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A novel messenger RNA signature as a prognostic biomarker for 
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ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) death rate and recurrence rate have 
remained obstinately high. Current methods can not satisfy the need of predicting 
cancer relapse accurately. Utilizing expression profiles of 10 GEO datasets (N = 774), 
we identified 154 differentially expressed genes (DEGs) between PDAC and normal 
pancreas tissue or paracancerous tissue. Next we built a 16-mRNA-based signature by 
means of the LASSO COX regression model. We also validated the prognostic value of 
the signature. Patients were classified into high-risk and low-risk group according to 
the signature risk score; 1 year RFS was 45% (95% CI: 31.6%–63.9%) for high-risk 
group in contrast to 92.5% (95% CI: 86.3%–99.1%) for low-risk group. Moreover, it 
could predict RFS well in cases with the receipt of different treatment modalities. The 
16-mRNA-based signature was an independent and powerful prognostic biomarker 
for RFS for PDAC patients (HR = 7.74, 95% CI: 3.25–18.45, p < 0.0001).
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INTRODUCTION

PDAC accounts for approximately 90% of pancreatic 
cancer (PC), which is the third leading cause of cancer 
mortality followed by lung cancer and colorectal cancer [1]. 
5 year overall survival (OS) for PC has increased slightly 
from 5% to 8% and more than 52% cases are initially 
diagnosed at a distant stage for which 5 year OS is only 3% 
[1].The main reasons include the shortcomings of effective 
therapies and the lack of specific biomarkers or clinical 
symptoms in diagnosis.

Many therapeutic fields have emerged for decades, such 
as surgery, postoperative adjuvant chemoradiotherapy, targeted 
molecular therapy (TMT), neo-adjuvant chemotherapy, 
immunotherapy, and therapeutic exosomes or microvesicles. 

Surgical resection is still the only potentially curative therapy. 
However, less than 20% have a surgical opportunity and over 
one-half of cases experience a postoperative relapse [2]. Cancer 
relapse directly results in shorter survival time after operation. 
Adjuvant chemotherapy with gemcitabine has been a standard 
care for resected PC which can delay recurrence [3].

Tumor tissue and serum samples contain massive 
potential diagnostic and prognostic biomarkers. 
Proteins and nucleic acid molecules including mRNAs, 
microRNAs, long non-coding RNAs and stable circular 
RNAs from tissue samples, and free molecules consisting 
of above mentioned molecules, tumor-derived exosomes 
or microvesicles, circulating tumor cells and circulating 
tumor DNA from serum samples have been explored as 
specific biomarkers for different tumors.

                                                     Research Paper



Oncotarget110850www.impactjournals.com/oncotarget

Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) are two main public databases that 
provide massive array-based and sequence-based data for 
global researchers to download [4, 5]. Meanwhile, novel 
bioinformatic methods make it quicker and more capable 
to deal with large amounts of data. To date, previous 
methods can’t satisfied the need of predicting cancer 
relapse accurately. Although studies have identified some 
biomarkers for PDAC by integrating GEO with TCGA, 
most of them focused on overall survival instead of 
relapse-free survival. In our study, we carefully reviewed 
all datasets about PDAC and the eligible datasets were 
more comprehensive. We used R software to analyze 
gene expression levels and identify significant genes 
which expressed differentially between PDACs and 
normal pancreas tissue (TvsN) or paracancerous tissue 
(TvsP) [6]. Gene Ontology (GO) enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis were performed for finding out key 
genes and pathways. Furthermore, we utilized Least 
absolute shrinkage and selection operator (LASSO) 
regression model and built a 16-mRNA-based signature 
for predicting the present of relapse. The model was 
validated in 10-foldcross-validation [7]. The prognostic 
value of the signature was tested by the performance of 
multiple analyses.

RESULTS

Identification of differentially expressed genes

All eligible datasets were described in Table 1. 
Vocano plots of DEGs in these datasets were displayed in 
Figure 1. In addition, overlapping analysis of these DEGs 
was conducted. Four gene expression profiles were utilized 
to recognize DEGs of TvsN (Figure 2A). There were 
other 7 gene expression profiles used to identify DEGs 
of TvsP, including 3 gene expression profiles on agilent 
microarrays and 4 gene expression profiles on affymetrix 
microarrays (Figure 2B–2C). Due to the larger number of 
datasets, DEGs within 2 series or more were regarded as 
credible in each venn diagram. As shown in Figure 2D, 
there were 154 overlapping genes differently expressed 
among TvsN (≥2series), TvsP-affymetrix (≥2series) and 
TvsP-agilent (≥2series) finally. Of these, 103 genes were 
up-regulated mRNAs and 51 genes were down-regulated. 

Results of GO enrichment analysis and KEGG 
pathway analysis

GO analysis and KEGG analysis were conducted 
for exploring the biological roles of these 154 DEGs. We 
listed top 10 terms in each of three categories (Figure 2E). 
Metabolic process was the main term of biological 
processes (BP), while terms associated with collagen 
and extracellular matrix (ECM) were enriched in cellular 

component (CC). Seven terms of molecular functions 
(MF) had relation with peptidase activity. As exhibited in 
Figure 2F, seven pathways were significantly enriched, of 
which protein digestion and absorption pathway was the 
most. The result of GO analysis integrated with KEGG 
analysis supported the point that ECM remodeling and 
pancreatic tumor-secreted microvesicles or exosomes 
promoted pre-metastatic niches formation and PDAC 
progression [8]. 

Clinical characteristics of PDAC patients 
enrolled in the study

One hundred and thirty-eight PDAC patients 
with RFS status were enrolled in our study. Clinical 
characteristics of these patients were summarized in 
Supplementary Table 1. The median age of these patients 
was 65 years and median follow-up was 15.8 months. 
Thirty-nine of 138 patients experienced cancer relapse, 
of which 37 cases relapsed within 2 years. Following 
the AJCC 8th edition staging system, we had reassessed 
AJCC8 T stage, N stage and pathologic stage according 
to recorded maximum tumor dimension and the number 
of PLN (Supplementary Tables 2–4). Seventy-two T stage 
tumors, 46 N stage tumors and 62 pathologic stage tumors 
in the old system were reclassified into other stages in the 
8th version system.

Construction and validation of the prognostic 
signature

For these 154 candidate mRNAs, we used Nearest 
Neighbor Estimation (NNE) method to plot time-
dependent ROC curves. The predict time was equal to 
24 months. We generated the optimal cutoff value and 
other indices of each mRNA, such as the area under 
the curve (AUC), Protective or Risky factor (PorR), 
sensitivity and specificity. According to the cutoff value, 
138 patients were classified into high or low expression 
status of this mRNA. Next we conducted COX univariable 
analysis between each mRNA and RFS. These p values 
were recorded. AUC ≥ 0.55 was a restrictive condition 
for filtering some mRNAs that hardly had a prognostic 
value. Ultimately, 65 mRNAs with p < 0.25 and AUC  
≥ 0.55 were utilized to construct LASSO COX regression 
model (Supplementary Table 5). Of these, 53 genes were 
up-regulated mRNAs and 12 genes were down-regulated. 

The function glmnet returned a sequence of models 
for us. We preferred the most widely used 10-fold 
cross-validation method to select the best one of them. 
As shown in Supplementary Figure 1, We plotted the 
partial likelihood deviance versus log (λ), where λ was 
the tuning parameter. Herein, a value λ = 0.04513 with 
log (λ) = −3.098 was chosen by 10-fold cross-validation 
via minimum criteria. Cross-validation was run up to 
100 times. The cross-validated errors were averaged and 
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Table 1: Datasets enrolled in the study

GEO ID or data source T P N Platform
GSE62165 (Janky et al, 2016) 118 - 13 Affymetrix U219
GSE91035 (Schmittgen et al, 2016) 27 15 8 Agilent LincRNA G3
GSE32676 (Donahue et al, 2011) 25 - 7 Affymetrix U133 Plus 2
GSE71989 (Schmittgen et al, 2015) 13 - 8 Affymetrix U133 Plus 2
GSE62452 (Yang et al, 2016) 69 61 - Affymetrix Gene 1.0 ST
GSE28735 (Zhang et al, 2012) 45 45 - Affymetrix Gene 1.0 ST
GSE15471 (Badea et al, 2009) 36 36 - Affymetrix U133 Plus 2
GSE16515 (Pei et al, 2009) 36 16 - Affymetrix U133 Plus 2
GSE71729 (Moffitt et al, 2015) 145 46 - Agilent G4112F
GSE58561 (Wennerström et al, 2014) 3 2 - Agilent G3
TCGA-PAAD (The Cancer Genome Atlas 
Research Network, 2014) 138 - - Illumina HiSeq V2

N: normal pancreas tissue samples; P: paracancerous tissue samples; PAAD: patients with pancreatic adenocarcinoma;  
T: tumor samples.

Figure 1: Vocano plots of DEGs in selected datasets. (A–K) GSE91035 consists of gene expression profiles of not only TvsN but 
also TvsP. X-axis: log[2](FC); Y-axis: -log[10](FDR) for each gene. Genes with FDR < 0.05 and absolute FC > 2 are considered as DEGs 
in each series. Blue: down-regulated genes; Green: non-differential genes; Red: up-regulated genes.
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the lambda.min with minimum mean cross validation 
error was still equal to 0.04513. So we obtained 16 
variables with nonzero coefficients at the value λ chosen 
by cross-validation. These mRNAs included ERP27, 
ASPM, ARNTL2, BIK, AMIGO2, SPOCK1, DKK1, 
COL17A1, MT1M, SERPINB5, CA4, FAM3B, MBOAT2, 
F11, ACSL5 and SLC4A4 (Figure 3A). On the basis of 
these mRNAs, we successfully built a 16-mRNA-based 
signature. The signature risk score of every patient was 
computed according to the summation of 16 mRNAs 
expression status multiplied coefficient: risk score of 
16-mRNA-based signature = (0.77120*status of ERP27) + 
(0.62081*status of ASPM) + (0.44536*status of ARNTL2) 
+ (0.40868*status of BIK) + (0.30749*status of AMIGO2) + 
(0.27687*status of SPOCK1) + (0.24414*status of DKK1) + 
(0.24231*status of COL17A1) + (0.24071*status of MT1M) 
+ (0.22296*status of SERPINB5) + (−0.01564*status of 
CA4) + (−0.02489*status of FAM3B) + (−0.15373*status of 
MBOAT2) + (−0.16052*status of F11) + (−0.37751*status 

of ACSL5) + (−0.40839*status of SLC4A4). In this formula, 
Low expression status was equal to 0 and high expression 
status was equal to 1. 

The time-dependent ROC curve between the 
signature and RFS showed AUC at 2 years was 0.917 while 
AUC at 1 year was 0.817 (Figure 3B). It demonstrated that 
risk score value of 1.709 was the optimal cutoff point for 
predicting relapse, with sensitivity of 0.782 and specificity 
of 0.891. According to the cutoff value, we classified 
patients into two different subgroups, of which low-risk 
group had lower risk score and high-risk group had higher 
risk score. Figure 3C showed Kaplan-Meier curve in which 
high-risk group had poor RFS. 1 year RFS was 45% (95% 
CI: 31.6%−63.9%) for high-risk group and 92.5% (95% CI: 
86.3%−99.1%) for low-risk group. Meanwhile, 2 year RFS 
was 0% for high-risk group in contrast to 87.4% (95% CI: 
78.6%−97.1%) for low-risk group. The result of risk score 
analysis was displayed in Figure 3D. Besides, we noted that 
Youden’s index (= sensitivity + specificity−1) of 16-mRNA-

Figure 2: DEGs between PDAC and normal pancreas tissue or paracancerous tissue. (A–D) Overlap analysis in 11 different 
datasets. Every ellipse corresponds to a dataset. The numbers of DEGs in each overlapped area are marked in relevant position. DEGs 
within 2 dataset or more were regarded as credible in each venn diagram. (E) Top 10 terms in each of three categories of GO enrichment 
analysis. Red: biological processes (BP); Green: cellular component (CC); Blue: molecular functions (MF). (F) KEGG pathway analysis 
of DEGs. Seven signal pathways are significantly enriched.



Oncotarget110853www.impactjournals.com/oncotarget

based signature was higher than any clinical factor or single 
mRNAs when predict time was equal to 24 months (Figure 
3E–3F). Furthermore, we analyzed the association of the 
16mRNAs and the signature risk score with all clinical 
characteristics (Supplementary Figure 2). We found that the 
distribution of tobacco smoking history, histologic grade, T 
stage and residual tumor status differed between high-risk 
and low-risk group. 

Results of COX univariable analysis, 
multivariable analysis and stratified analysis

To verify that 16-mRNA-based signature had an 
excellent prognostic value, COX univariable analysis of 20 
clinical factors and the signature with RFS were conducted. 
It demonstrated that 16-mRNA-based signature, histologic 
grade, N stage, T stage, primary therapy outcome success 
and AJCC8 N stage were significantly related to RFS  

(p < 0.05) (Table 2). We recognized that the hazard ratio for 
cancer relapse was 12.79 (95% CI: 5.5–29.74) when high-
risk group compared to low-risk group (p < 0.0001). All  
p values were all calculated with Log-rank test here.

In the light of AJCC 8th version staging system’s 
more repeatable estimation and finer stratification, we 
performed multivariable analysis adjusted by clinical 
factors with p < 0.15 except AJCC 7th N stage and AJCC 
7th T stage (Table 2). The adjusted hazard ratio was 7.74 
(95% CI: 3.25–18.45, p < 0.0001), which indicated that 
16-mRNA-based signature was still an independent 
prognostic factor for PDAC patients. 

After stratified by clinical factors, 16-mRNA-
based signature remained powerful for predicting RFS 
(Supplementary Table 6). In patients with the receipt of 
different treatment modalities, the results returned that high-
risk group would have worse RFS in those whether received 
radiation or TMT (Figure 4, Supplementary Table 6).  

Figure 3: The 16-mRNA-based signature for predicting RFS. (A) Visualization of the coefficient profiles of fitting LASSO 
COX model. Each curve represents a variable. It shows the path of its coefficient against the L1-norm of the whole coefficient vector at 
as λ varies. A vertical line is drawn at the value chosen by 10-fold cross-validation. The above axis: the number of nonzero coefficients 
at as λ varies. It represents the degrees of freedom for model. X-axis: L1 Norm, the summation of absolute nonzero coefficients at as λ 
varies. Y-axis: the values of nonzero coefficients at as λ varies. (B) Time-dependent ROC curve in 138 PDAC patients. (C) The Kaplan-
Meier survival curve for patients in different risk groups. (D) Risk score analysis for patients. Top: the distribution of RFS status. Bottom: 
risk score of 16-mRNA-based signature. (E) Comparison of prognostic accuracy between the signature and clinical characteristics. (F) 
Comparison of prognostic accuracy between the signature and single mRNAs. 
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This was consistent with the result of Figure 3C. From 
Table 2, we noted that adjuvant radiation or TMT did 
not enhance survival in all patients (HR = 1.2, 95% CI:  
0.61–2.35; HR = 1.14, 95% CI: 0.54–2.41, respectively). So 
we investigated the impact of radiation or TMT on RFS when 
these patients were stratified by 16-mRNA-based signature. 
However, we found no difference between radiation and 
non-radiation in whether high-risk group or low-risk group 
(Supplementary Figure 3A–3B). For low-risk group, it 
might be beneficial to treat with radiation, but might be 
bad to treat with TMT (Supplementary Figure 3A, 3C).  
They should receive postoperative radiation rather than 
TMT. High-risk group might potentially benefit from TMT, 
although the p value did not reach statistical significance 
(HR = 0.48, 95% CI: 0.20–1.14, p = 0.09, Supplementary 
Figure 3D).

DISCUSSION

Improving survival outcomes in PDAC patients is an 
arduous and urgent task, which requires the development 
of several aspects, such as early detection and precision 

diagnostic of tumorigenesis and metastasis, more advances 
in risk stratification with the help of biomarkers and 
imaging techniques, and multiple effective therapies 
available for individualized treatment.

In the present study, we established a novel mRNA 
signature as a prognostic biomarker for RFS. To obtain 
these 154 DEGs, we performed overlapping analysis with a 
strategical and stepwise method. The time-dependent ROC 
curve and COX univariable analysis initially evaluated 
the prognostic value of these DEGs. Sixty-five mRNAs 
with AUC ≥ 0.55 and p < 0.25 were utilized to construct 
LASSO COX regression model. Ten-fold cross-validation 
helped us to choose the best one with the minimum mean 
cross validation error from a sequence of models. The 
16-mRNA-based signature risk score has been proven to be 
an independent and powerful prognostic factor for PDAC 
patients. Moreover, our risk score might be able to predict 
which patients benefit from TMT or radiation. Low-risk 
group might be suitable for treatment with radiation and 
high-risk group might potentially benefit from TMT.

Many clinical factors decreasing RFS after operation 
for PDAC were identified, such as elevated serum CA19-9 

Table 2: Result of COX univariable analysis and multivariable analysis of RFS

Characteristics Univariable HR 
(95% CI) P value Multivariable 

HR (95% CI) P value

Gender (Female vs. male) 1.2 (0.64–2.26) 0.5615
Age (≥65 years vs. <65) 1.01 (0.54–1.92) 0.9652
History of diabetes (YES vs. No) 0.79 (0.36–1.75) 0.5578
History of chronic pancreatitis (YES vs. No) 0.72 (0.22–2.39) 0.5943
Family history of cancer (YES vs. No) 0.73 (0.34–1.56) 0.4186
Tobacco smoking history (YES vs. No) 1.51 (0.73–3.09) 0.2625
Alcohol history documented (YES vs. No) 1.39 (0.7–2.79) 0.3469
Location (tail + body vs. head) 0.47 (0.18–1.23) 0.1161 0.35 (0.1–1.23) 0.1021
Histologic grade (G3 + G4 vs. G1 + G2) 2.54 (1.34–4.84) 0.0031 2.09 (0.87–4.98) 0.0973
Pathological stage (III + IV vs. II vs I) 1.55 (0.73–3.31) 0.257
N stage (N1 vs. N0) 3.14 (1.3–7.56) 0.0073
T stage (T3 + T4 vs. T1 + T2) 2.77 (0.96–7.94) 0.0497
Maximum tumor dimension (≥3.5 mm vs. <3.5 mm) 1.66 (0.86–3.2) 0.1304 1.57 (0.71–3.51) 0.2662
Residual tumor (R1 + R2 vs. R0) 1.56 (0.77–3.14) 0.2095
Radiation therapy (YES vs. No) 1.2 (0.61–2.35) 0.5895
Targeted molecular therapy (YES vs. No) 1.14 (0.54–2.41) 0.7388
Primary therapy outcome success (SD + PD vs.  
CR + PR) 2.42 (1.24–4.7) 0.0074 1.31 (0.61–2.83) 0.4885

AJCC8th T stage (T3 + T4 vs. T1 + T2) 1.37 (0.73–2.58) 0.3273
AJCC8th N stage (N2 vs. N1 vs. N0) 1.59 (1.06–2.39) 0.0236 1.87 (0.74–4.73) 0.1828
AJCC8th Pathological Stage (III + IV vs. II vs I) 1.49 (0.95–2.32) 0.0784 0.92 (0.34–2.49) 0.8699
16-mRNA-based signature (High vs. Low) 12.79 (5.5–29.74) <0.0001 7.74 (3.25–18.45) <0.0001

AJCC: American Joint Committee on Cancer; CI: Confidence interval; CR: Complete remission /response; HR: Hazard 
ratio; PD: Progressive disease; PR: Partial remission/response; SD: Stable disease.
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[9, 10], perioperative blood transfusion [11, 12], higher 
histologic grade [9, 13], stage IV [11], lymph node 
metastasis [13–15] and lower lymphocyte to monocyte 
ratio [16]. However, unfavorable prognosis has not yet 
been improved. The present study showed that factors 
including histologic grade, AJCC7th N stage, AJCC7th 
T stage, primary therapy outcome success, AJCC8th N 
stage were associated with RFS. In term of PDAC staging, 
it is difficult to use imaging to distinguish extrapancreatic 
tissue from pancreas because of the proliferative reaction 
to tumor. To improve the repeatability and reproducibility 
of stage, AJCC staging system (8th edition) has canceled 
assessment of extrapancreatic invasion by using imaging 
as a criterion. Because 64 stage T3 tumors were down-
staged to T2 (n = 63) and T1 (n = 1), the association 
between AJCC 8th T stage and RFS was not significant 
(p > 0.05). Besides, pathologic stage was not a prognostic 
factor for RFS (p > 0.05) in PDAC. This might be 
explained by that the distribution of subgroups was 
disproportionate and the sample size was not large enough. 
Nearly all patients had III stage tumors in stage III + IV 
group (94%), and stage IIb patients accounted for 82% 
in stage II group. The malignant degree of tumor biology 
and survival between stage IIb and III patients were close. 
On the other hand, a non-significant interaction between 
pathologic stage and RFS was influenced by other factors 
possibly. 

The prognostic potential of carbohydrate antigens 
has been well documented in recent years. Preoperative 
serum CA19-9 levels are the most widely used and the 
only biomarker approved by the U.S. Food and Drug 
Administration. Although it can serve as a diagnostic 
and prognostic biomarker, but its practical value is 
limited [9, 17–20]. Kohei et al. declared that preoperative 
serum CA19-9 level (≥529/<529 U/mL) was an 
independent indicator for recurrence within 1 year after 
pancreatectomy. But it featured a poor prognostic value 
with sensitivity of 86.2% and specificity of 50% [9]. 
In contrast to CA19-9, the sensitivity and specificity of 
signature were 78.2% and 89.1% when predict time was 

two years. AUC at 2 years/1 year was 0.917/0.817. To the 
best of our knowledge, there is little in the literature about 
the predictive value of other serum carbohydrate antigens 
for RFS. Since other serum carbohydrate antigens are 
inferior to CA19-9 in the early diagnosis of PDAC, Yu 
et al. confirmed that preoperative serum CA19-9 level 
(≥37/<37 U/mL) had better predictive performance for 
OS and RFS than CA125 (≥18.6/<18.6 U/mL) level in 
PDAC patients [19]. But CA125 is superior to CA19-9 in 
hyperbilirubinemia patients with resectable PDAC. From 
the time-dependent ROC curves, we observed that AUC at 
2 years/1 year for CA19-9 was approximately 0.68/0.65, 
which was less than ones of the 16-mRNA-based signature. 
On the other hand, postoperative and post-adjuvant 
chemotherapy serum CA19-9 levels (>37/≤37 U/mL) 
was all identified as an independent predictor for PDAC 
survival (HR = 2.697 and 2.72, respectively), regardless 
of preoperative serum CA19-9 level [20, 21]. Moreover, 
elevated postoperative serum CEA (>5.2/≤5.2 ng/mL) 
and CA125 (>35/≤35 U/mL) level further decreased RFS 
[20]. It provides us a train of thought that we can monitor 
and combine postoperative serum CA19-9, CEA with 
CA125 levels to ameliorate risk stratification in pancreatic 
cancer after resection. Additionly, metabolic tumor burden 
measured by 18F-FDG PET/CT is an effective prognostic 
factor for RFS, and superior to preoperative serum 
CA19-9, but PET/CT examination is rather expensive 
[10]. Elevated ERCC1 (HR = 2.1, 95% CI: 1.1–3.9) 
[22], DKK1 [23], CXCL12 [24], long non-coding RNA 
MALAT-1 (OR = 3.65, 95% CI: 1.86–7.18) [25] in tissue 
sample, and detection of circulating tumor cells (pooled 
HR: 2.36, 95% CI 1.41–3.96) [26] in peripheral blood 
were risky factors for patients survival. However, the 
16-mRNA-based signature was significantly linked to RFS  
(HR = 7.74, 95% CI: 3.25–18.45).

Recent studies have proved that all the 16 mRNAs 
were differentially expressed between PDAC and normal 
pancreas tissue. Among these 16 mRNAs, 5 genes 
including ERP27, MT1M, CA4, F11 andFAM3B were 
down-regulated (Supplementary Table 5). ERP27 was 

Figure 4: (A–D) The Kaplan-Meier survival curves for PDAC patients in different subgroups stratified by radiation and targeted molecular 
therapy. Information of partial patients on radiation or TMT was incomplete and deleted. TMT: targeted molecular therapy.
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shown to be down-regulated in acute pancreatitis in 
rats and selectively expressed in pancreatic exocrine 
glandular cells [27, 28]. Tumor suppressor MT1M 
promoter methylation was utilized to detect hepatocellular 
carcinoma (HCC) non-invasively in blood [29]. Recent 
study firstly stated that CA4 was a tumor suppressor in 
colorectal cancer (CRC) by inhibiting the Wnt signaling 
pathway. CA4 promoter methylation was an independent 
biomarker for the recurrence of CRC [30]. Moreover, renal 
cell carcinoma patients after nephrectomy with lower CA4 
had an adverse survival [31]. The expression level of F11 
(coagulation factor XI) in normal pancreas is comparable 
with that in liver [32]. FAM3B also called pancreatic-
derived factor (PANDER) was secreted by pancreatic 
beta-cells and maintained glucose and lipid metabolism 
[33]. Another 11 genes were up-regulated. DKK1 was 
a WNT signaling pathway inhibitor whose promising 
diagnostic and prognostic value raised a continous concern 
in several tumors. It has been investigated that its high 
serological level was in connection with poor survival 
in CRC, laryngeal squamous cell carcinoma, HCC, lung 
cancer, esophageal carcinomas and PDAC [34–39]. It 
was also considered as a diagnostic biomarker in breast 
cancer and above mentioned cancers [34–40]. ASPM 
was connected with pancreatic epithelial tubulogenesis 
and over-expressed ASPM promoted aggressiveness of 
PDAC by regulating Wnt-β-catenin signaling pathway 
[41]. ARNTL2 was up-regulated and had the potential 
to be the marker for tumor aggressiveness in CRC [42]. 
BIK, one of Bcl-2 homology domain 3-only proteins 
was identified to induce apoptosis and predict breast 
cancer outcomes independently [43]. The pooled BH3-
only proteins served as a novel prognostic biomarker in 
glioblastoma multiforme [44]. Up-regulation of AMIGO2 
in fibrosarcoma cells promoted liver metastasis through 
the development of liver endothelial cell adhesion 
[45]. SPOCK1 acted as a potential prognostic factor 
for pregression and took part in tumor proliferation 
and metastasis through the ERK and AKT signaling 
pathways [46]. The hyper-methylation of COL17A1 
promoter increased ductal breast cancer metastasis. But 
COL17A1 was over-expressed and its promoter was 
hypo-methylated in cervical cancer and other epithelial 
cancers [47]. SERPINB5 (also called maspin) served as an 
independent risky prognosticator for OS in PDAC patients 
after operation [48]. Previous studies have announced 
that over-expression of MBOAT2 was negatively related 
to PDAC patient survival [49]. ACSL5 involved in 
enterocytic differentiation and maturation has already been 
a predictive prognostic factor for early tumor recurrence in 
CRC patients [50]. SLC4A4 mRNA involved in Cl(–) and 
HCO(3)(–) efflux was selectively expressed in pancreatic 
ductal cells higher than in islet cells [28, 51].

Using LASSO model, Zhang et al. built a six-
miRNA-based signature for identifying patients with 
stage II colon cancer who were suitable candidates for 

chemotherapy [52]. Ten-fold cross-validation was widely 
used to estimate how accurately a predictive model will 
perform in practice. The original samples were randomly 
classified into 10 equal sized subsamples, 9 subsamples 
were retained as training data while the remaining 
subsample was used as validation data. In this study, the 
16-mRNA-based signature was at a minimum lambda 
with a minimum mean cross validation error. Transcript 
abundances of samples are got from RNA-seq rather than 
qRT-PCR. That is a limit of the study. But RNA-seq does 
not need to depend on reference gene for normalizing 
genes and is considered to be likely superior to qRT-
PCR in the future [53]. GAPDH and β-actin are usually 
selected as reference genes because of their constant and 
abundant expression level. However, the difference of 
GAPDH expression levels was observed between TCGA 
recurrent and non-recurrent group, whilst the expression 
level of β-actin did not vary significantly (Supplementary 
Figure 4). We can analogize that GAPDH expression level 
may have a difference between two groups in qRT-PCR 
even if all experimental processes are perfect. So the error 
will be also fatal when we perform qRT-PCR and select 
incorrect reference gene. qRT-PCR is not unchallengeable. 
The reasons of our study only chose the mRNAs were that 
many studies showed a wide difference in differentially 
expressed miRNAs (DEmiRs). The relation of long 
non-coding RNAs to PDAC survival has not been well 
documented. The extraction protocols and detection 
methods of mRNAs, miRNAs and long non-coding RNAs 
were also different. 

In summary, the novel mRNA signature can be a 
prognostic biomarker and has an excellent accuracy of 
predicting cancer recurrence for postoperative patients.

MATERIALS AND METHODS

PDAC datasets preparation

Gene expression profiles of PDACs were 
downloaded from public GEO (https://www.ncbi.nlm.
nih.gov/geo/) and TCGA (http://cancergenome.nih.
gov/). In the GEO Repository Browser, we retrieved 488 
series with respective GSE identification numbers and a 
title containing the word “pancreatic”. We exported all 
searching results into a Microsoft Excel and picked out 
297 datasets about homo sapiens species. Their summaries 
were reviewed carefully and 17 GEO datasets about 
human gene expression profiles of TvsP or TvsN were 
eligible. Exclusion criteria were unanalyzable datasets; 
failure to meet quality control standards: actin3/actin5 
<3 and gapdh3/gapdh5 <1 assessed by the function qc 
in R package simpleaffy; the small number of of DEGs 
which was under 100; and incomplete annotated genes 
which accounted for less than 90% of genes within the 
total transcriptomes (n < 18000). Three datasets generated 
from non-mainstream platforms were unanalyzable and 
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excluded. Four datasets have also been excluded due to 
other mentioned reasons (Supplementary Figure 5). In 
addition, TCGA database provided gene expression profile 
(level 3 data, log2(RSEM+1) transformed) from RNA-
seq and corresponding clinical information in 138 PDAC 
patients with RFS status. 

Gene expression profiles processing

The raw cel files on affymetrix platform and the 
raw text file formats on agilent platform were gained. We 
used the function ReadAffy to read affymetrix microarray 
intensity data, and we conducted background correction, 
normalization and expression calculation with the 
function Robust Multi-Array Average (RMA) in the R 
package affy. Agilentmicroarray intensity data was read 
by using the function read.maimages in R package Linear 
Models for Microarray Data (LIMMA), and background 
correction, normalization and expression calculation were 
also completed by the package LIMMA. Boxplots were 
produced for observing whether scales of expression 
levels of microarrays were approximately equal. If 
multiple probes were annotated with the same gene, 
their mean value was computed to represent expression 
level of this common gene. The function Fit linear model 
(lmFit) in LIMMA was used to identify DEGs. Genes with 
adjusted p value (Adj.P.Val, also called false discovery 
rate, FDR) < 0.05 and absolute fold change (FC) > 2 were 
considered as DEGs. R packages ggplot2 were applied 
to draw Vocano plots for visualizing the results. Besides, 
overlapping genes were got from Venn diagram by means 
of the R package VennDiagram.

GO enrichment analysis and KEGG pathway 
analysis

We utilized 154 highly up-regulated or down-
regulated DEGs to perform GO enrichment analysis and 
KEGG pathway analysis in the R package clusterProfiler. 
Module categories with adjusted p value <0.05 were 
identified to be enriched significantly.

LASSO regression model building

As we all know, Cox proportional hazards regression 
model is the most popular method of analyzing survival 
data. LASSO is a popular regression method and suitable 
for analyzing gene expression profile because microarray 
data has higher dimensionality, smaller sample size and 
strongly relevant variables [54]. Previous studies have 
applied it to Cox proportional hazards regression model 
broadly [52, 55]. We constructed LASSO COX regression 
model by utilizing several DEGs which expressed 
abnormally in PDAC and were related to prognosis. The 
function glmnet in package glmnet returned a sequence of 
lambdas (λs) and models for us. The value of the tuning 

parameter λ was negatively related to the complexity 
of the model and the value of deviance. As shown in 
Figure 3A, When the value of the invisible λ increased 
from left to right, the number of nonzero coefficients 
increased accordingly, and L1 Norm, the summation of 
absolute nonzero coefficients would become bigger. By 
using the function cv.glmnet in package glmnet, 10-fold 
cross-validation was conducted for us to choose the best 
model. Even though it was so strict, the results of cv.glmnet 
were slightly variable. We run the function cv.glmnet 100 
times follow the glmnet reference manual’s advice and 
averaged cross-validation error curves. The lambda.min 
with minimum mean cross validation error was chosen 
by 10-fold cross-validation via minimum criteria. Then 
we run the function glmnet or cv.glmnet once more with 
the lambda.min and extracted variables with nonzero 
coefficients and their corresponding coefficients. R codes 
and the input file for LASSO COX regression model were 
offered in Supplementary Tables 7–8.

Statistical analysis and graphics

All statistical analysis and graphics were performed 
in R software (R version 3.3.2). Time-dependent ROC 
curves were designed to compute the optimal cutoff 
value, sensitivity and specificity by using the package 
survival ROC. Kaplan-Meier survival curves were drawn 
to analyze the relationship between variables and RFS in 
the survival package. We used Pearson chi-squared test, 
corrected chi-squared test or Fisher’s exact test to examine 
the association of clinical characteristics with mRNAs. 
COX univariable analysis, multivariable analysis and 
stratified analysis were also performed in the package 
survival. 
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