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ABSTRACT
Numerous studies have established the importance of immune dysfunction in 

the development of diabetes mellitus, including typ1 and typ2 diabetes, and it is 
worth noting that T cell activation acts a key role in the pathogenesis of loss of β 
cell mass, adipose inflammation and insulin resistance. Regarding as an important 
checkpoint in the process of T cell activation, co-stimulatory molecules interaction 
between antigen present cells and T cells have been identified the critical role in the 
development of diabetes mellitus. Thus, blockage of co-stimulatory dyads interaction 
between antigen present cells and T cells was supposed to a potential of therapeutic 
strategies. However, studies also showed that inhibition or deletion of some co-
stimulatory molecules do not always reduce the development of diabetes, and even 
exacerbate the disease activity. Here, in this context, we highlight the dichotomous 
role of co-stimulatory molecules interaction in the pathogenesis of diabetes.

INTRODUCTION

Diabetes mellitus is characterized by chronic 
hyperglycemia, which is resulted from the loss of β cell 
mass or loss of insulin sensitivity [1–3]. Long-term 
improper control of blood glucose homeostasis predisposes 
patients to the development of diverse complications such 
as diabetic retinopathy [4], nephropathy [5], neuropathy 
[6], foot ulcers [7], and cardiovascular diseases [8]. 
Now it is well-accepted that abnormal immune response 
including both innate and adaptive immunity plays a 
critical role in the development of β cell destruction and 
insulin resistance, although the underlying mechanisms 
remains elusive [9–11]. The co-stimulatory molecules 
are important regulators of immune activation via 
providing second signal for T cells activation [12]. 
Therefore, most studies have shown that interaction of 
co-stimulatory molecules exhibits a pathogenic role in 
autoimmune diseases [13–15]. Remarkably, B7/CD28 
interaction is the vitally important second signal [16–18]. 
However, increasing evidence has suggested that some co-

stimulatory signaling pathways may have a protective role 
in diabetes pathogenesis. Here, we review dichotomous 
role of these co-stimulatory molecules serve complicated 
roles in diabetes mellitus, especial B7/CD28. 

Co-stimulatory molecules and diabetes

When the body encounters foreign antigens or 
endogenous danger signals, immune response usually 
initiates. The innate immune cells, especially the 
professional antigen present cells (APCs), play a crucial 
role in uptaking and processing pathogenic substance 
present the antigen to T cells through MHC molecules 
[12, 18], which results in cellular and humoral immunity. 
In addition to presenting antigens to T cells, APCs also 
express co-stimulatory molecules which are regulated by 
the exogenous pathogens or endogenous alarmins [such 
as high mobility group protein 1 (HMGB1), heat shock 
protein 70 (HSP70) as well as interleukin-33 (IL-33)], 
providing the second signal for T cell activation [19]. The 
second signal is initiated by the interaction between co-
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stimulatory molecules expressed on the APCs and their 
corresponding ligands on the surface of T and B cells [20]. 
Like the neural synapse, the co-stimulatory dyads form an 
immunological synapse which is very important for the 
T or B cells activation [21]. In the absence of the second 
signal, the interaction of antigen-MHC complex with TCR 
or BCR, also known as the first signal, is insufficient to 
activate the T cells or B cells, leading to T cell and B cell 
anergy or apoptosis [20]. A number of co-stimulatory 
molecules have been identified, among which CD28/B7, 
CD40L/CD40, PD-1/PD-L1 and ICOS/ICOSL are the 
best-characterized co-stimulatory dyads involved in the 
immune synapse and immune cells activation. 

Type 1 diabetes mellitus (T1DM) is the consequence 
of the autoimmune mediating pancreatic insulin-producing 
β cells damage and loss [3]. Inflammatory autoreactive 
T cells, escaping from central and peripheral tolerance 
recognize pancreatic islet antigens, can be activated in the 
pancreatic lymph nodes. Activated T cells then migrate to 
local pancreatic islet and induce an inflammatory micro-
environment, recruiting macrophage and neutrophil 
infiltration and leading to pancreas islet damage and injury 
[22]. Of note, obesity-associated inflammation is widely 
believed to play a key pathogenic role in the development 
of obesity-induced insulin resistance and type 2 diabetes 
mellitus (T2DM). Innate immune activation typified by 
infiltrating macrophages is deemed to represent important 
mediators of obesity-related complications [11, 23, 
24]. Keeping with previous reports, our recent work 
also demonstrated that a critical role acted by adipose 
macrophages in T cells immune responses during this 
process [25]. 

The co-stimulatory molecules mediating the 
interaction between T cells and APCs have been linked 
to the development of abnormal immune response 
[20]. Therefore, inhibition of co-stimulatory molecules 
interaction has been suggested to modulate T cell 
activation. Lots of studies have indicated a protective role 
of co-stimulatory inhibition in the development of many 
disease, such as experimental allergic encephalomyelitis 
(EAE) [26–29], allograft transplantation [30–32], arthritis 
[33, 34], and hypertension [35, 36]. Furthermore, the 
abnormal immune response induced by co-stimulatory 
molecules also result in β cell loss and insulin resistance 
in T1DM and T2DM [9, 22, 37]. Thus, dampening 
inflammation induced by autoimmune response become 
a potential therapeutic method in diabetes. However, 
increasing evidences suggest a protective role by some 
co-stimulatory molecules dyads in diabetes pathogenesis. 
Below we review the complicated roles of co-stimulatory 
molecules dyads in the development of diabetes. 

Role of B7/CD28 in diabetes

Two signals are required for full activation of naive 
CD4+ T lymphocytes as described [20]. T cell will be 

anergy or undergo apoptosis in the absence of second 
signal [38]. Therefore, co-stimulation inhibition shows a 
great therapeutic potential in immune-mediated diseases. 
B7 molecules, including B7-1 (CD80) and B7-2 (CD86), 
are the best-characterized co-stimulatory molecules and 
mainly expressed on APCs such as dendritic cells (DCs), 
B cells, and macrophages [17]. Nevertheless, Study have 
shown that B7-2 might be more important in the initiation 
of immune responses, as its expression is rapidly up-
regulated when APCs encounter endogenous damage 
alarmin or foreign bodies, yet B7-1 is up-regulated in 
the later phase during the immune response [39, 40]. 
Through binding its specific receptor CD28, B7 activates 
protein kinase Cθ (PKCθ) and RAS guanyl nucleotide-
releasing protein (RASGRP) [41, 42], which promotes T 
cell activation, proliferation, and anti-apoptosis. Of note, 
the co-inhibitory receptor CTLA-4 also shares the ligands 
(B7-1 and B7-2) with CD28 [40]. Generally, CTLA-
4 is highly expressed in activated T cells, which is the 
self-control for preventing excessive immune response 
by binding to B7-1 or B7-2 [29, 43]. This co-inhibitory 
receptor CTLA-4 attracts increasing intention, because 
of its potential in immune regulation and higher binding 
affinity compared with CD28. CTLA-4 Ig has been used 
in the treatment of autoimmune disease [29, 33] and 
transplant rejection [44, 45]. Overall, the opposing roles of 
CD28 and CTLA4 are considered a prototypical immune 
checkpoint for the immune response through competing 
pro- and anti-inflammatory effects. 

Interestingly, studies have demonstrated that basal 
B7-1 and B7-2 expression is also necessary to prevent 
autoimmunity by sustaining regulatory T (Treg) cell 
populations [46–49]. In our previous investigation, we 
also elucidated a homeostatic role of B7-mediated co-
stimulation in diet-induced obesity using CD80/CD86 
double knockout (B7 KO) mice and investigated the 
relevance of this process in humans with obesity and IR 
[50]. Our results suggested an essential role for B7 in 
maintaining Tregs and adipose homeostasis and may have 
important implications in immunotherapies targeting co-
stimulation in type 2 diabetes. 

As is well-known, interaction between B7 and CD28 
promotes inflammation, while there is difference between 
the function of B7-1 and B7-2. In the development of 
type 1 diabetes in the NOD mouse, a distinct regulation 
of B7-1 and B7-2 were observed. At the onset of insulitis, 
mice treated with CTLA4 Ig or a blocking B7-2 antibody 
did not develop diabetes. However, there is no significant 
effect when CTLA4 Ig or a blocking B7-2 antibody 
administered late. Consistently, a delayed development of 
diabetes was seen in B7-2 knockout NOD mice, where 
islet-reactive CD4 T cells were defective. In contrast 
to the effect of B7-2 inhibition, B7-1 neutralization or 
gene deficiency causes exacerbation of disease, the lack 
of B7-1 significantly accelerated the development of 
disease accompanied by enhanced expansion, survival, 
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and effector function of islet specific T cells in periphery 
[51, 52]. Furthermore, B7-1 deficiency mice showed a 
significant reduction in immunosuppressive Tregs cells 
[52]. These results suggest that B7 may play complicated 
role in the development of autoimmunity. Likely, in 
our previous study, expression of B7-1 and B7-2 was 
negatively correlated with the degree of IR and adipose 
tissue macrophage infiltration in both humans and mice. 
Furthermore, instead of promoting inflammation, ablation 
of CD80/CD86 by double gene knockout defects Tregs 
development and proliferation in mice, and exhibits 
enhanced adipose macrophage inflammation and IR 
under high-fat diet feed. Conversely, adoptive transfer of 
Tregs reversed IR and adipose inflammation in B7 KO 
mice [50]. Taken together, above studies of B7/CD28 
co-stimulatory molecules show a complicated role in 
development of immune-mediated disease, including 
diabetes. 

Beneficial roles of B7/CD28 in diabetes

Although B7/CD28 co-stimulation participates in 
the induction and progression of autoimmune diseases, it 
has also been demonstrated that B7/CD28 co-stimulatory 
molecules interaction is substantial for Tregs development 
and proliferation. To examine the role of B7/CD28 in 
the development of EAE, CTLA-4 Ig was administrated 
to the mice. Unexpectedly, B7 blockade with CTL1-4 
Ig exacerbated disease signs and exhibited more severe 
CNS inflammation and demyelination, which was 
associated with the increased inflammatory cytokines 
IL-17 and IFN-γ [29]. Similarly, in our previous study, 
CD80/CD86 was found to be essential for Tregs 
development and proliferation in obese mice and human, 
instead of promoting inflammation [50]. Furthermore, a 
subpopulation of CD4+ T subsets, characterized by low 
CD28 expression, is resistant to apoptotic signals and 
lives longer in vivo [53, 54]. The CD4 + CD28- T cells 
shows an atherogenic and plaque-destabilizing property 
[55–59]. It is well known that the diabetes patients are 
at high risks of atherosclerosis. Therefore, these T cell 
subpopulations were investigated in diabetes patients. 
When compared with non-diabetic individuals, T2DM 
patients with proliferative diabetic retinopathy showed 
a higher percentage of CD4 + CD28- population [60]. 
A study showed that CD4 + CD28- T cells potentially 
drive the severity of the disease through producing IL-
17, and IL-17 expression of CD4 + CD28- T cells was 
regulated by NKG2D. In addition, when compared to 
non-diabetic individuals, CD4 + CD28- NKG2D + T cells 
subpopulation is increased in T2DM patients [61]. Shi B 
et. al showed that advanced glycation end products (AGEs) 
effectively enhanced these subset T cells proliferation 
in patients with T2DM, and the higher level of CD4 + 
CD28- T cells is closely associated with the status of 
macrovascular atherosclerosis in patients with T2DM 

[62]. Similarly, by means of ultrasound image to analyze 
the atherosclerotic plaque in the common carotid artery 
(CCA), CD4 + CD28- lymphocytes reveals a positive 
correlation with the number of atherosclerotic plaques 
within the CCA. In a clinical follow-up observation, CD4 
+ CD28- T cells are correlated with the occurrence of a 
first cardiovascular event and with a worse outcome after 
an ACS in DM patients [63]. These data revealed that the 
expression of CD28 molecules on CD4 + cell is vital for 
immune homeostasis in T2DM.

Furthermore, lack of B7/CD28 interaction also 
results in a limited numbers of regulatory T cells and 
aggressive disease progression in the T1DM NOD mice 
[64]. Treg cells were markedly decrease in the B7-1/
B7-2-deficient and CD28-deficient NOD mice [49]. 
Additionally, the percentage of CD4 + CD28 + T cells 
and IL-2 production were also decreased along with 
aging, which resulted in impired Tregs function in NOD 
mice [65]. Recently, multipotent stem cells received huge 
attention in the treatment of many diseases due to its 
immunoregulatory and tissue repair functions [66–70]. 
In a clinical trial, the C-peptide levels, median glycated 
hemoglobin A1C (HbA1C) values, and the median daily 
dose of insulin were markedly improved in T1DM patients 
treated with cord blood-derived multipotent stem cells. 
Study also showed that the improvement was associated 
with increased expression of CD28, ICOS and the number 
of Tregs [71]. This study sustains the concept that CD28 
plays an immunoregulatory function. Keeping with 
above reports, B7-1 gene knockout NOD mice showed a 
diminished amount and expansion in Tregs, accompanied 
by increased survival and amplification of auto reactive 
T cells [52]. Bour-Jordan H et.al further demonstrated 
that B7-1 overexpression on B cells completely protected 
NOD mice from developing diabetes [72]. These studies 
suggest a protective role of B7/CD28 in the development 
of diabetes. 

The pro-inflammation of B7/CD28 in diabetes

As is well-known, the interaction between B7 and 
CD28 is critical for the second signal of T cell activation 
and promotes inflammation [18]. In a case report, the 
patient with T2DM showed a dramatic improvement 
in insulin resistance when blockage CD28 activity by 
CTLA4-Ig infusion [73]. Furthermore, high glucose 
conditions promoted podocytes to express B7-1 both in 
vitro and in vivo. Treatment with CTLA4-Ig inhibited the 
apoptosis of podocytes, leading to an improvement of 
urinary albumin excretion and kidney pathology in these 
animals. Besides, the B7-1 expression is also up-regulated 
in podocytes from kidney biopsy specimens of T2DM 
patients [74]. Moreover, the expression of B7-2 has also 
been shown to increase in gestational diabetes mellitus 
(GDM) patients [75, 76]. Although not statistically 
significant (probably due to the small sample size), 
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Schliefsteiner et al. reported that there was an increase of 
B7-2 in parallel with proinflammatory cytokines IL-1β 
and IL-6 in patients with GDM [76]. The expression of 
CD28, the binding partner of B7, was also increased in the 
peripheral T cells from patients with GDM [77]. 

A single-nucleotide polymorphisms (SNPs) analysis 
demonstrated that CD28 might contribute to the risk of 
T1DM [78]. In addition, a recent study showed that mice 
deficient for CTLA-4 or treated with anti-CTLA-4 antibody 
exhibited spontaneous follicular T cells (Tfh) differentiation 
by enhancing the strength of CD28 ligation with B7-1 and 
B7-2 [79]. IL-21, a critical cytokine in autoimmunity, can 
promote autoimmune response through up-regulating B7-2 
on B cells [80]. These studies showed a great potential of 
B7/CD28 in the treatment of autoimmune diseases. Indeed, 
a marked reduction of spontaneously activated CD4 T 
cells and islet-specific CD4 T cell expansion and enhanced 
CD4 T cell death were observed in B7-2 knockout NOD 
mice. Interestingly, a significant reduction of Treg was 
not seen in the peripheral compartments of B7-2 KO 
mice [81]. Contrary to the inflammatory characteristic of 
CD4 + CD28- subset T cell, a CD8 + subpopulation with 
lower expression of CD28 exhibits an anti-inflammatory 
function [82]. In the peripheral blood mononuclear cells 
from juveniles with T1DM, CD8 + CD28- T cell subset 
was significantly reduced and correlated with disease 
duration. Moreover, CD8 + CD28- subpopulation was also 
significantly lowered in multiple sclerosis patients as well 
[83]. In the absence of Tec family kinase ITK, a CD28 
downstream signaling molecule, there was a profound 
diminishment of islet-infiltrating inflammatory cells in 
mice with T1DM [84]. 

Taken together, B7/CD28 co-stimulation has 
divergent effects on the pathogenesis of diabetes mellitus 
in the different context of disease, which leads to a great 
barrier for the therapeutic method in diabetes. While not 
only complicated role of B7/CD28 dyad, many other co-
stimulatory molecule dyads also exhibit a dichotomous 
role in the pathogenesis of diabetes. Below, we discuss 
some other co-stimulatory molecules that play an essential 
role in diabetes development.

Complicated role of other co-stimulatory 
molecules in diabetes 

ICOS 

Inducible co-stimulator (ICOS), a member of the 
CD28 family,  is expressed after T cell activation [85]. 
The deletion of ICOS in T cells results in a decreased 
production of the Th1 cytokine IFN-γ without affecting 
the numbers of regulatory T cells. ICOS plays a 
considerable role in the induction of the autoimmune-
mediated diabetes [86]. However, there was also a study 
reporting that the absence of ICOS exacerbates the disease 
activity in experimental models of diabetes by ablating 

Treg function [87]. This difference might be caused by the 
different function of ICOS on different cells, which leads 
to discrepant outcome.

B7-H4 

A member of the B7 family, is expressed on the 
cell membrane of APCs and up-regulated when they 
activated by exogenous and endogenous stimulator [88, 
89]. However, its specific receptors remain unknown. 
Previous study showed that B7-H4 deficiency increased 
the incidence and severity of EAE and collagen-induced 
arthritis (CIA) [90–92]. Furthermore, B7-H4 inhibits islet 
allograft rejection and decreases lymphocyte proliferation 
[93]. Recent studies also indicate a suppressive function of 
B7-H4 in the development of diabetogenic autoimmunity. 
An increased level of soluble B7-H4 (sVTCN1) was 
detected in T1DM patients, which is correlated with 
the aggressive pace of disease. The sVTCN1 lost its 
immunosuppressive function on inhibiting diabetogenic 
T cells. Therefore, inhibiting the cleavage of membrane 
B7-H4 may serve as a potential therapeutic strategy [94, 
95]. Independent of inhibiting the recruitment of activated 
CD4 + and CD8 + T cells to islets, B7-H4 Ig treatment 
significantly postponed the disease onset and reduced 
incidence of diabetes in NOD mice due to a transient 
increase of Treg cells population  [96]. Furthermore, β 
cell-specific B7-H4 overexpression protected against 
allograft rejection [97]. Unexpectedly, endogenous B7-
H4 showed a defect in inhibitory costimulation, but 
augments the activation of diabetogenic T cell during T1D 
development [95]. Further study should be carried out to 
address the exact role of B7-H4 in the immune modulation 
during the development of diabetes.

CD40/CD40L 

The costimulatory molecule CD40 and its ligand 
CD40L (CD154) are expressed by T cells, B cells, APCs, 
pancreatic islet β cells, and pancreatic ductal cells [12, 
98]. In T1DM animal model NOD mice, blockage of 
CD40L during early diabetes ameliorates spontaneous 
disease onset, resulting from the decreased number of 
auto-reactive T cells [99–101]. In parallel with T1DM, 
CD40-CD40L interactions showed a pro-inflammatory 
role of in adipose tissue inflammation. Deletion of 
CD40L protected against weight gain, adipose tissue 
inflammation, hepatosteatosis, and insulin resistance 
after high-fat diet feeding [102–105]. However, it 
has been demonstrated that CD40-/- mice on high-fat 
diet displayed increased weight gain, impaired insulin 
secretion, and upregulated pro-inflammatory cytokines 
compared to the wild type mice. Further data revealed that 
the expression of pro-inflammatory cytokines inhibited 
by CD40 activation only found in T cells, but not in B 
cells or macrophages. This study provided the evidence 
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that protective effect of CD40  was closely associated 
with CD40 signaling on T cells, which improved adipose 
tissue inflammation and  metabolic complications [106]. 
These data suggest CD40L/CD40 also plays a complicated 
role in the development of obesity.

4-1BB/4-1BBL 

As a member of the TNF receptor superfamily, 
4-1BB provides a co-stimulatory signal through binding 
to its ligand 4-1BBL [12, 107]. 4-1BB is expressed on 
adipocytes and macrophages, and is upregulated by 
obesity-related factors [108]. 4-1BB and/or 4-1BBL 
agonists activate inflammatory signaling molecules in 
adipocytes and macrophages [109]. In consistency, 4-1BB 
deficiency protects against HFD-induced obesity, glucose 
intolerance, and fatty liver disease though decrease 
adipose infiltration of macrophages/T cells, and tissue 
levels of inflammatory cytokines [110]. Unexpectedly, 
anti-4-1BB scFv transgenic NOD mice developed more 
severe diabetes than their non-transgenic littermates, as 
evidenced by earlier onset, faster diabetic process, and 
higher mortality rate [111]. 

CONCLUSIONS

Heretofore, although lots of basic and clinical 
studies of co-stimulatory molecules have been 
investigated in the pathogenesis of diabetes, the roles and 
mechanisms remains ill defined. Due to the complicated 
and dedicated micro-environment of disease, 
contradictory role of co-stimulatory dyads is often 
observed in the development of diabetes. The possible 
reasons for the contradictory roles of co-stimulatory 
dyads in diabetes mellitus might be as follow: 1) The 
basal expression of co-stimulatory molecules such 
as B7-1 and B7-2 is required to prevent heightened 
inflammatory response by sustaining Treg populations; 
2) The expression of different co-stimulatory molecules 
may be regulated differentially by a variety of 
inflammatory cytokines during the process of diabetes; 3) 
Different co-stimulatory molecules have distinct effects 
on different cell populations, which leads to discrepant 
outcomes; 4) The source (exogenous versus endogenous) 
of co-stimulatory molecules such as B7-H4 might affect 
their functions on immune activation; 5) In addition, the 
intervention methods to block co-stimulatory molecules 
(eg. Antibody-mediated neutralization and administration 
of recombinant fusion proteins) might affect the function 
of other co-stimulatory molecules. For example, CTLA-
4 depletion also promotes the ligation between B7 and 
CD28. Therefore, further studies are required to fully 
understand the pathophysiological roles of co-stimulation 
in diabetes and develop immunomodulatory therapeutics 
against the inflammatory process in metabolic disease.
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