-like cells from embryonic stem 
cells [313], induced pluripotent stem cells (iPS) [314–
316], bone marrow stem cells or blood monocytes [317–
319]. Although all those in vitro human models have their 
limitations, they have so far been very useful to investigate 
cellular and molecular mechanisms related to cellular 
structure and function in the context of inflammation, 
infection and immune response. Recently, microglia from 
different models have been better characterized using 
modern transcriptomic methods [320] and compared, 
indicating that all cultured cells used for in vitro models 
are probably at an activated stage [147], and only in 
vivo models represent physiological resting microglia. 
However, it may be possible in the future to also develop 
better in vitro models of resting microglia [321] once 
the in situ tissue conditions and molecular and cellular 
properties are better known. Interestingly, microglia 
depletion models [322] that can also be replenished with 
different kinds of modified cells [241] have more recently 
been developed. It is thus expected that more new models 
will be developed in the near future in microglia research, 
adding new knowledge and new aspects of the very 
versatile and important CNS macrophages, the microglia.

CONCLUSIONS

Microglia are thus unique cells of the central nervous 
system, linking it to the immune system. They participate 
in the biology and pathology of the CNS from early on 
through-out development and later in CNS homeostasis. 
Their origin and many of their functions have only recently 
been discovered, but much more is still not known. 
Consequently, microglia will remain for the years to come 
on the centre stage of research in neuroimmunology.
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