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Spatial habitats from multiparametric MR imaging are associated 
with signaling pathway activities and survival in glioblastoma
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ABSTRACT

Glioblastoma (GBM) show significant inter- and intra-tumoral heterogeneity, 
impacting response to treatment and overall survival time of 12-15 months. To study 
glioblastoma phenotypic heterogeneity, multi-parametric magnetic resonance images 
(MRI) of 85 glioblastoma patients from The Cancer Genome Atlas were analyzed 
to characterize tumor-derived spatial habitats for their relationship with outcome 
(overall survival) and to identify their molecular correlates (i.e., determine associated 
tumor signaling pathways correlated with imaging-derived habitat measurements). 
Tumor sub-regions based on four sequences (fluid attenuated inversion recovery, T1-
weighted, post-contrast T1-weighted, and T2-weighted) were defined by automated 
segmentation. From relative intensity of pixels in the 3-dimensional tumor region, 
“imaging habitats” were identified and analyzed for their association to clinical 
and genetic data using survival modeling and Dirichlet regression, respectively. 
Sixteen distinct tumor sub-regions (“spatial imaging habitats”) were derived, and 
those associated with overall survival (denoted “relevant” habitats) in glioblastoma 
patients were identified. Dirichlet regression implicated each relevant habitat with 
unique pathway alterations. Relevant habitats also had some pathways and cellular 
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processes in common, including phosphorylation of STAT-1 and natural killer cell 
activity, consistent with cancer hallmarks. This work revealed clinical relevance 
of MRI-derived spatial habitats and their relationship with oncogenic molecular 
mechanisms in patients with GBM. Characterizing the associations between imaging-
derived phenotypic measurements with the genomic and molecular characteristics 
of tumors can enable insights into tumor biology, further enabling the practice of 
personalized cancer treatment. The analytical framework and workflow demonstrated 
in this study are inherently scalable to multiple MR sequences.

INTRODUCTION

Glioblastoma (GBM), the most commonly 
diagnosed malignant brain tumor in adults [1], has a poor 
prognosis, with a median survival of only 12-15 months 
and a high rate of recurrence [2]. Poor prognosis and 
overall survival (OS) is attributable to the marked inter- 
and intra-tumoral genetic heterogeneity of GBM tumors 
[3–6]. Magnetic resonance imaging (MRI) holds great 
potential for characterizing the phenotypic heterogeneity 
of GBMs by inferring this from textural information and 
intensity variations in radiological images. Common 
techniques such as gadolinium contrast-enhanced T1-
weighted imaging highlight perfusion variations in tumor 
images and advanced image-texture analysis may be able 
to characterize signal intensity variations within tumors. 
Texture analysis has many applications in medical image 
processing and provides one approach to quantify the 
distribution of gray-level patterns such as homogeneity, 
entropy, etc., within a set of imaging data [7]. Multiple 
methods for assessing imaging features and characterizing 
pixel intensity distributions by quantifying gray levels 
have been described [8–11]. These methods allow for 
rigorous and reproducible derivation of detailed, pertinent 
information, and have been used to analyze MRI features, 
such as apparent diffusion coefficient, 2-dimensional 
(2D) spatial habitats [12], and texture features. These 
characteristics correlate with the grade of disease, 
patient survival, response to chemotherapy, and genetic 
and epigenetic status [12–18]. With recent advances in 
radiomics and radiogenomics (or imaging-genomics), 
molecular and genetic heterogeneity can be inferred 
from MRI features by correlating imaging datasets with 
corresponding molecular and clinical information.

Several studies have correlated specific features 
seen in MRI of GBM with patient survival and 
molecular subtype. However, these investigations have 
been restricted to 1 or 2 particular MRI sequences and 
typically considered only features from a single 2D slice 
[12, 16, 17]. In contrast to these single-sequence, slice-
by-slice analyses, radiologists review all acquired MRI 
sequences in their assessments. Additional research is 
needed to develop methods for extracting computational 
radiological features from full multiparametric MR 
imaging sets. To this end, this study focuses on using 
four MR sequences to understand the heterogeneity of a 
tumor region.

We hypothesized that by performing a 3D 
volumetric analysis of commonly available MRI 
sequences, we could identify particular imaging habitats 
[17] correlated with both patient overall survival status 
and identify key genetic pathways associated with such 
habitats in GBM. Comprehensive analysis of imaging data 
could improve the predictive power of this approach and 
provide novel insights to aid clinical decision-making.

RESULTS

Identifying imaging habitats

Eighty-five patients with GBM identified in the 
Cancer Genome Atlas who had imaging, clinical, and 
genomic data available were included in this study. Table 1 
shows the patient and respective tumor characteristics 
within 85 TCGA-GBM cases. Four pre-operative MR 
scans were obtained for each case: Pre-contrast T1-
weighted (T1) image, post-gadolinium T1 (T1c) image, 
T2-weighted (T2) image, and T2 fluid-attenuated inversion 
recovery (FLAIR) image. Following skull stripping, rigid 
registration, and automated segmentation using Brain 
Tumor Image Analysis (BraTumIA) software [19], we 
grouped tumor voxels into high and low signal bins for 
each of the 4 MRI sequences (FLAIR, T1, T1c, and T2) 
via Kmeans clustering. Across these 4 MR sequences, 
this leads to the identification of 16 imaging habitats [17] 
(i.e 24 combinations) based on unique combinations of 
these high and low signals. The habitats were assigned 
labels from 0 to 15, with “0” being low-intensity in all 4 
acquisition modalities (i.e., FLAIR=0, T1=0, T1c = 0, T2 
= 0) and “15” being high-intensity in all 4 (i.e., FLAIR=1, 
T1=1, T1c = 1, T2 = 1). For instance, habitat 2 represents 
low intensity in FLAIR, T1, and T2 with high intensity in 
T1c. Figure 1 describes the process for obtaining these 16 
imaging habitats.

Identifying important and significant imaging 
habitats using clinical data

Random survival forest modeling and Cox 
proportional hazards regression analysis determined 
imaging habitats 2,7, and 10 to be both important (+ve 
variable importance) and significant (p-value < 0.05) 
for determining OS after adjustment for covariates of 
age, Karnofsky performance score, tumor volume, and 
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IDH1 mutation status (P < 0.05, Supplementary Table 1). 
These three habitats were thus designated as “relevant” 
habitats. The process of acquiring these relevant habitats is 
described in Figure 2. They represent distinct tumor sub-
regions of clinical relevance to outcome in GBM, after 
adjusting for clinical covariates. Their relevance, coupled 
with the availability of matched genomic data for these 
patients, enables us to study the molecular mechanisms 
(pathway activities) associated with the presence of these 
habitats in GBM.

Associating relevant imaging habitats with 
canonical tumor sub-volumes and genetic 
pathways

We used the pair-wise Spearman rank test to correlate 
the amount of each relevant habitat in the tumor with the 
amount of necrotic, enhancing, non-enhancing, and edema 
regions within the tumor (Table 2). In particular, habitat 2 
was also associated with necrosis (p = 0.0172). For habitat 
7 and 10, there was no specific association with canonical 
tumor sub-volumes, suggesting the need for deeper 
examination of their physiology and molecular context.

To study the relationships between relevant 
habitat proportions and molecular pathway data [20], we 
performed Dirichlet regression analysis. Table 3 lists the 
key genetic pathways that are most strongly correlated 
with the relevant habitats. In particular, habitat 2 was 
positively associated with positive regulation of NFκB 
transcription-factor activity; while negatively associated 
with dendrite morphogenesis. Habitat 7 is correlated 
positively with DNA damage response signal transduction 
resulting in induction of apoptosis and macrophage 
activation. Further, habitat 7 was correlated negatively 
with immune cell activity (monocyte differentiation). 
Habitat 10 shows positive association with activity 

of signal transducers and activators of transcription-1 
(STAT-1) and Natural killer cell activation, while showing 
negative correlated with ion channel activity (potassium 
channel inhibitor activity and voltage gated calcium 
channel activity).

DISCUSSION

Through analysis of multi-parametric MR imaging, 
we have identified tumor sub-regions with unique 
combinations of gray-level intensities from each of the 
four MR modalities included in this study. From these 16 
habitats, relevant (i.e. important and significant) habitats 
were identified based on association with OS status, and 
further, correlated with morphological and pathological 
characteristics of tumor, such as leading edge, infiltrating 
tumor into normal brain, edema, and enhancement around 
lesion edge. For example, habitat 10 was associated with 
canonical tumor sub-volumes like edema, peripheral 
tumor tissue, and enhancement around lesion edge.

Our analysis reveals that the intratumoral abundance 
of these habitats are associated with outcome. Delineating 
the extent and location of these aggressive habitats can 
have implications for delivery of radiotherapy (boosting 
RT to aggressive habitat areas), surgical resection (an 
aggressive habitat not impinging on an eloquent area is 
amenable for possibly complete resection). Additionally, 
tracking/monitoring the growth of aggressive habitat 
subvolumes can provide a deeper understanding of disease 
evolution/recurrence instead of just gross tumor volume.
The utility of defining heterogeneity in glioblastoma thus 
is closely related with prognosis and overall survival 
of patients [1–4]. Hence, defining such phenotypic 
heterogeneity is directly relevant for treatment planning, 
surgical intervention, disease monitoring, and prognosis 
estimation in the clinic.

Table 1: Clinical data from 85 TCGA patients with primary GBM

Patient or tumor characteristics Number of patients (%)

Age

 Median 59 years

 Range 18-84 years

Sex

 Male 65 (%)

 Female 35 (%)

Overall survival median (range) 11.7 (0.5 – 90.9) months

Disease-free survival median (range) 6.64 (0.7 – 57.7) months

IDH1 mutation

 Yes 2 (2)

 No 83 (98)
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Figure 1: The process of generating 16 spatial habitats. Based on 4 MR sequences (multi-parametric MRI scans), classify each 
voxel within the tumor volume into high and low categories via kmeans clustering. With 16 (24) signal combinations across the 4 sequences 
(i.e. 0000-1111), every voxel in the tumor volume can be identified uniquely. The resultant habitat map shows the spatial heterogeneity 
within tumor.

Figure 2: The process of finding important and significant (designated “Relevant”) habitats. After adjusting for clinical 
covariates (age, Karnofsky performance score, tumor volume, and IDH1 mutation status), we identified important habitats (positive 
variable importance) via Random Forest survival analysis. Those habitats were then assessed for significance via Cox Proportional 
Hazards Regression to determine overall survival (OS). Only habitat 2,7, and 10 are both important and significant (i.e “relevant”) in 
determining OS.
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Dirichlet regression implicated each relevant 
habitat with pathway alterations due to unique upstream 
transcriptional regulators and signaling activity. Imaging-
derived habitats also showed some common cellular 
processes and pathway activity, such as natural killer cell 
and STAT-1 signaling. These findings are consistent with 
hallmarks of cancer [21, 22], such as avoiding cell death 
(natural killer cell) and inducing angiogenesis (tyrosine 
phosphorylation of STAT-1).

Recent literature supports the relationships inferred 
between clinical pathologies for habitats (Table 4) and 

pathway alterations (Table 3). For instance, it is reported 
that that overexpression of inflammatory cytokines is 
linked with the leading edge of the gliomas. This is 
consistent with our findings (positive association of 
cytokine production) in habitat 2, which is associated 
with the leading edge of the tumor [23]. Furthermore, it 
is well known that glioblastoma is infiltrated by diverse 
immune cells including macrophages [24], which might 
explain the positive association of macrophage activation 
and habitat 7. It is also reported that potassium channel 
inhibitor activity plays a critical role in cell proliferation 

Table 2: Pair-wise Spearman correlation p-values for proportions* of relevant habitats (i.e. those that are important 
& significant) associated with canonical tumor sub-volumes (edema, necrosis, enhancing, and non-enhancing 
regions)

Habitat Necrosis Non-enhancing Enhancing Edema

2 0.0172 0.1003 0.2274 0.9239

7 0.1112 0.3356 0.2670 0.1680

10 0.0937 0.8381 0.2670 0.1680

* Habitat proportions are the fraction of tumor pixels belonging to each imaging habitat computed for each patient.

Table 3: Genetic pathways that are associated (top five in magnitude) with important-significant (i.e “relevant”) 
imaging habitats

Habitat 2 Habitat 7 Habitat 10

Upregulated 
Pathways

Positive regulation of 
NFκB transcription-factor 
activity

DNA damage response signal 
transduction by p53 class 
mediator resulting in induction 
of apoptosis

Positive regulation of tyrosine 
phosphorylation of STAT-1

Sphinganine 1-phosphate Macrophage activation Natural killer cell activation

T cell proliferation during 
immune response

Neuron projection 
morphogenesis

Wnt receptor signaling pathway

Cytokine production 
during immune response

Positive regulation of tyrosine 
phosphorylation of STAT-1

Mol beta2 estradiol

T helper 2 cell 
differentiation

Natural killer cell activation cAMP biosynthetic process

Downregulated 
Pathways

Dendrite morphogenesis Monocyte differentiation Potassium channel inhibitor 
activity

Calcineurin A alpha beta 
B1

Response to DNA damage 
stimulus

Voltage gated calcium channel 
activity

Proteasomal ubiquitin 
dependent protein 
catabolic process

T-cell differentiation Positive regulation of cyclin 
dependent protein kinase activity

IGF 1R heterotetramer Cell morphogenesis Regulation of S phase of mitotic 
cell cycle

Negative regulation of 
DNA binding

Actin cytoskeleton 
reorganization

Schwann cell development
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and cell swelling in neuroblastoma and gliomas [25]. 
Further, Sforna et al. [26] reported that calcium ions 
channels play a role in swelling in GBM. These reports 
are consistent with our clinical pathology interpretation, 
edema, for habitat 10.

Our study has some potential limitations. This 
retrospective study relied on publicly available imaging 
data acquired across multiple clinical sites. Thus there 
were some variations in imaging acquisition/sequence 
parameters (e.g., Relaxation Time and Echo Time) and 
hardware (e.g., magnetic field strength and receiver 
coil geometry). In order to mitigate these effects, and in 
accordance with standard practice, intensity normalization 
and registration were applied to each image prior to habitat 
analysis. However, any remaining intensity variations 
could have potentially affected initial tumor segmentation. 
A systematic study with standardized image acquisition 
protocols is needed in order to validate the robustness of 
these imaging-derived habitat characteristics. Another 
aspect of uncertainty in this study is derived from the 
patient outcome data. Because these patients were treated 
at different institutions, aspects of their treatment regimens 
may not have been fully standardized, which could 
potentially affect patient OS duration. Additionally, an 
inherent challenge with all genomic information derived 
from tumor specimens is the inability to account for 
spatial heterogeneity of genomic alterations and tumor cell 
clones. As with the quality of the imaging data described 
above, the robustness of the genomic data is also subject 
to similar uncertainties that can influence the overall 
generalizability of our conclusions. Also, the presented 
relationships between habitats and genetic pathway 
alterations are inferred based on statistical regression 
methods. These findings could potentially form the basis 
for targeted perturbation experiments in-vivo to illuminate 
the mechanistic or causative nature of the relationships 
between habitats and pathway activity. While outside the 
scope of this study, research efforts in this direction [27, 
28] are essential before these associations can be exploited 
therapeutically. However, the process of habitat inference 
and its association mining for prognostic intent can be 
done quite readily in the current clinical scenario since 
these 4 MR sequences (T1, T1c, T2, FLAIR) are used 
routinely.

MATERIALS AND METHODS

Datasets

One hundred patients with primary GBM were 
identified from The Cancer Genome Atlas (TCGA). 
Patient image data and corresponding clinical data were 
extracted from The Cancer Imaging Archive [35]. All 
patients had undergone routine MRI prior to surgery and 
treatment. Pre-contrast T1-weighted (T1) images, post-
gadolinium T1 (T1c) images, T2-weighted (T2) images, 
and T2 fluid-attenuated inversion recovery (FLAIR) 
images were acquired. Patient genomic and molecular data 
were obtained from cBioPortal [36] and included data on 
genetic pathway activation (PARADIGM scores [20]). 
This study abided by the TCGA data use agreement and 
was Institutional Review Board-exempt.

Of the initial 100 GBM patients identified, 85 
patients had a complete set of imaging, clinical, and 
genomic data available. These patients were separated 
into 2 survival groups: OS (OS) ≥ 12 months and OS < 
12 months. The acquisition parameters for the four MRI 
sequences used in this study are as follows – T1 (echo 
time: 15-8.5 ms, relaxation time: 642-400 ms), T1 post 
contrast (echo time: 15-8.5 ms, relaxation time: 700-400 
ms), T2 (echo time: 120-30 ms, relaxation time: 6000-
2140 ms) and FLAIR (echo time: 150-90 ms, relaxation 
time: 11000-6000 ms).

Image processing, image registration and 
segmentation

For our study, Brain Tumor Image Analysis 
(BraTumIA) software [19] was used to perform image 
preprocessing steps (skull stripping and rigid registration), 
followed by automated segmentation of normal structures 
(cerebrospinal fluid, gray matter, and white matter) and 
diseased tissue (necrosis, edema, non-enhancing tissue, 
and enhancing tissue) [37].

Image habitat analysis

Patient images and the BraTumIA-derived 
segmentation masks were loaded into MATLAB for habitat 

Table 4: Interpretation of important-significant (i.e. relevant) imaging habitats based on multiparametric MR: ‘0’ 
denotes low in signal intensity and ‘1’ denotes high in signal intensity

Habitat 
number

Enhancement combination
Clinical pathology

FLAIR T1 T1C T2

2 0 0 1 0 Leading edge of the tumor

7 0 1 1 1 Overall tumor mass including leading edge and infiltrating tumor 
into normal brain

10 1 0 1 0 Edema, peripheral tumor tissue, enhancement around lesion edge
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analysis. For habitat analysis, we used only the regions of 
the MR image associated with tumor (i.e. necrosis, edema, 
non-enhancing tissue, and enhancing tissue). These 
BraTumIA segmentation labels were combined to create 
one binary mask of the tumor region for each patient. 
The masks were applied to each scan to extract intensity 
values from the tumor. The tumor intensity values were 
first scaled relative to gray matter and white matter 
intensity and then subsequently, linearized (scaled from 0 
to 1) based on the maximum and minimum in each image. 
Following Zhou et.al [17] K-means clustering was applied 
to each MR sequence type (FLAIR, T1, T1c, and T2) 
across all patients to derive sequence-specific, intensity 
thresholds that separate high-intensity pixel values from 
low-intensity pixel values. Each sequence image for each 
patient was then dichotomized into sub-regions of high or 
low enhancement (1 or 0, respectively). The combinations 
of high and low enhancement for each patient resulted in 
16 possible imaging habitats, where habitat 0 is represents 
regions with low-intensity (FLAIR = 0, T1 = 0, T1+C = 0, 
T2 = 0), habitat 3 represents regions with characteristics 
(FLAIR = 0, T1 = 0, T1+C = 1, T2 = 1), and habitat 15 
represents regions having high-intensity in all acquisitions 
(FLAIR = 1, T1 = 1, T1+C = 1, T2 = 1). A 3D spatial 
representation of the imaging habitats was created using 
these labels. Subsequently, habitat proportions, the fraction 
of tumor pixels belonging to each imaging habitat, were 
calculated for each patient. The process of obtaining 16 
habitats is described in Figure 1.

Associating imaging habitats with clinical and 
genomic data

Statistical analysis was performed using R 
statistical software (R Foundation, Vienna, Austria) 
with the “survival” (v 2.38-2), “randomForestSRC” (v 
2.0.5), and “DirichletReg” (v 0.6-3) packages. Random 
survival forest (RSF) regression was applied to the 
imaging habitat proportions to determine if any habitats 
were associated with OS [16, 38, 39]. The random forest 
regression identified a subset of habitats that were deemed 
“important.” Cox proportional hazard regression analysis 
was then used to determine the association of these (RSF-
derived) important habitats with OS (p-values less than 
0.05) [40–42], after adjusting for clinical covariates (age, 
volume, karnofsky score: KPS, IDH1 mutation). Image 
habitats that were deemed important based on random 
survival forest regression, and significant from the Cox 
proportional hazard regression were designated “relevant”. 
The process of obtaining relevant habitats is depicted in 
Figure 2. These relevant habitats were then correlated 
with BraTumIA-derived tumor volume segmentations 
(edema, necrosis, enhancing regions, and non-enhancing 
regions) via pair-wise Spearman rank correlation tests. 
In addition, Dirichlet regression was applied to each 
relevant habitat to determine if that habitat was associated 

with pathway activation (PARADIGM) scores. This 
analysis generated molecular signatures associated with 
each relevant imaging habitat. The significance of the 
Dirichlet regression for each pathway was determined by 
calculating a Bonferroni-adjusted P value, and the strength 
of association was determined from the absolute value of 
the Dirichlet regression coefficient.

CONCLUSIONS

This study has elucidated a nuanced relationship 
between imaging habitats derived from MR images, 
clinical characteristics, and molecular data in a cohort 
of GBM patients. The present study implemented an 
automated methodology that parallels the traditional 
practice of a neuroradiologist by considering the totality 
of 3D imaging data (i.e. across multiple MR sequences) 
from each patient. This technique represents an advance 
in imaging-genomics. Whereas previous studies derived 
associated imaging features and genomic data from 2D 
imaging datasets [12, 29, 30], this study adopted a 3D 
approach, which is consistent with the progress of the 
field towards studying 3D image features [10, 31–34] 
for imaging-genomic analysis. Our approach utilized a 
multi-parametric representation of 3D image features 
derived from different imaging sequences overlaid 
upon each other to generate an imaging phenotype 
that predicts OS duration, after adjusting for clinical 
covariates.

This work revealed associations between MRI-
derived habitats and oncogenic molecular mechanisms 
in patients with GBM. The analytical framework and 
workflow demonstrated in this study are inherently 
scalable to any number of MR sequences. The four MRI 
sequences used, FLAIR, T1, T1+C, and T2, are readily 
available on most modern scanners and used routinely 
in clinical practice. More advanced sequences such as 
susceptibility-weighted imaging, diffusion-weighted 
imaging, or MRI spectroscopy could be incorporated 
into this framework in a fairly linear manner (with ‘k’ 
MR sequences, you have 2k habitats). Furthermore, 
with appropriate imaging and tumor segmentation, this 
workflow could accommodate data from other tumor types 
and/or other anatomical sites.

Pathway analysis of the molecular data associated 
with each habitat showed significantly altered molecular 
pathways, supporting the hypothesis that each 
radiographically-distinct tumor habitat is associated 
with distinct molecular characteristics. Some of these 
altered pathways pertain to angiogenesis, while others 
correlate with signaling pathways known to be co-opted 
by tumor cells to facilitate their avoidance of cell death. 
The relationships elucidated by this study between 
imaging habitats and underlying biology may offer 
additional information regarding the patient’s disease 
state, complementing inference based on genomics alone. 



Oncotarget112999www.impactjournals.com/oncotarget

Future work will extend this analysis by considering 
tumor location, extent of resection, methylguanine-DNA 
methyltransferase (MGMT) promoter methylation status, 
as well as extending this work to other tumor types and 
anatomical sites. A systematic assessment of the impact 
of acquisition parameter variability on robustness of 
imaging habitats will also need to be performed before 
clinical adoption. These results also lay the groundwork 
for investigations of targeted hypotheses from MRI-guided 
biopsies [27, 28] in GBM with corresponding genomic 
analyses to confirm and validate these phenotypic-
genomic relationships.
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