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ABSTRACT
The inverse association between Alzheimer’s disease (AD) and cancer has 

been reported in several population-based studies although both of them are age-
related disorders. However, molecular mechanisms of the inverse association remain 
elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the 
pathogenesis of AD, while it suppresses cancer growth and progression in many types 
of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various 
types of cancer. It suggests that RCAN1 may play a key role in the inverse association 
between AD and cancer. In this article, we aim to review the role of RCAN1 in the 
inverse association and discuss underlying mechanisms, providing an insight into 
developing a novel approach to treat AD and cancer.

INTRODUCTION

Alzheimer’s disease (AD) is the most common 
type of neurodegenerative disease leading to dementia 
and aging is the major risk factor of AD development 
[1-2]. Cancer is one of the leading causes of morbidity 
and mortality worldwide and aging is also a fundamental 
factor in cancer development [3]. The inverse association 
between AD and cancer has been reported in several 
population-based studies [4-15]. Elucidating underlying 
mechanisms of the inverse association between AD and 
cancer will be beneficial to developing effective therapy 
for AD and cancer, particularly for AD as there is no 
effective treatment for AD. Recent studies indicate that 
regulator of calcineurin 1 (RCAN1) may play a key role 
in the inverse association between AD and cancer. For 
example, RCAN1 elevation promotes AD pathogenesis, 
while increased RCAN1 suppresses tumor growth [16-18]. 
Thus, we aim to review the role of RCAN1 in the inverse 
association and discuss underlying mechanisms, providing 
potential strategies for the treatment and prevention of AD 
and cancer by modulating RCAN1.

RCAN1 GENE AND PROTEINS

Historically, RCAN1 has been named as DSCR1, 
MCIP1, ADAPT78, CSP1, DSC1 and RCN1. According 
to its conserved function of regulating calcineurin activity 
and calcineurin-dependent phenotypes in various types of 
cells and species, it was officially renamed as regulator 
of calcineurin 1 in 2007 [19-44] (Table 1). The RCAN1 
gene is located on chromosome 21, consisting of seven 
exons and six introns. RCAN1.1 and RCAN1.4 are the 
two major transcripts generated by alternative mRNA 
splicing, composing of exon 1, 5, 6, 7 and exon 4, 5, 6, 
7, respectively[45]. RCAN1.1 is highly expressed in the 
brain, heart and skeletal muscle, whereas RCAN1.4 is 
predominantly expressed in the heart and skeletal muscle. 
The two transcripts are mainly translated into RCAN1.1L 
and RCAN1.4 isoforms with 252 and 197 amino acids, 
respectively. In addition, the transcript RCAN1.1 can 
also be translated into RCAN1.1S from the downstream 
translational start site by leaky scanning and reinitiation 
mechanisms although its expression is extremely low 
[18]. RCAN1.1and RCAN1.4 transcripts are differentially 
regulated at transcriptional level as their transcription is 
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driven by differential promoters [45-46].
The interaction of RCAN1 with calcineurin (CaN) 

and the role of RCAN1 in regulating calcineurin activity/
calcineuin-dependent functions are well conserved across 
species and cell lines, which has been well studied in 
multiple cell lines (e.g., COS-7, CHO, U2OS, HA-1, 
HEK293, SH-SY5Y, C2C12, BHK, primary neurons, 
HUVEC) and organisms (e. g., yeast, C. elegans, 
Drosophila, mouse) [20-44] (Table 1). As the expression 
of RCAN1 is extremely low in astrocytes and microglial 
cells, few study has been performed in glial cells [47-48]. 
However, it has to be noted that RCAN1 has dual role 
in regulating calcinurin activity depending on its level 
and phosphorylation status [33-34, 49]. For example, 
increased RCAN1 expression inhibits calcineurin activity, 
while low level of RCAN1 stimulates calcineurin activity 
in vitro [21, 49]. Calcineurin is a calcium/calmodulin 
dependent serine/threonine phosphatase, consisting of a 
catalytic subunit, calcineurin A, and a regulatory subunit, 
calcineurin B. By dephosphorylating NFAT, calcineurin 
promotes NFAT translocation into the nucleus contributing 
to a number of genes’ transcription and subsequent events, 
e.g., cell proliferation, apoptosis, angiogenesis, synaptic 
plasticity, immune response and skeletal/cardiac muscle 
development. Dysregulation or dysfunction of calcineurin 
has been linked to both AD and cancer, suggesting that 
RCAN1 may be involved in the pathogenesis of both 
AD and cancer via calcineurin-dependent pathways. On 
the other hand, RCAN1 interacts with multiple protein 

partners, such as integrinαvβ3, NF-κB, ubiquitously-
expressed prefoldin-like chaperone (UXT) and signal 
transducer and activator of transcription 2 (STAT2), which 
may contribute to the calcineurin-independent functions, 
including cell proliferation, apoptosis and angiogenesis 
[50-53]. Accumulated evidence indicates that RCAN1 
may play an important role in the inverse association 
between AD and some types of cancer via both common 
and differential processes. 

ALZHEIMER’S DISEASE AND CANCER

Alzheimer’s disease

AD is the most common cause of dementia, 
accounting for 50-75% of dementia [54]. Less than 5% 
cases are early-onset AD (EOAD), who develop AD before 
age 65. For example, patients with Down syndrome (DS), 
caused by trisomy of chromosome 21, inevitably develop 
of AD pathology after middle age. The majority AD cases 
are late-onset AD (LOAD), who develop AD after age 
65 [2]. In 2010, World Alzheimer International estimated 
approximately 36 million people suffering from dementia 
worldwide and it costs US $604 billion. Due to the 
rapid increase in aging population, the AD prevalence is 
continuously increased worldwide and the costs will reach 
to US $ 1 trillion by 2030 [54]. Progressive memory loss 

Table 1: General functions of RCAN1
Experimental 
condition

CaN interaction/
activity Cells/species Affected phenotypes References

In vitro &
In vivo +

U2OS, COS-7, CHO, 
PC12, HEK293
Rat myocyte,
mouse

[33, 37-41]

In vitro HA-1 Cell proliferation [42]
In vivo + S. cerevisiae [121]
In vitro &
In vivo 

+ C2C12
Mouse myocyte Cardiac hypertrophy [43-44]

In vitro + C2C12 [133]

In vitro + HA-1
PC12

Cell death
Cell proliferation [130]

In vivo + Drosophila Learning deficits [26]

In vitro &
In vivo

+ COS-7, CHO
SH-SY5Y
Mouse brain

[134]

In vivo + C. elegans
Calcineurin-deficient 
phenotypes: growth 
inhibition, small body 
size  

[24]

In vitro &
In vivo + BHK

Mouse Cell death [135-136]

In vivo + Mouse Cardiac hypertrophy [137]
In vivo + Yeast [21]
In vitro + E6-1 Cytokine expression [138]
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is the characteristic of AD, while cognitive deficits and 
psychosis may also be presented [55-57]. Extraneuronal 
neuritic plaques, intraneuronal neurofibrillary tangles, 
and synaptic/neuronal loss leading to brain atrophy are 
the pathological characteristics of AD, while neuritic 
plaque is the unique feature of AD neuropathology [58-
67]. Amyloid β (Aβ) and phosphorylated Tau are the major 
components of neuritic plaques and neurofibrillary tangles, 
respectively [66, 68-72]. 

Cancer 

Cancer is a group of diseases characterized with 
impaired cell growth control, poor differentiation and 
the potential to invade or spread to the other parts of the 
body although different types of cancer may be mediated 
by differential signaling pathways. It is one of the leading 
causes of death globally. Approximately 14 million 

Figure 1: Mechanisms of RCAN1 in the inverse association between of Alzheimer’s disease and cancer. Increased and 
decreased RCAN1 expression is detected in AD (top panel) and various types of cancer (bottom panel), respectively. Increased RCAN1 
promotes AD pathogenesis by facilitating neuronal apoptosis, attenuating angiogenesis and inhibiting neurogenesis via calcineurin (CaN)-
dependent or –independent pathways (top panel). However, increased RCAN1 inhibits cancer development by promoting cancer cell 
apoptosis, attenuating angiogenesis and inhibiting cancer cell proliferation via calcineurin-dependent or –independent pathways (top 
panel). On the other hand, reduced RCAN1 promotes cancer development by attenuating cancer cell apoptosis, facilitating angiogenesis 
and promoting cancer cell proliferation, while it inhibits AD pathogenesis by attenuating neuronal apoptosis, facilitating angiogenesis and 
promoting neurogenesis via calcineurin-dependent or –independent pathways (bottom panel). 
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new cases were diagnosed in 2012 and the number is 
expected to rise 70% over the next 2 decades [73]. 8.8 
million people died from cancer in 2015 and the costs are 
US $ 1.16 trillion in 2010 [73]. Although aging is also 
a fundamental factor for cancer development, the inverse 
association between AD and cancer has been reported in 
a number of studies [4-7]. A significant improvement has 
been made in cancer prevention and treatment in the past 
decades. However, there is no effective treatment for AD. 
Thus, elucidating mechanisms of the inverse association 
between AD and cancer will be beneficial to developing 
effective therapy for AD and cancer, particularly for AD, 
as there is no effective treatment for AD. 

The inverse association between AD and cancer

The inverse association between AD and cancer 
has been reported in several population-based studies 
and meta-analysis [4-15]. For example, cancer history is 
associated with the delay and reduced risk of AD onset 
[14-15]. Musicco et al. reported that the risk of AD among 
patients with cancer was 35% reduced and the risk of 
cancer in patients with AD nearly halved [6]. In addition, 
the risk of occurrence was significantly reduced for lung 
and colorectal cancer although the five most frequent sites 
of cancer in patients with AD dementia was lower [6]. 
Realmuto et al. showed that frequency of cancers at sites 
of breast, uterus, ovary and skin was reduced in AD cases 
compared with that in the controls [9]. Freedman et al. 
reported that six cancer sites (e.g., rectum, breast, uterus, 
ovary, prostate, leukemia) were significantly and inversely 
related to AD [12]. However, the association between AD 
and site-specific cancers remains inconclusive according 
to the most recent meta-analysis and systematic review 
[7, 10, 74].

DYSREGULATION OF RCAN1 IN 
ALZHEIMER’S DISEASE AND VARIOUS 
TYPES OF CANCER 

Increased RCAN1 expression is detected in AD 
brains [17-18, 48]. Moreover, multiple risk factors 
may be involved in its upregulation. For example, 
glucocorticoid, increased in AD patients, upregulates 
RCAN1.1 transcription in addition to promoting Aβ 
generation and tau hyperphosphorylation [17, 75-82]. 
Apolipoprotine E (ApoE4) allele, a well-known risk factor 
of AD, significantly increases RCAN1 expression [83]. 
Ischemic stroke, a risk factor of AD, markedly increases 
RCAN1.4 expression [84-85]. In addition, RCAN1 gene 
polymorphisms within the promoter region are associated 
with AD [86]. Moreover, NF-κB, an inflammatory 
molecule, could activate RCAN1 transcription and block 
its degradation, leading to its upregulation [87-88]. 

RCAN1 dysregulation has also been detected 

in some types of cancer and cancer cells. For example, 
RCAN1.4 expression is reduced in some cancer cell 
lines at both transcriptional and post-translational 
levels, e.g., melanoma and thyroid cancer cells [89]. 
RCAN1 expression is significantly lower in lymph 
node metastasis compared with that in the primary 
tumor in papillary thyroid cancer [90]. Recently, Jin et 
al. reported that RCAN1.4 expression is significantly 
reduced in hepatocellular carcinoma compared with 
that in the adjacent non-cancer tissues [91]. Metastin, 
a tumor metastasis suppressor, increases RCAN1.4 
expression in thyroid cancer cells [90]. In addition, 
NFAT family members, downstream targets of RCAN1, 
are constitutively activated in several types of cancer, 
including breast cancer, pancreatic cancer, aggressive T 
cell lymphoma, Burkitt’s lymphoma, and diffuse large 
B cell lymphoma, suggesting that the inhibitory effect 
of RCAN1 on calcineurin/NFAT may be reduced by its 
downregulation [92]. However, increased expression of 
RCAN1.4 has also been detected in other types of cancer, 
such as hypopharyngeal cancer and Kaposi’s Sarcoma 
(KS) [93-94].

MECHANISMS OF RCAN1 IN THE 
INVERSE ASSOCIATION BETWEEN 
ALZHEIMER’S DISEASE AND CANCER 

In addition to facilitating Aβ generation and Tau 
phosphorylation in AD, growing evidence suggests that 
RCAN1 is involved in several common processes in 
AD and cancer, such as apoptosis, cell proliferation and 
angiogenesis [95-97] (Table 2). DS patients inevitably 
develop AD pathology after middle age and the incidence 
of cancer is different from the controls, including lower 
incidence of some types of solid cancer and higher 
incidence of leukemia [98-102]. However, DS is not 
a proper model to represent the role of RCAN1 in the 
association between AD and cancer because of the 
following reasons. Although the expression of RCAN1 
is increased in DS patients by an extra copy of the 
RCAN1 gene, it has to be noted that DS is caused by an 
extra copy of chromosome 21, which consists of more 
than 160 coding genes and a number of microRNAs 
in addition to the RCAN1 gene. Thus, DS could not 
fully reflect RCAN1’s function. Moreover, many 
genes on chromosome 21 are implicated in cancer 
development, such as amyloid-β precursor protein (APP), 
superoxide dismutase 1(SOD1), dual specificity tyrosine 
phosphorylation regulated kinase 1A (DYRK1A) etc., 
suggesting that the alteration of the incidence of cancer in 
DS is attributed to the combined effect of multiple genes 
[103-105]. Therefore, the altered incidence of cancer in 
DS is not discussed in the manuscript. 
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Table 2: Mechanisms of RCAN1 in AD and cancer
Experimental 
condition

CaN interaction/
activity Cells/species Affected phenotypes References

Apoptosis
In vitro Mouse primary neuron Apoptosis [139]

In vitro +
Mouse primary 
neuron,
SH-SY5Y

Apoptosis [17-18, 107, 109]

In vivo ST14A(neuronal) Apoptosis [106]
In vitro
In vitro Drosophila (neuron) Apoptosis [29]

U87MG cells (human 
glioblastoma cells) Apoptosis [140]

In vitro U251, T98G (glioma 
cells) Apoptosis [110]

In vitro
CEM, 
Nalm-6
(leukemia cells) Apoptosis [111-113]

In vitro &
in vivo + Burkitt’s lymphoma Apoptosis [53]

Angiogenesis

In vitro &
in vivo +

HUVEC
Primary endothelial 
cell
mouse

Angiogenesis: 
proliferation and tube 
formation

[16, 117-118]

In vitro &
in vivo + HUVEC

X. laevis
Angiogenesis: vascular 
branching

(Fujiwara et al., 
2011)

Proliferation and migration

In vivo RCAN1 transgenic 
mice

Neurogenesis: 
Proliferation, 
migration,
Maturation

[126]

In vitro
PC-12 cells 
(pheochromocytoma 
cells)

Proliferation [130]

In vitro +
MHCC97H, HCCLM3 
(hepatocellular 
carcinoma cells)

Proliferation,
Migration [91]

In vitro +
ARO, NPA
(human thyroid 
carcinoma cells)

Proliferation [90]

In vitro ARO, WRO, NPA, 
FTC133 Migration [89].

In vitro U87MG 
(glioblastoma) Proliferation [129]

In vitro &in vivo

8505c, BCPAP, C643, 
FTC236 and SW1736 
(Human thyroid 
cancer cell lines), 
mouse

Proliferation [127]

In vitro
Ishikawa cells 
(endometrial 
adenocarcinoma)

proliferation [128]
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RCAN1 PROMOTES APOPTOSIS 

RCAN1 promotes neuronal apoptosis in AD 

Increased RCAN1-induced apoptosis promotes 
AD pathogenesis but suppresses the development and 
progression of cancer. Many studies indicate that increased 
RCAN1 expression plays a pivotal role in the pathogenesis 
of AD by promoting neuronal apoptosis. First, RCAN1.1S 
overexpression and chronic RCAN1.1L overexpression 
inhibit calcineurin activity and promote caspase-3-
mediated neuronal apoptosis, while acute RCAN1.1L 
overexpression protects neurons from stress-induced 
apoptosis by inhibiting caspase-3 activity [17-18]. Chronic 
overexpression of RCAN1.1L and RCAN1.1S impairs the 
function of mitochondria by promoting its degradation 
and accelerating ATP-ADP exchange rate, respectively, 
contributing to neuronal apoptosis [106]. Increased 
RCAN1.1 promotes Aβ-induced neuronal apoptosis in 
Drosophila, while RCAN1.4 expression promotes calcium 
overloading-induced neuronal apoptosis in vitro [29, 
107]. In addition, RCAN1 overexpression dramatically 
increases Tau phosphorylation and Aβ generation, which 
also contributes to neuronal apoptosis in AD [97, 108]. 
Moreover, increased RCAN1.1L is a key mediator in 
amyloid precursor protein (APP) overexpression-induced 
neuronal apoptosis, while APP elevation is involved in the 
pathogenesis of both familial AD and sporadic AD [109].

RCAN1 promotes cell apoptosis in various types 
of cancer

Increased RCAN1 facilitates cancer cell apoptosis, 
which is a possible mechanism of inhibiting cancer 
development and progression. For example, increased 
RCAN1.1 or RCAN1.4 promotes lymphoma glioma cell 
apoptosis in vitro and in vivo by inhibiting the nuclear 
translocation of NF-κB [53, 110]. Moreover, RCAN1.1 is 
an important mediator in glucocorticoid-induced apoptosis 
in leukemia cells by downregulating and upregulating 
anti-apoptotic and pro-apoptotic proteins, respectively 
[111-113].

RCAN1 suppresses angiogenesis 

Alteration of angiogenesis is implicated in the 
pathogenesis of AD and cancer. Angiogenesis deficits 
involved in AD pathogenesis[114]. For example, vascular 
endothelial growth factor (VEGF), a factor facilitating 
angiogenesis, associates with optimal brain aging and 
might be a potential therapy against AD [115-116]. 
However, angiogenesis is a major mechanism of cancer 
development and progression. Accumulated evidence 

indicates that RCAN1 participates in endothelial cell 
migration and angiogenesis mediated by both calcineurin/
NFAT dependent and independent signaling. Most studies 
indicated that RCAN1.4 inhibits angiogenesis in vitro 
or in vivo. For example, Minami et al. reported that 
constitutive expression of RCAN1.4 impairs endothelia 
cell proliferation and tube formation, leading to the 
inhibition of angiogenesis and tumor growth in mice 
[117]. Consistently, Yao et al. reported that RCAN1.4 
could act as an inhibitor of angiogenesis by regulating 
calcineurin/NFAT signaling [118]. More importantly, Baek 
et al. found that mild increase of RCAN1 expression by an 
extra copy of RCAN1 gene suppresses tumor growth by 
inhibiting tumor angiogenesis in mice [16]. In addition, 
RCAN1 inhibits vascular branching during angiogenesis 
in vivo [119]. The aforementioned evidence indicates that 
mild increase of RCAN1 expression may contribute to the 
inverse association between AD and some type of cancer 
by suppressing angiogenesis.

Several reports showed that increased expression 
of RCAN1.4 is associated with angiogenesis in 
hypopharyngeal cancer and Kaposi’s Sarcoma (KS) 
caused by Kaposi’s Sarcoma Herpesvirus (KSHV) [93-
94], suggesting that increased RCAN1 expression may 
only be responsible for the inverse association of AD 
and some types but not all types of cancer. In addition, 
Ryeom et al. reported that RCAN1 knock-out inhibits 
angiogenesis and tumor growth in mice [120]. However, 
it has to be noted that low level of RCAN1 is necessary for 
calcineurin/NFAT activity [21, 49, 121]. 

RCAN1 inhibits cell proliferation and migration

RCAN1 plays a pivotal role in cell proliferation and 
migration, which are implicated in both neurogenesis in 
AD, and tumor growth and metastasis in cancer [122-125]. 
RCAN1 inhibits neurogenesis in AD

Casas et al. first reported that RCAN1 is involved 
in neurogenesis, including neural progenitor cell 
proliferation, migration and maturation [123]. Moreover, 
the number of neurons within hippocampus is reduced 
in RCAN1 transgenic mice, which is associated with 
the defect in neural progenitor cell proliferation [126]. 
In addition, RCAN1 significantly inhibits neuronal 
maturation, which is characterized with reduced dendritic 
spines [126]. Thus, increased RCAN1 contribute to 
neurogenesis defect in AD by impairing neural progenitor 
cell proliferation, migration and maturation. 
RCAN1 inhibits cell proliferation and migration in 
various types of cancer

Increased RCAN1.4 expression leads to growth 
arrest of fibroblast cells [42]. RCAN1.4 knockdown 
promotes tumor growths, which is mediated by nuclear 
factor erythroid 2-like 3 (NFE2L3) [127]. In addition, 
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RCAN1-4 inhibits epithelial cell proliferation in 
endometrial adenocarcinoma via a negative regulation 
of C-X-C motif chemokine ligand 8 (CXCL8) [128]. 
Moreover, RCAN1.4, downregulated in hepatocellular 
carcinoma, prevents cancer cell proliferation and 
migration [91]. However, reduced RCAN1.4 expression 
attenuates proliferation of glioblastoma cells mediated 
by inhibiting Ras signaling, which is independent 
of calcineurin [129]. RCAN1.1S stimulates the 
proliferation of pheochromocytoma PC-12 cells [130]. 
The aforementioned evidence indicates that RCAN1 
differentially regulates cell proliferation in various types 
of cancer. Moreover, RCAN1.4 could block cell migration 
to inhibit metastasis in papillary thyroid cancer [90]. 
Consistently, increased RCAN1 expression inhibits cancer 
cell migration, while loss of endogenous RCAN1 leads to 
an increase in migration in a couple of cancer cell lines, 
such as ARO, WRO, NPA and FTC133 [89]. Reduced 
RCAN1.4 expression are associated with advanced 
tumor stages and poor differentiation of hepatocellular 
carcinoma, while increased RCAN1.4 markedly reduces 
cancer cell proliferation and migration in hepatocellular 
carcinoma cells [91]. It suggests that RCAN1 could inhibit 
cancer development and progression by inhibiting both 
cancer cell proliferation and migration. 

THERAPEUTIC POTENTIAL OF 
REGULATING RCAN1 FOR THE 
TREATMENT OF AD AND CANCER

Although accumulated evidence indicates that 
RCAN1 might be a potential target for the treatment 
of AD and certain types of cancer, currently, no drug is 
developed based on the regulation of RCAN1. To develop 
drugs based on RCAN1 regulation, the following issues 
should be considered. First, calcineurin inhibitors have 
been widely used as the immunosuppressive drug in the 
organ transplantation and certain types of autoimmune 
disorders. Thus, the role of RCAN1 in immune function 
should be considered, which is implicated in both AD 
and cancer. However, studies of RCAN1 in immunity are 
limited [131-132]. Second, it has to be noted that RCAN1 
has a bidirectional role in regulating calcineurin activity 
depending on its expression level and phosphorylation 
status, which is not just a calcineurin inhibitor or 
stimulator [45]. Thus, precisely regulating RCAN1 
activity needs to be carefully investigated. In addition, 
the isoform specific effect remains unclear. Moreover, the 
calcineurin-independent function is less studied. However, 
it is critical for developing RCAN1-based drugs.

CONCLUSIONS

The inverse association between Alzheimer’s 
disease (AD) and cancer has been reported in several 

population-based studies. Although the underlying 
mechanisms remain elusive, growing evidence indicates 
that RCAN1 is a key molecule of the inverse association. 
Increased and decreased RCAN1 expression are detected 
in AD and various types of cancer, respectively. Moreover, 
increased RCAN1 promotes AD pathogenesis by 
facilitating neuronal apoptosis, attenuating angiogenesis 
and inhibiting neurogenesis via calcineurin-dependent 
or –independent pathways. However, increased RCAN1 
inhibits cancer development by promoting cancer cell 
apoptosis, attenuating angiogenesis and inhibiting 
cancer cell proliferation via calcineurin-dependent or 
–independent pathways (Fig. 1). On the other hand, 
reduced RCAN1 promotes cancer development by 
attenuating cancer cell apoptosis, facilitating angiogenesis 
and promoting cancer cell proliferation, while it inhibits 
AD pathogenesis by attenuating neuronal apoptosis, 
facilitating angiogenesis and promoting neurogenesis via 
calcineurin-dependent or –independent pathways (Fig. 1). 
Therefore, increased RCAN1 expression may contribute 
to the reduced incidence of some types of cancer in AD 
patients, while reduced RCAN1 expression may reduce 
the risk of AD in patients with various types of cancer. 
It suggested that dysregulation of RCAN1 plays a key 
role in the pathogenesis of both AD and cancer. Although 
precisely modulating the expression of RCAN1 may be a 
potential therapeutic target to treat AD and cancer, several 
key issues need to be resolved for drug development. 
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