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ABSTRACT

In breast cancer, it is unclear the functional modifications at a transcriptomic 
level that are associated with the evolution from epithelial cells and ductal carcinoma 
in situ (DCIS) to basal-like tumors. By applying weighted gene co-expression network 
analysis (WGCNA), we identified 17 gene co-expression modules in normal, DCIS and 
basal-like tumor samples. We then correlated the expression pattern of these gene 
modules with disease progression from normal to basal-like tumours and found eight 
modules exhibiting a high and statistically significant correlation. M4 included genes 
mainly related to cell cycle/division and DNA replication like CCNA2 or CDK1. The M7 
module included genes linked with the immune response showing top hub genes such 
as CD86 or PTPRC. M10 was found specifically correlated to DCIS, but not to basal-like 
tumor samples, and showed enrichment in ubiquitination or ubiquitin-like processes. 
We observed that genes in some of these modules were associated with clinical 
outcome and/or represented druggable opportunities, including AURKA, AURKB, 
PLK1, MCM2, CDK1, YWHAE, HSP90AB1, LCK, or those targeting ubiquitination. In 
conclusion, we describe relevant gene modules related to biological functions that 
can influence survival and be targeted pharmacologically.   
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INTRODUCTION

Cancer is an evolutionary disease where the 
accumulation of genetic alterations leads epithelial cells 
to transform to premalignant lesions that ultimately may 
evolve to tumor cells [1, 2]. 

Accumulation of molecular alterations over time 
produces a gain of different biological functions that 
permits cells to proliferate, avoid programmed death, 
migrate or seed in distant tissue [3]. Ultimately, cells that 
seed and proliferate in distant organs form metastases 
that compromise patient life. Among these functions, 
deregulation of cell division and genomic instability are 

key characteristics of transformed cells and indeed several 
therapies aiming to inhibit these functions have reached 
the clinical setting [4]. Examples are chemotherapies that 
target the mitotic process or PARP inhibitors that act on 
the DNA repair machinery [4, 5]. Similarly, targeting 
of intermediate signaling nodes that are constitutively 
active or components involved in the regulation of 
protein degradation, have gained clinical approval 
[4, 5]. Cell metabolism including lipid metabolism 
are also biological functions that are necessary for the 
survival of tumoral cells [5]. In addition to the described 
alterations, the host immune response to cancer and the 
tumor microenvironment play a role in cancer initiation 
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and progression [6, 7]. Finally evolution of cancer is also 
controlled by the interaction of transformed cells with 
the surrounding stroma [6, 7]. Indeed, agents targeting 
the tumor microenvironment and those that boost the 
immune response have reached the clinical practice [3, 8, 
9]. The acquisition of the mentioned deregulated functions 
is produced at different time points in the evolution of 
cancer, so the identification of druggable options against 
these alterations could undoubtedly open avenues for the 
design of novel therapies. 

Ductal carcinoma in situ (DCIS) is a lesion that 
can become malignant over time. It is considered as 
an intermediate step between breast cancer and non-
transformed breast epithelial cells [10]. Indeed, in many 
diagnosis of breast cancer, presence of DCIS and invasive 
cancer coexist in the same specimen suggesting that DCIS 
is a preinvasive situation [10]. Therefore, the general 
treatment approach for this entity is surgical resection. 
However, it is not clear that all DCIS will progress to 
invasive tumors and it has been reported that some DCIS 
could spontaneously disappear [10, 11]. The heterogeneity 
of this entity highlights the importance for the identification 
of biological functions that could be used as predictors 
of progression, as this could help to optimize therapeutic 
options for these patients [10, 12]. 

DCIS is characterized by the presence of estrogen 
receptors or HER2 overexpression. However not all breast 
invasive carcinomas express both receptors. Indeed 15% of 
breast cancers do not express these receptors and are called 
triple negative cancer breast tumors (TNBC) [4, 13]. In 
this context, the identification of functions that are shared 
by DCIS and TNBC or its genomic counterpart, the basal-
like subtype, could bring light into the common process of 
malignant transformation. In addition, it could also help to 
identify specific deregulated functions restricted to DCIS.

Weighted gene co-expression network analysis 
(WGCNA) represents a systems biology approach for 
studying changes across transcriptomes. It has been used 
to bring light into the pathogenesis of several human 
diseases by identifying gene modules correlated with 
clinical features [14] including cancer [15, 16].

In our article, we applied WGCNA to public datasets 
in order to reveal gene modules associated to DCIS and 
basal like tumors. Our study identifies several altered 
functions and key genes that are present in the evolution 
of basal like tumors from DCIS and non-transformed cells, 
opening the possibility to exploit them therapeutically or 
as biomarkers for outcome analysis. 

RESULTS

Datasets, batch effect and principal component 
analysis

We compiled transcriptomic microarray data from 
five public datasets from epithelial breast, DCIS and basal-

like tumors. In order to avoid dealing with large batch 
confounding effects, we selected only datasets performed 
on the same microarray platform. We normalized all 
chips together and performed relative log expression 
(RLE) plots to determine noticeable remaining batch 
differences (Figure 1A). After normalization of chips from 
all datasets, we observed expression values with similar 
median and deviation, with no systematic and observable 
batch differences. We next assessed the transcriptomic 
relationships among samples by means of a principal 
component analysis (Figure 1B). We observed a clear 
separation between normal tissue samples, DCIS and basal 
like tumors along the PC1 axis, regardless of the dataset 
of origin. DCIS samples were placed between normal 
and basal-like samples. PC2 captured a proportion of 
variance explained by unknown factors that could include 
differences in batches. To confirm these observations, we 
applied a multiple lineal model to analyze the relationship 
between each of the first 10 principal components with the 
variables ‘disease’ and ‘dataset’ (Supplementary Figure 1). 
For PC1, the partial coefficients were statistically 
significant only for diagnostic categories and not for the 
different datasets. Dataset categories were significantly 
correlated to PC2 and others. Clustering analysis on 
samples based on PC1 values (Figure 1C) showed 
clustering by disease, mainly normal tissue and basal-like 
tumors, regardless of the dataset, except for those two 
datasets containing samples for one disease diagnostic 
only. Overall these analyses indicate that the major factor 
structuring transcriptomic variance among these samples 
correspond to disease. The combined datasets were thus 
considered suitable for the following co-expression 
network analysis.

Gene co-expression modules correlated with 
breast epithelial tissue, DCIS and basal-like 
tumors

Using top variable genes in the combined dataset, 
we constructed a gene co-expression network by means 
of WGNCA. We identified 17 uncorrelated modules 
(Figure 2). We calculated each module eigengene, which 
reflects the expression pattern of all genes in a given 
module across samples by computing the first principal 
component. As we showed in the previous section, the first 
principal component was highly related to disease stages 
and not to differences among batches. We then correlated 
each module eigengene with normal/DCIS and normal/
basal-like tumors independently (Figure 3). Eight modules 
(M1, M2, M4, M5, M6, M8, M9 and M15) exhibited a 
statistically significant correlation, considering a minimal 
r > 0.6 (Supplementary Figure 2). M4, M6, M9 and M15 
showed a positive correlation in which genes tended to 
be up-regulated, meanwhile M1, M5 and M8 showed a 
negative correlation with genes mainly downregulated. 
Modules with a less strong correlation (r > 0.5) included, 
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M2, M3, M7, M10 and M16 (Figure 3 and Table 1). 
Other modules showed significant association with some 
disease stage, but yet lower correlation values (Figure 3). 
M0-grey appeared also associated with disease. These is 
not surprising since it contains more than 3000 gene not 
classified in modules and we have already shown how the 
whole transcriptome PC1 is correlated to disease.

By comparing DCIS against basal-like tumors 
we found a subset of the mentioned modules to be 
progressively associated with the two assessed stages, 
showing intermediate eigengene values in DCIS between 
normal and basal-like samples. This was the case for 
modules M1, M4 and M5. Also, interestingly, other 
modules suggested specific changes in DCIS samples not 
shared by basal-like tumors, particularly in M2 and M10. 

Finally, we observed modules that apparently were only 
dysregulated in basal-like samples, such as M15 or M9. 

Genes within a module that show highest correlation 
with the module’s eigengenes can be considered hub genes 
[17]. A list of the top hub genes in each of the above-
mentioned modules is presented in Table 1.

Since we had a lower DCIS sample size we decided 
to replicate DCIS findings using an alternative, yet also 
small, dataset including 6 normal and 19 DCIS samples 
analyzed in a different microarray platform. We calculated 
the eigengenes of the previous gene modules produced 
by grouping the corresponding genes, when present, in 
this new dataset. Modules eigengenes were highly and 
consistently correlated with disease in modules M4, 
M5, M10 and M12. Other previously disease-associated 

Figure 1: Global analysis of transcriptomes among samples. In the whole panel, colors indicate the different public GEO datasets 
used and shape indicates clinical diagnostic. (A) Boxplot for all probes normalized relative log expression (RLE) values indicating no 
major difference between datasets. (B) PCA for top variable genes showing the first 2 principal components for all samples in the combined 
dataset, showing PC1 majorly representing differences in diagnostic. (C) Clustering analysis of previous PC1 values confirming that 
clusters mainly reflect diagnostic over differences batches.
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modules showed non-significant or different trends in this 
second dataset for DCIS (Supplementary Figure 2). 

Overlapping of genes with previous published 
studies 

We set up to compare our findings with published 
analysis contrasting normal and DCIS and/or basal-like 
tumors. We compared the genes found in our modules with 
genes previously reported to be de-regulated in DCIS in 
two separate studies. In particular, we gathered a list of up-
regulated and down-regulated genes from Lee, et al. 2012 
[18] analyzing the progression from DCIS to invasive breast 
cancer. In our filtered datasets, we evaluated 62 (39 up- and 
19 down-regulated) of the 74 genes that were reported [18]. 
Their reported up-regulated genes were found enriched 
in our M1 and M11 modules (Fisher P-value < 0.05) 
(Supplementary Table 1). The two modules are composed 
by genes mainly up-regulated in DCIS, basal samples or 
both. Notably 24 of the 39 up-regulated genes were found 
in the M11 module, mainly representing molecules related 
to cell adhesion and extracellular matrix. Six genes related 
to the immune response were also found in our M7 module 
(Supplementary Table 1). We then studied the overlap 
between our modules and a set of >1000 genes with high 
discriminant coefficients between different stages of breast 

cancer progression, described in Ma XJ et al., 2003 [19]. 
We found a significant overlap (Fisher P-value < 0.05) in 
M4 (cell cycle) and M5 (lipid metabolism) modules, which 
were the top two modules in terms of consistency across 
datasets and strength of association with breast cancer 
(Supplementary Table 1). We also compared our data with 
the result of applying WGNCA on microarrays derived 
from different breast cancers in Clarke et al., 2013 [20]. 
The authors of this study identified two co-expression 
modules associated to survival in basal-like tumor samples. 
We found that genes in one of their modules significantly 
overlapped with genes in our M7-black and M14-salmon 
modules (Supplementary Table 1). The overlap with M7-
black was notable, with 139 of the 225 genes. The other 
module in Clarke et al., 2013 [20] significantly overlapped 
with four of our modules. The top ones being M9-darkgrey 
and M4-turquoise, both of them strongly correlated with the 
basal-like stage in the present study. 

Finally, we downloaded and processed expression 
data from the Metabric study [21–23] (see material and 
methods section). We compared expression levels of 
genes in each module between normal and tumors samples 
(Supplementary Table 2). With the exception of the M14 
signature, each module had a significant expression 
change when comparing the normal and cancer samples. 
We have to note, that although significant, the expression 

Figure 2: Weighted gene co-expression network analysis of the entire dataset transcriptome using top variable genes 
identifies 17 modules. Unassigned genes were labelled in grey. Dendrogram obtained by hierarchical clustering of genes based on their 
topological overlap is shown at the top. Rows indicate gene correlation values with normal vs DCIS, normal vs basal and DCIS vs basal 
(blue indicating negative, and red positive, correlations). 
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fold change was less than 5% for 7 of the 17 gene sets. 
The highest up-regulation was present in the green M5, 
M9, and M2 signatures. At the same time, only the M1 and 
M5 signatures had a lower expression in tumor samples. 
This direction of change was consistent in our original 
dataset in which M1 and M5 showed the strongest down-
regulation in pathological samples compared to normal 
tissue (Supplementary Table 2). 

Gene ontology enrichment analyses 

To get insights into the biological functions that are 
implicated in the evolution of non-transformed cells into 
basal-like breast cancer, we performed Gene Ontology 
(GO) enrichment analysis focused on biological process 
categories for genes in each module (shortly summarized 
in Table 1, fully detailed in Supplementary Table 3, and 
illustrated in Supplementary Figure 3 using ReviGO).

M1 genes, mainly downregulated in basal-like 
tumors, were overrepresented in categories related to 
angiogenesis and cell adhesion, among others. M2, mostly 
downregulated in basal-like samples, contained genes 
involved in gland development, including among others 
3 genes related to lactation (ERBB4, XBP1, ATP7B). 

M3 was a small module of mainly down-regulated 
genes enriched in vesicle transport categories. The M4 
module mainly included genes that were progressively 
upregulated in DCIS and basal-like tumors and were 
related to cell cycle, nuclear division, DNA replication 
and cell division (Supplementary Figure 3). Genes within 
M5 module were progressively changing expression 
from normal to DCIS to basal-like stages and main over-
represented functions included lipid storage and lipid 
metabolism, among others (Supplementary Figure 3). 
An interesting enriched function observed in this module 
was the execution phase of apoptosis. Lipid metabolism 
was also enriched in M6, but in this case genes were 
mostly up-regulated (Supplementary Figure 3). An up-
regulation of genes involved in the immune response was 
observed in the M7 module (Supplementary Figure 3).  
Relevant genes in this function included CD86, essential 
for T-lymphocyte proliferation and interleukin-2 
production, by binding to CTLA-4; or PTPRC a positive 
regulator of T-cell coactivation upon binding to DPP4 
(Table 1). M8 contained and enrichment of genes related 
with the electron respiratory chain (Supplementary 
Figure 3). Functions included in the M9 module, mainly 
composed by upregulated genes in basal-like tumors, 

Figure 3: Boxplot representation of module eigengene values for the different groups.
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included establishment of protein location, small GTPase 
mediated signal transduction or cellular component 
organization, among others (Supplementary Figure 3).  
M10, specifically upregulated in DCIS samples showed 
enrichment in ubiquitination or ubiquitin-like processes 
and the transforming growth factor beta (TGFbeta) 
pathway, among others. M15 genes, mainly upregulated 
in basal-like tumors, were generally enriched in 
metabolism categories including pentose-related processes 
(Supplementary Figure 3). Finally, M12 was found 
enriched in functions related to cell adhesion, vascular 
development and extracellular matrix.

Protein-protein interaction networks

To further characterize functional pathways 
within modules, we intersected genes in modules with 
the physical protein-protein interactions (PPI) network 

from BioGrid. Subnetworks of genes were obtained 
(Table 1) using the function induced subgraph from the 
R library rTRM [24] and networks were visualized using 
Cytoscape [25]. We first focused on the M7 module as 
it is associated with immune response, and therapies to 
modulate the immune system are currently approved and 
deeply investigated in several solid tumors. Figure 4A 
shows the network in which HLA-C, ISG15 and STAT1 
play a relevant role as the highest connected nodes. 
The angiogenesis-related module M1 produced a PPI 
subnetworks mainly nucleated around MEOX2, CAV1 and 
TCF4 (Supplementary Figure 4).

Next, we focused on the M9 module where protein 
location and cellular component organization were the 
principal enriched functions. PPI subnetwork identified 
HSP90AB1, YWHAE, PCBP1 and ARRB2 as the 
key interaction proteins (Figure 4B). This observation 
highlights the importance of protein organization in 

Table 1: Biological features of selected gene co-expression modules. For DCIS, we only report observations that are 
replicated in the two DCIS datasets analyzed

Module Stage and main 
direction #Genes Top 5 hubs Biological 

Function
PPI 

network PPI hubs

M1-Green Normal > DCIS 
> Basal 300

EBF1, AKAP12, 
GNG11, MRGPRF, 

OLFML1
Angiogenesis 57 MEOX2, CAV1, 

TCF4

M2-Brown Normal > Basal 136 MLPH, ANKRD30A, 
FOXA1, AGR2, ERBB4

Gland 
development 18 SPDEF, RAB27B

M3-Darkred Normal > (DCIS 
= Basal) 31

CCDC144CP, MEFV, 
PGM5P2, OPHN1, 

FRG1BP
Transport 0

M4-Turquoise Normal < DCIS 
< Basal 434 CCNA2, MAD2L1, 

TPX2, UBE2T, CDK1 Cell cycle 324 MCM2, PCNA, 
AURKA, CDK1

M5-Yellow Normal > DCIS 
> Basal 122 GPD1, CIDEC, PCK1, 

TUSC5, LEP
Lipid 

metabolism 13 ALDOC

M6-Purple Normal < (DCIS 
= Basal) 73

CHMP2B, SMIM15, 
NRBF2, TMEM251, 

UBE2G1

Lipid 
metabolism 8

M7-Black Normal < Basal 225 CD86, FYB, SAMSN1, 
TFEC, PTPRC

Immune 
response 86 ISG15, STAT1, 

HLA-C
M8-
Darkturquoise

Normal > (DCIS 
= Basal) 26 STARD9, SCN3B, 

ACSM2A, MEG3, HDC
Respiratory 

chain 4

M9-Darkgrey Normal < Basal 67
YWHAE, KLHDC3, 
TUBB, SLC25A39, 

PPP2R1A

Protein 
localization 29

ARRB2, 
YWHAE, 

HSP90AB1

M10-Cyan Normal < DCIS 
> Basal 46

DMXL1, RNF111, 
ATP8B1, FAM179B, 

CETN3

Protein 
ubiquitination 0

M15-
Royalblue Normal < Basal 34 PFN1, RPS7, ERI3, 

TOMM20, SSB

Metabolism 
and RNA 

processing
9 RPS7
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tumors to maintain the survival of cancer cells. In the 
M4 we observed an important number of interacting 
proteins linked with cell division and DNA replication 
such as MCM2, PCNA, AURKA and CDC2, among 
others (Supplementary Figure 4). No first order physical 
interactions were retrieved from M10 module. 

Druggable opportunities and association with 
clinical outcome

Next, we explored druggable proteins within the 
most relevant PPI networks. Druggable proteins within 
the M4 network include cell cycle kinases and regulators 
such as AURKA, AURKB, PLK1, MCM2 or CDK1, 
among others. For M9 module YWHAE and HSP90AB1 
can be pharmacologically inhibited, and for LCK in the 
M7 module. Of note, compounds against pathways within 
a module are currently under evaluation as those targeting 
ubiquitination (ISG15 gene) or STAT1, as observed in 
the M7 module. Supplementary Table 4 describes the 
complete list of available drugs against the key network 
connecting proteins and top hub genes for each module.

Finally, we explored the association of the genes 
in each module with clinical outcome of patients in the 
Metabric dataset [21]. We hypothesized that those genes 
linked with detrimental outcome could have a relevant role 
in the oncogenic process and by contrary, if linked with 
beneficial outcome could be associated with a host defense 
mechanism. Overall survival was computed using samples 
provided by the Metabric study [21]. The best performing 

gene sets capable to influence survival were the M2, M9, 
M4, and M8 gene sets. In these, when plotting the p-values 
versus the cutoff, almost all cutoff values delivered a 
significant correlation (Supplementary Figure 5). Higher 
expression of the signature correlated to better survival in 
the M2 and M8 modules, while lower expression of the 
signature correlated to better survival in the M9 and M4 
signatures. Some signatures including the M14, M17, M11, 
M13, M3 and M12 were not prognostic. Kaplan-Meier 
survival plots for a selected set of signatures is presented in 
Figure 5, and the achieved hazard rate and p-values for each 
dataset is displayed in Supplementary Table 5. 

DISCUSSION

In the present article, we describe modules of genes 
that change in DCIS and basal-like tumors with respect 
to normal breast. Our intention was to identify biological 
functions and networks of interacting proteins, relevant 
in the evolution to basal-like breast cancers that could 
potentially be inhibited pharmacologically. In addition, 
we observed that genes contained within some of these 
functions were strongly linked with clinical outcome. 

M1, M2, M3 and M5 genes, where mainly 
downregulated in basal-like tumors over representing 
categories related to angiogenesis, cell adhesion, gland 
development, vesicle transport and lipid storage or 
metabolism. Basal-like tumors are characterized by its 
dedifferentiation and metastatic capacity, with a specific 
pattern of relapse [26]. Therefore, downregulation of genes 

Figure 4: Protein-protein interaction network based on direct physical interaction among genes in two different 
modules (M7 in a, and M9 in b). Darker green in nodes indicates higher degree.
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related to cell adhesion or gland development seems to be 
in line with the current process of cancer progression. The 
global downregulation of the module enriched in angiogenic 
related genes confirm the limited role of angiogenesis in 
breast cancer, reinforcing the lack of efficacy observed 
with antiangiogenic therapies in this disease [4, 27]. An 
interesting function is the upregulation of genes related to 
the lipid metabolism, as observed in the M6 module. This 
finding is in line with recent studies describing the role of 
lipid metabolism genes in association with the initiation of 
metastases [28]. 

In the module 4 we identified genes that were 
progressively upregulated in DCIS and basal-like tumors 
and were mainly related to cell cycle/division, and 
DNA replication. This finding is not surprising as basal-
like tumors have a high proliferation rate and present 
genomic instability, therefore agents targeting mitosis 

and producing DNA damage have clinical efficacy [4]. Of 
note, some of the genes codify for proteins that have a 
relevant presence in the PPI network analysis like PLK1, 
AURKA/B, CDK1, MCM2 or PCNA. Interestingly 
some are druggable kinases involved in the regulation of 
mitosis like PLK1 or AURKA/B. It should be mentioned 
that drugs against some of these proteins are currently in 
clinical development in different solid tumors, but not in 
basal-like tumors [29]. It could be expected that some of 
these kinases were associated with poor clinical outcome. 
Consistently with this idea, our survival curves showed 
that relatively low expression of genes in M4 predicts 
increased survival.

In module 7 we observed upregulation of genes 
related to the immune system. Activation of the immune 
system is a therapeutic strategy against cancer that has 
reached the clinical setting with the incorporation of 

Figure 5: Kaplan-Meyer survival curves for modules showing the strongest differences between patients with high 
and low expression values in the Metabric dataset.
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check-point inhibitors to the current armamentarium 
[8, 9, 30]. Check point inhibitors pretend to activate the 
immune system provoking a response against the tumor 
[30]. In this context, one of the top hubs includes CD86 
that is the ligand of the cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4) [31]. Finally, the identification of HLA 
components suggests that this family of proteins can have 
a relevant role in the activation of the immune response by 
presenting antigens to effector lymphocytes [31]. Globally, 
our findings reinforced the role of the immune system in 
basal-like tumors, supporting the current development of 
this type of agents in this indication.

In M9 module we identified upregulated genes in 
basal-like tumors related to protein location, small GTPase 
mediated signal transduction or cellular component 
organization. Protein location is essential when cells have a 
high proliferating rate like is the case of basal-like tumors 
[3]. In line with this, lower expression was associated 
with better survival. This module was found also highly 
correlated in DCIS in the replica dataset. The PPI network 
analysis reveals relevant proteins included in this function 
like HSP90, YWHAE, or proteins that act on ubiquitination. 
Deubiquitinating agents are current in preclinical stage of 
drug development, and HSP90 inhibitors are in different 
stages of clinical development [32]. Of note ubiquitination 
or ubiquitin-like processes where specifically upregulated in 
DCIS as observed in module M10. 

M4 and M9 genes were expressed at lower levels by 
patients with higher survival rates. This makes of them a 
logical therapeutic target for inhibition. Indeed, we found 
druggable opportunities among proteins observed in the 
PPI network analyses for these two modules. Some targets 
included AURKA, AURKB, PLK1, MCM2 or CDK1, from 
M4, and YWHAE and HSP90AB1 in the M9 module. 

In conclusion, we have identified modules of 
genes that have changed between normal breast tissue, 
DCIS and basal-like tumors. Our findings identify novel 
functions at a transcriptomic level which are potentially 
druggable, and therefore suggest therapeutic opportunities. 
The identification of distinct cellular functions such 
as regulation of protein location, activation of the 
immune system, cell cycle or DNA replication suggest 
potential therapeutic combinations, like the concomitant 
administration of checkpoint and HSP90 inhibitors or 
deubiquitinating agents; or agents acting on cell division or 
DNA with chaperones or immunomodulators. Evaluation 
of these combinations in animal models is a future step.

MATERIALS AND METHODS

Selection of datasets from public databases

We screened the Gene Expression Omnibus (GEO) 
database from NCBI for raw microarray data derived 
from samples of normal epithelial breast tissue, DCIS and 
basal-like tumors. To avoid difficulties produced by cross-

platform comparisons, we mined datasets using the same 
chip platform. We downloaded in total 29 normal tissue, 
16 DCIS and 59 basal-like tumor samples from five studies 
with the following GEO accession numbers: GSE21422, 
GSE26910, GSE3744, GSE3893 and GSE6519, all of 
them loaded onto an Affymetrix Human Genome U133 
Plus 2.0 Array. We downloaded and additional dataset 
(GSE33692) of 6 normal tissue and 19 DCIS to check 
replicability. This second dataset was produced using the 
Affymetrix Human Exon 1.0 ST Array. 

Data normalization and weighted gene co-
expression network analysis (WGCNA)

Microarray data analyses were performed using R 
Bioconductor packages. CEL files we read and normalized 
together using the robust multichip average (rma) 
algorithm [33]. Expression of all probes for each gene 
were collapsed by calculating the average value using 
the collapseRows function [34]. Standard deviation of 
expression among samples was calculated for each gene 
and we retained for further analysis only those belonging 
to the last quartile. Principal component analysis was 
performed using the R function prcomp. We constructed 
a gene co-expression network with all samples using the 
R implementation of the WGCNA method [35]. A gene 
co-expression network was constructed from a Pearson 
correlation matrix between all genes that was then 
converted into an unsigned adjacency matrix applying 
a power function with a customizable power parameter. 
We used a soft-power threshold of 6 after assessing 
the goodness of fit into a scale-free topology network 
trying a range of values. Modules were identified using 
hierarchical clustering of a dissimilarity measure derived 
from a topological overlap matrix (TOM) [17]. We 
calculated module eigengenes (first principal component 
of the modules gene expression across samples) and 
highly correlated genes (Pearson R >/=0.8) were merged 
obtaining a total of 17 modules labelled with colors and 
numbers. Genes not assigned to any module were labeled 
as ‘M0-grey’.

Gene ontology enrichment analysis and protein-
protein interaction network

Gene Ontology enrichment analysis was performed 
using GOstats [36]. Physical protein-protein interactions 
were obtained from BioGrid latest release. Subnetworks of 
genes were obtained using the function induced_subgraph 
implemented in R package rTRM [24]. Network analysis 
and visualization were performed using Cytoscape [25].

Processing of the metabric dataset

All together 1,988 cancer samples measured by 
Illumina gene chips published in the Metabric project 
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were obtained from the European Genome-phenome 
Archive (EGA) (https://www.ebi.ac.uk/ega/) [23]. 
As a substitute of using the processed dataset, the 
entire dataset including each individual arrays was re-
processed. In this, the raw expression data were imported 
into R (https://www.r-project.org/) and summarized 
using the beadarray package [37]. For annotation, the 
illuminaHumanv3 database of Bioconductor was used 
(http://www.bioconductor.org). All unmapped probes 
were removed during summarization (n = 319). At 
the next step, a quantile normalization was completed 
using the preprocessCore package (https://github.
com/bmbolstad/preprocessCore). Finally, a scaling 
normalization was performed to set the mean expression 
on each array to a pre-defined value. Several genes had 
multiple probes for a given gene–in these cases the one 
with the highest span of detection range was utilized.

Association with clinical outcome 

Survival was analyzed by Cox regression, and 
Kaplan-Meier plots were drawn to visualize the results. 
Cox regression analysis was performed using the 
“survival” R package v2.38 downloaded from CRAN 
(https://cran.r-project.org/web/packages/survival/index.
html). Kaplan-Meier plots were generated applying 
the “surviplot” R package v0.0.7 (http://www.cbs.dtu.
dk/~eklund/surviplot/). Cutoff value for the survival 
analysis was determined by running the analysis using 
each percentile between the lower and upper quartiles of 
expression as thresholds to dichotomize the patients as 
described previously [38]. There were all together 144 
normal samples in addition to the cancer samples. Gene 
expression comparing normal and tumor samples was 
computed by a Mann-Whitney test.

Gene-drug interactions

For the evaluation of compounds that could 
potentially interact with the identified genes we used the 
Drug Gene Interaction Database (DGIdb) (www.dgidb. 
genome.wustl.edu).
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