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ABSTRACT
Background: Temporal and local fluctuations in O2 in tumors require adaptive 

mechanisms to support cancer cell survival and proliferation. The transcriptome 
associated with cycling hypoxia (CycHyp) could thus represent a prognostic biomarker 
of cancer progression. 

Methods: We exposed 20 tumor cell lines to repeated periods of hypoxia/
reoxygenation to determine a transcriptomic CycHyp signature and used clinical data 
sets from 2,150 breast cancer patients to estimate a prognostic Cox proportional 
hazard model to assess its prognostic performance. 

Results: The CycHyp prognostic potential was validated in patients independently 
of the receptor status of the tumors. The discriminating capacity of the CycHyp 
signature was further increased in the ER+ HER2- patient populations including 
those with a node negative status under treatment (HR=3.16) or not (HR=5.54). 
The CycHyp prognostic signature outperformed a signature derived from continuous 
hypoxia and major prognostic metagenes (P<0.001). The CycHyp signature could 
also identify ER+HER2 node-negative breast cancer patients at high risk based on 
clinicopathologic criteria but who could have been spared from chemotherapy and 
inversely those patients classified at low risk based but who presented a negative 
outcome. 

Conclusions: The CycHyp signature is prognostic of breast cancer and offers a 
unique decision making tool to complement anatomopathologic evaluation. 

INTRODUCTION

Hypoxia is nowadays described as a hallmark 
of tumors [1, 2]. Tumor angiogenesis and glycolytic 
metabolism are two extensively studied responses of 
cancer cells to a deficit in oxygen [1]. The building 
of new blood vessels to bring O2 and the respiration-
independent metabolism to survive under low O2 are 
actually complementary responses of tumors to hypoxia 
[1, 2]. These somehow opposite modes of adaptation 
account for local and temporal heterogeneities in tumor O2 
distribution. The terms ‘intermittent hypoxia’ or ‘cycling 

hypoxia’ were settled to describe this phenomenon of 
fluctuating hypoxia in tumors [3, 4]. As a corollary, the 
extent of cycling hypoxia reflects tumor plasticity and 
thus measures the capacity of tumor cells to survive and 
proliferate in a hostile environment [3]. 

Although we and others have contributed to 
demonstrate the existence of cycles of hypoxia and/or 
ischemia in mouse, canine and human tumors [see [5, 
6] for review], technologies aiming to routinely measure 
tumor O2 fluctuations in the clinics are not (yet) available 
despite important progresses in the in vivo imaging of 
hypoxia [7-11]. In the absence of readily accessible 



Oncotarget6948www.impactjournals.com/oncotarget

Table 1: Gene list of the CycHyp signature
Probe Entrez ID GenBank Symbol Gene Title

1 8018860 332 NM_001168 BIRC5 baculoviral IAP repeat containing 5
2 8064156 84619 NM_032527 ZGPAT * zinc finger, CCCH-type with G patch domain

3 8138912 23658 NM_012322 LSM5§ LSM5 homolog, U6 small nuclear RNA 
associated (S. cerevisiae)

4 7921786 5202 NM_012394 PFDN2 prefoldin subunit 2
5 8165011 2219 NM_002003 FCN1 ficolin (collagen/fibrinogen domain containing) 1

6 7964262 4666 NM_001113201 NACA* nascent polypeptide-associated complex alpha 
subunit

7 7949792 5790 NM_005608 PTPRCAP # protein tyrosine phosphatase, receptor type, 
C-associated protein

8 8034101 11018 NM_006858 TMED1 transmembrane emp24 protein transport domain 
containing 1

9 8168087 3476 NM_001551 IGBP1 immunoglobulin (CD79A) binding protein 1
10 7963575 1975 NM_001417 EIF4B§ eukaryotic translation initiation factor 4B
11 8124397 3006 NM_005319 HIST1H1C # histone cluster 1, H1c
12 7975989 81892 NM_031210 SLIRP§ SRA stem-loop interacting RNA binding protein
13 8127692 3351 NM_000863 HTR1B 5-hydroxytryptamine (serotonin) receptor 1B
14 8127087 2940 NM_000847 GSTA3 glutathione S-transferase alpha 3
15 7941122 29901 NM_013299 SAC3D1 SAC3 domain containing 1
16 7998692 4913 NM_002528 NTHL1 nth endonuclease III-like 1 (E. coli)
17 8073623 758 NM_001044370 MPPED1 metallophosphoesterase domain containing 1
18 8014865 4761 NM_006160 NEUROD2 * neurogenic differentiation 2

19 8005726 3768 NM_021012 KCNJ12 potassium inwardly-rectifying channel, subfamily 
J, member 12

20 7966631 64211 NM_022363 LHX5 * LIM homeobox 5
21 8037853 54958 NM_017854 TMEM160 transmembrane protein 160
22 8104136 3166 NM_018942 HMX1* H6 family homeobox 1
23 7948606 746 NM_014206 C11orf10 # chromosome 11 open reading frame 10
24 8044773 8685 NM_006770 MARCO macrophage receptor with collagenous structure
25 7947015 7251 NM_006292 TSG101 tumor susceptibility gene 101

26 7931553 8433 NM_003577 UTF1 * undifferentiated embryonic cell transcription 
factor 1

27 7956876 84298 NM_032338 LLPH LLP homolog, long-term synaptic facilitation 
(Aplysia)

28 8117372 8334 NM_003512 HIST1H2AC# histone cluster 1, H2ac
29 8001329 869 NM_004352 CBLN1 cerebellin 1 precursor

30 8027205 51079 NM_015965 NDUFA13 NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 13

31 8042896 3196 NM_016170 TLX2  * T-cell leukemia homeobox 2
32 7911532 54998 NM_017900 AURKAIP1 aurora kinase A interacting protein 1
33 8039923 54998 NM_017900 AURKAIP1 aurora kinase A interacting protein 1
34 7992043 65990 BC001181 FAM173A family with sequence similarity 173, member A
35 8063074 90204 NM_080603 ZSWIM1  * zinc finger, SWIM-type containing 1
36 7992191 23430 NM_012217 TPSD1 tryptase delta 1
37 8108435 7322 NM_181838 UBE2D2 ubiquitin-conjugating enzyme E2D 2
38 8165309 8721 NM_003792 EDF1  * endothelial differentiation-related factor 1
39 7946267 63875 NM_022061 MRPL17 mitochondrial ribosomal protein L17
40 7945536 51286 NM_016564 CEND1 cell cycle exit and neuronal differentiation 1
41 8159609 8636 NM_003731 SSNA1 # Sjogren syndrome nuclear autoantigen 1
42 8005471 6234 NM_001031 RPS28 #,§ ribosomal protein S28
43 8025395 6234 NM_001031 RPS28 ribosomal protein S28
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44 7942824 6234 NM_001031 RPS28 ribosomal protein S28
45 8170753 26576 NM_014370 SRPK3 SRSF protein kinase 3
46 8032718 1613 NM_001348
47 7967067 8655 NM_001037495
48 8159654 25920 NM_015456 COBRA1  * cofactor of BRCA1

49 8011212 6391 NM_003001 SDHC succinate dehydrogenase complex, subunit C, 
integral membrane protein, 15kDa

50 8011968 51003 NM_016060 MED31  * mediator complex subunit 31
51 7977440 9834 NR_026800 KIAA0125 KIAA0125

52 8016508 11267 NM_007241 SNF8 * SNF8, ESCRT-II complex subunit, homolog (S. 
cerevisiae)

53 8168567 5456 NM_000307 POU3F4  * POU class 3 homeobox 4
54 8086317 64689 NM_031899 GORASP1 golgi reassembly stacking protein 1, 65kDa
55 8052834 54980 BC005079 C2orf42 chromosome 2 open reading frame 42
56 8073334 9978 NM_014248 RBX1 # ring-box 1, E3 ubiquitin protein ligase
57 7915846 8569 NM_003684 MKNK1 MAP kinase interacting serine/threonine kinase 1

58 8071920 6634 NM_004175 SNRPD3 § small nuclear ribonucleoprotein D3 polypeptide 
18kDa

59 8032371 81926 NM_031213 FAM108A1 family with sequence similarity 108, member A1
60 7924884 8290 NM_003493 HIST3H3 histone cluster 3, H3
61 8006845 6143 NM_000981 RPL19 § ribosomal protein L19
62 7946812 6207 NM_001017 RPS13 #,§ ribosomal protein S13
63 7949015 65998 NM_001144936 C11orf95  * chromosome 11 open reading frame 95
64 8009784 51081 NM_015971 MRPS7 § mitochondrial ribosomal protein S7

65 8174509 2787 NM_005274 GNG5 guanine nucleotide binding protein (G protein), 
gamma 5

66 7906235 5546 NM_005973 PRCC § papillary renal cell carcinoma (translocation-
associated)

67 8020179 57132 NM_020412 CHMP1B chromatin modifying protein 1B

68 7947450 4005 NM_005574 LMO2 LIM domain only 2 (rhombotin-like 1)

69 8064370 6939 NM_004609 TCF15  * transcription factor 15 (basic helix-loop-helix)
70 7955896 22818 NM_016057 COPZ1 coatomer protein complex, subunit zeta 1
71 8137805 8379 NM_003550 MAD1L1 # MAD1 mitotic arrest deficient-like 1 (yeast)
72 8117334 8359 NM_003538 HIST1H4A # histone cluster 1, H4a
73 8117368 8364 NM_003542 HIST1H4C # histone cluster 1, H4c

74 7977507 85495 NR_002312 RPPH1§ ribonuclease P RNA component H1

75 7949410 378938 BC018448 MALAT1 metastasis associated lung adenocarcinoma 
transcript 1 (non-protein coding)

76 8150433 157848 NM_152568 NKX6-3  * NK6 homeobox 3

77 8071168 29797 NR_024583 POM121L8P POM121 membrane glycoprotein-like 8 
pseudogene

78 7989611 84191 NM_032231 FAM96A family with sequence similarity 96, member A
79 7980859  NM_001080113

80 8032782 126259 NM_144615 TMIGD2 transmembrane and immunoglobulin domain 
containing 2

81 8110861 64979 NM_032479 MRPL36 § mitochondrial ribosomal protein L36
82 7901687 199964 NM_182532 TMEM61 transmembrane protein 61

83 7916130 112970 NM_138417 KTI12 KTI12 homolog, chromatin associated (S. 
cerevisiae)

84 8048712 440934 BC033986 LOC440934 hypothetical LOC440934
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85 8018993 146713 NM_001082575 RBFOX3 § RNA binding protein, fox-1 homolog (C. elegans) 
3

86 8032601 84839 NM_032753 RAX2 retina and anterior neural fold homeobox 2
87 8010719 201255 NM_144999 LRRC45 leucine rich repeat containing 45
88 8036584 3963 NM_002307 LGALS7 lectin, galactoside-binding, soluble, 7

89 8133209 441251 NR_003666 SPDYE7P speedy homolog E7 (Xenopus laevis), 
pseudogene

90 8159501 286256 NM_178536 LCN12 lipocalin 12
91 8028546 3963 NM_002307 LGALS7 lectin, galactoside-binding, soluble, 7
92 8065013  ENST00000427835
93 8018502 201292 NM_173547 TRIM65  * tripartite motif containing 65
94 7903294 64645 NM_033055 HIAT1 hippocampus abundant transcript 1
95 7989473 388125 NM_001007595 C2CD4B C2 calcium-dependent domain containing 4B
96 8054449 644903 AK095987 FLJ38668 hypothetical LOC644903

97 8081867 51300 NM_016589 TIMMDC1 translocase of inner mitochondrial membrane 
domain containing 1

98 7934544 118881 NM_144589 COMTD1 catechol-O-methyltransferase domain containing 
1

99 7968260 219409 NM_145657 GSX1  * GS homeobox 1
100 8022952 56853 NM_020180 CELF4 § CUGBP, Elav-like family member 4

# common to the ContHyp signature; * regulators of transcription; § involved in RNA processing

 Table 2: Gene list of the ContHyp signature
Probe Entrez ID GenBank Symbol Gene Title

1 7948606 746 NM_014206 C11orf10 chromosome 11 open reading frame 10
2 8043283 55818 NM_018433 KDM3A lysine (K)-specific demethylase 3A
3 8025395 6234 NM_001031 RPS28 ribosomal protein S28
4 8139706 23480 NM_014302 SEC61G Sec61 gamma subunit
5 7942824 6234 NM_001031 RPS28 ribosomal protein S28
6 8005471 6234 NM_001031 RPS28 ribosomal protein S28

7 8048489 55139 NM_018089 ANKZF1 ankyrin repeat and zinc finger domain containing 
1

8 7994737 226 NM_000034 ALDOA aldolase A, fructose-bisphosphate
9 7934278 5033 NM_000917 P4HA1 prolyl 4-hydroxylase, alpha polypeptide I
10 8102518 401152 NM_001170330 C4orf3 chromosome 4 open reading frame 3
11 8117334 8359 NM_003538 HIST1H4A histone cluster 1, H4a
12 8074969 1652 NM_001355 DDT D-dopachrome tautomerase
13 8044766 51141 NM_016133 INSIG2 insulin induced gene 2
14 7937476 6181 NM_001004 RPLP2 ribosomal protein, large, P2

15 8086961 5210 NM_004567 PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 4

16 8145454 665 NM_004331 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 
3-like

17 8113981 8974 NM_004199 P4HA2 prolyl 4-hydroxylase, alpha polypeptide II

18 8162142 81689 NM_030940 ISCA1 iron-sulfur cluster assembly 1 homolog (S. 
cerevisiae)

19 8007992 3837 NM_002265 KPNB1 karyopherin (importin) beta 1
20 7928308 54541 NM_019058 DDIT4 DNA-damage-inducible transcript 4
21 8073334 9978 NM_014248 RBX1 ring-box 1, E3 ubiquitin protein ligase
22 8124397 3006 NM_005319 HIST1H1C histone cluster 1, H1c
23 8153459 65263 NM_023078 PYCRL pyrroline-5-carboxylate reductase-like
24 7916568  AF263547
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25 7955117 23519 NM_012404 ANP32D acidic (leucine-rich) nuclear phosphoprotein 32 
family, member D

26 8098604 353322 NM_181726 ANKRD37 ankyrin repeat domain 37
27 8121076 10957 NM_006813 PNRC1 proline-rich nuclear receptor coactivator 1
28 7921076 54865 NM_182679 GPATCH4 G patch domain containing 4

29 7908879 8497 NM_015053 PPFIA4
protein tyrosine phosphatase, receptor type, f 
polypeptide (PTPRF), interacting protein (liprin), 
alpha 4

30 8103518 23520 NM_012403 ANP32C acidic (leucine-rich) nuclear phosphoprotein 32 
family, member C

31 8050591 91942 NM_174889 NDUFAF2 NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, assembly factor 2

32 8172154 6187 NM_002952 RPS2 ribosomal protein S2
33 7984846 1198 NM_001130028 CLK3 CDC-like kinase 3
34 7946812 6207 NM_001017 RPS13 ribosomal protein S13

35 7982531 8125 NM_006305 ANP32A acidic (leucine-rich) nuclear phosphoprotein 32 
family, member A

36 8119898 7422 NM_001025366 VEGFA vascular endothelial growth factor A

37 8004331 9744 NM_014716 ACAP1 ArfGAP with coiled-coil, ankyrin repeat and PH 
domains 1

38 8159441 29085 NM_001135861 PHPT1 phosphohistidine phosphatase 1
39 8168500 5230 NM_000291 PGK1 phosphoglycerate kinase 1
40 7938890 10196 NM_005788 PRMT3 protein arginine methyltransferase 3
41 7930398 4601 NM_005962 MXI1 MAX interactor 1

42 7997740 81631 NM_022818 MAP1LC3B microtubule-associated protein 1 light chain 3 
beta

43 8004360 147040 NM_001002914 KCTD11 potassium channel tetramerisation domain 
containing 11

44 7909782 51018 NM_016052 RRP15 ribosomal RNA processing 15 homolog (S. 
cerevisiae)

45 7949792 5790 NM_005608 PTPRCAP protein tyrosine phosphatase, receptor type, 
C-associated protein

46 8124385 8366 NM_003544 HIST1H4B histone cluster 1, H4b
47 8117368 8364 NM_003542 HIST1H4C histone cluster 1, H4c
48 8081241 84319 NM_032359 C3orf26 chromosome 3 open reading frame 26
49 8050079 246243 NM_002936 RNASEH1 ribonuclease H1
50 8005765 26118 NM_015626 WSB1 WD repeat and SOCS box containing 1
51 7924491 64853 NM_022831 AIDA axin interactor, dorsalization associated
52 8133273  ENST00000455206
53 8124391 8335 NM_003513 HIST1H2AB histone cluster 1, H2ab
54 8159609 8636 NM_003731 SSNA1 Sjogren syndrome nuclear autoantigen 1

55 7957890 27340 NM_014503 UTP20 UTP20, small subunit (SSU) processome 
component, homolog (yeast)

56 7933582 100287932 NM_006327 TIMM23 translocase of inner mitochondrial membrane 23 
homolog (yeast)

57 8153002 10397 NM_001135242 NDRG1 N-myc downstream regulated 1

58 7926037 5209 NM_004566 PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3

59 8082066 26355 NM_014367 FAM162A family with sequence similarity 162, member A
60 8042962 9801 NM_014763 MRPL19 mitochondrial ribosomal protein L19
61 8090678 11222 NM_007208 MRPL3 mitochondrial ribosomal protein L3
62 7977507 85495 NR_002312 RPPH1 ribonuclease P RNA component H1

63 8007397 10197 NM_176863 PSME3 proteasome (prosome, macropain) activator 
subunit 3 (PA28 gamma/ Ki)

64 7998902 54985 NM_017885 HCFC1R1 host cell factor C1 regulator 1 (XPO1 dependent)
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65 8117372 8334 NM_003512 HIST1H2AC histone cluster 1, H2ac

66 7997230 5713 NM_002811 PSMD7 proteasome (prosome, macropain) 26S subunit, 
non-ATPase, 7

67 7915485 10969 NM_006824 EBNA1BP2 EBNA1 binding protein 2
68 8113873 3094 NM_005340 HINT1 histidine triad nucleotide binding protein 1
69 7958152 5223 NM_002629 PGAM1 phosphoglycerate mutase 1 (brain)

70 7947867 5702 NM_002804 PSMC3 proteasome (prosome, macropain) 26S subunit, 
ATPase, 3

71 7964460 1649 NM_004083 DDIT3 DNA-damage-inducible transcript 3

72 7928395 170384 NM_173540 FUT11 fucosyltransferase 11 (alpha (1,3) 
fucosyltransferase)

73 8163629 944 NM_001244 TNFSF8 tumor necrosis factor (ligand) superfamily, 
member 8

74 7965486 51134 NM_016122 CCDC41 coiled-coil domain containing 41
75 8136179 23008 AF277175 KLHDC10 kelch domain containing 10
76 8095870 901 NM_004354 CCNG2 cyclin G2
77 8127526 6170 NM_001000 RPL39 ribosomal protein L39
78 8174710 6170 NM_001000 RPL39 ribosomal protein L39
79 8137517 3361 NM_024012 HTR5A 5-hydroxytryptamine (serotonin) receptor 5A
80 7929624 5223 NM_002629 PGAM1 phosphoglycerate mutase 1 (brain)
81 8052331 87178 NM_033109 PNPT1 polyribonucleotide nucleotidyltransferase 1

82 8015969 7343 NM_014233 UBTF upstream binding transcription factor, RNA 
polymerase I

83 8069168 386685 NM_198699 KRTAP10-12 keratin associated protein 10-12

84 7941087 5526 NM_006244 PPP2R5B protein phosphatase 2, regulatory subunit B', beta
85 8026875 26780 NR_000012 SNORA68 small nucleolar RNA, H/ACA box 68
86 8027621 2821 NM_000175 GPI glucose-6-phosphate isomerase
87 8130539 117289 NM_054114 TAGAP T-cell activation RhoGTPase activating protein
88 8004691 92162 NM_203411 TMEM88 transmembrane protein 88

89 7962183 205 NM_001005353 AK4 adenylate kinase 4

90 8137805 8379 NM_003550 MAD1L1 MAD1 mitotic arrest deficient-like 1 (yeast)

91 8124388 8358 NM_003537 HIST1H3B histone cluster 1, H3b
92 8083223 205428 NM_173552 C3orf58 chromosome 3 open reading frame 58

93 8113305 1105 NM_001270 CHD1 chromodomain helicase DNA binding protein 1

94 8169659 4694 NM_004541 NDUFA1 NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 1, 7.5kDa

95 8046408 5163 NM_002610 PDK1 pyruvate dehydrogenase kinase, isozyme 1

96 8053599 23559 NM_012477 WBP1 WW domain binding protein 1

97 8043377 23559 NM_012477 WBP1 WW domain binding protein 1
98 7960878 642559 GU480887 POU5F1P3 POU class 5 homeobox 1 pseudogene 3

99 7959023 643246 NM_001085481 MAP1LC3B2 microtubule-associated protein 1 light chain 3 
beta 2

100 8073148 468 NM_001675 ATF4 activating transcription factor 4 (tax-responsive 
enhancer element B67)
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monitoring strategies, the analysis of the transcriptome 
associated with this phenomenon could represent a 
prognostic biomarker of cancer progression. Indeed, 
although mutations and defects in tumor suppressor genes 
directly influence the whole genetic profile of a given 
tumor cell clone, cycling hypoxia could be envisioned 
as a supra-oncogenic phenomenon influencing gene 
expression [3]. In other words, independently of the 
genetic background of tumor cells, cycling hypoxia has the 
potential to lead to common alterations in the expression 
of some transcripts, and thus to a possible clinically 
exploitable signature.

Clinical data sets derived from breast cancer 
patients could be used to evaluate the performance of 
such cycling hypoxia-related gene signature. The clinical 
and genetic heterogeneities of this disease and the very 

large panel of data sets available represent indeed good 
opportunities to evaluate new prognostic gene expression 
signatures [12]. Whole genome analysis already provided 
several molecular classifications for breast cancer beyond 
standard clinicopathologic variables [12-21]. The latter 
include tumor size, presence of lymph node metastasis 
and histological grades [22] but also encompass three 
predictive markers of response, namely expression of 
oestrogen (ER), progesterone (PR) and HER2 receptors 
[12]. Treatment guidelines are nowadays still largely based 
on algorithms integrating these informations such as the 
Notthingham Prognostic Index [22, 23] or Adjuvant! 
Online [24]. Accordingly, for early-stage breast cancer, 
adjuvant chemotherapy is recommended for most patients 
with ER-negative or HER2-positive tumors [13, 25-27]. 
The challenge actually resides in selecting patients with 

Table 3: Breast Cancer Patient Demographics and Characteristics 
All patients

n = 2150
No              %           

ER+/HER2-

n=1452
No             %

ER+/HER2- 
Node neg.

n=899
No             %

ER+/HER2- 
Node neg.
Untreated
n=590
No              %

Age
≤50 
>50 
NA

649   30 
945 44 
556                26

388 27 
649 45 
415                28

218 24 
367 41 
314                35

190 32 
237 40 
163                28

Tumor size
≤2cm 
>2cm 
NA

742 35 
473 22 
935                 43

537 37 
326 22 
589                41

474 53 
210 23 
215               24

424 72 
158 28 
8                      1

Grade
0-1 
2 
3 
NA

224 10 
605 28 
487 23 
834                39

200 14 
485 33 
206 14 
561                39

148 17 
346 38 
162 18 
243                27

104 18 
270 46 
137 23 
79                   13

Node status
Negative 
Positive

1329 62 
821                 38

899  62 
553                38

899 100 
0                      0

590 100 
0                      0

Estrogen receptor
Negative 
Positive 
NA

443        21 
1607 75 
100                  4

0 0 
1452 100 
0                     0

0 0 
899 100 
0                     0

0 0 
590 100 
0                      0

HER2 status
Negative 
Positive

1835 85 
315                 15

1452 100 
0                     0

899 100 
0                     0

590 100 
0                      0

Treatment
None 
Chemotherapy 
Hormonotherapy

901 42 
691 32 
558                 26

590 41 
410 28 
452                31

590 66 
73 8 
236                26

590 100 
0 0 
0                       0

Data obtained from GSE11121 (n=200), GSE17705 (n=298), GSE2034/5327 (n=344), GSE20685 
(n=327), GSE21653 (n=253), GSE2990 (n=138), GSE3494 (n=178), GSE6532 (n=214), and 
GSE7390 (n=198). NA = Not Available.
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ER-positive HER2-negative disease who could benefit 
from chemotherapy. 

In this study, we derived a transcriptomic signature 
of cycling hypoxia (CycHyp) using 20 cell lines derived 
from various human tumors and characterized by a large 
variety of distinct genetic anomalies. We then validated 
the capacity of the CycHyp signature to optimize patient 
stratification. In particular, we showed how the CycHyp 
signature could identify ER-positive node-negative breast 
cancer patients at high risk based on conventional NPI 
(and who could have been spared from chemotherapy) 
and inversely those patients classified at low risk but who 
could have drawn benefits of chemotherapy.

RESULTS

Identification of the CycHyp signature

Tumor cells covering a large diversity of tissues 
(Suppl. Table 1) were submitted to cycling hypoxia 
(CycHyp) for 24 hours, maintained under normoxic 
conditions or exposed to continuous hypoxia (ContHyp) 
for the same period of time (Figure 1A). Corresponding 
mRNA samples were analysed by hybridization using 
Human Gene 1.0 ST Affymetrix microarrays. Gene 
expression profiles of each cell type under normoxia vs. 
cycling hypoxia (CycHyp) were produced to identify the 
most differentially expressed probesets. The CycHyp 
signature was determined as the top 100 probesets with 
the lowest FDR-corrected p-values averaged over 200 
resamplings (Table 1); a ContHyp signature was also 
determined in parallel (Table 2). The heatmaps made with 
the 100 probe sets of the CycHyp signature confirmed 
its excellent potential of discrimination between cycling 
hypoxia and either normoxia (Figure 1B) or continuous 
hypoxia (Figure 1C). Moreover, Gene Set Enrichment 
Analysis (GSEA) [28] indicated that when considering 
differentially expressed probesets (after FDR correction), 
only 2 gene sets were significantly enriched in the CycHyp 
signature (Suppl. Table 2) whereas we identified 52 gene 
sets enriched in the ContHyp signature, including 17 
directly related to hypoxia (Suppl. Table 3). Also, when 
using the MSigDB molecular signature database referring 
to hypoxia or HIF (www.broadinstitute.org), we found 13 
hypoxia gene sets sharing, on average, only 1.4 gene with 
CycHyp (Suppl. Table 4) whereas 44 hypoxia gene sets 
showed overlap with ContHyp with an average of 6.6 (1-
27) common genes (Suppl. Table 5). We also compared the 
CycHyp signature to 13 other hypoxia-derived signatures 
described by Seigneuric et al. [29] and Starmans et al. 
[30]. The CycHyp signature was again far from those 
signatures with an average of only 1 gene in common. The 
overlap was larger between ContHyp and those signatures 
with an average of 6 genes in common (Suppl. Table 

6). Finally, using TFactS [31] to analyse transcription 
factors regulating expression of genes associated to either 
signature, HIF-1α was only found as positively associated 
with the ContHyp signature. 

The CycHyp signature predicts clinical outcome 
in breast cancer patients

To evaluate the prognostic value of the CycHyp 
signature, we focused on breast cancer because of the 
very large amounts of well-annotated clinical data sets 
available and a clearly identified need to discriminate 
between patients at low and high risks among subgroups 
determined on the basis of clinicopathologic criteria [12, 
13]. Publicly available GEO data sets allowed us to collect 
information on the survival of 2,150 patients with primary 
breast cancer (see clinical features in Table 3). 

In order to exploit these data sets, we first transferred 
the Gene 1.0ST datasets in the HU133 platform. We then 
used the VDX dataset (GSE2034 and GSE5327) as a 
reference because of its large number of node negative 
untreated patients [17]. This training dataset was used 
to estimate a prognostic multivariate Cox proportional 
hazard model built on the CycHyp signature (see Methods 
for details). The other eight datasets (see references 
in Table 3) were used according to the methodology 
described by Haibe-Kains and colleagues [32], to assess 
the prognostic performance of the CycHyp signature 
on independent samples. We first chose to evaluate our 
signature independently of the clinicopathological data. 
The prognostic potential of the CycHyp signature to 
discriminate between patients at low or high risk was 
confirmed with a HR=2.39 and a p-value = 1.13e-18 
whathever the treatment and the tumor histology (Figure 
2A). We then focused on the ER+ HER2- population 
which is known to be heterogeneous and thus difficult to 
treat [12, 13]. The discriminating capacity of the CycHyp 
signature remained strikingly high in the ER+ HER2- 
patient populations (HR = 2.47, p-value = 3.88e-13, 
Figure 2B). Finally, among this subpopulation of patients, 
we considered those with a node negative status (Figure 
2C) and among the latter, those who did not receive any 
treatment (Figure 2D). Hazard ratios rose to 3.16 and 
5.54 in these conditions (p-values = 2.85e-9 and 6.44e-
10, respectively), further supporting the discriminating 
potential of the CycHyp signature. In particular, the 
data presented in Figure 2D allowed to exclude any 
confounding influence of the potential benefit arising 
from the treatment administered to these patients and thus 
clearly identified a population of patients who remained 
inadequately untreated. 

Using the same methodology, we examined 
the prognostic capacity of the ContHyp signature 
(discriminating between normoxia and continuous 
hypoxia). The performance of the ContHyp signature 
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Figure 1: The CycHyp and ContHyp signatures. (A.) Flowchart of the signature determination from tumor cells exposed either 
to normoxia, cycling or continuous hypoxia. (B.) Heatmap depicting the transcripts from the CycHyp signature either underexpressed 
(green) or overexpressed (red) (centered to median values). Each column corresponds to a specific human Gene 1.0 ST probeset ; each 
line represents a specific cell line either maintained under normoxia (black label) or exposed to cycling hypoxia (red label); cells under 
normoxia and cycling hypoxia are perfectly separated in two distinct clusters, except for one cycling hypoxia sample in the normoxia 
cluster. (C.) Similarly, a heatmap depicting the relative expression of transcripts from the CycHyp signature in the cell lines maintained 
under continuous hypoxia (blue) or cycling hypoxia (red); only two cycling hypoxia samples are grouped with the continuous hypoxia 
samples.
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was satisfactory on the ER+ HER2- untreated population 
(HR = 2.58, p-value = 1.46e-4, see Supplementary Fig. 1) 
but was significantly lower (p-value = 3.61e-8) than the 
CycHyp signature.

The CycHyp signature provides significant 
additional prognostic information to available 
multigene assays

To evaluate the performance of the CycHyp 
signature, we compared it with other well-established 
prognostic multigene assays for breast cancer, namely 
Gene70 or Mammaprint [14], Gene76 [17] and Oncotype 
Dx [15]. Using the same set of ER+ HER2- node negative 
patients as used in Figure 2D, we could determine the 
low vs. high risk patient stratification according to these 
signatures. The superior prognostic potential of the 
CycHyp signature could be captured from the Kaplan 
Meier curves obtained with the Gene 70, Gene76 and 
Oncotype DX signatures (compare Figure 3A with Figure 
2D). Hazard ratios confirmed the net advantage of the 
CycHyp signature with a significantly higher value than 
the three other metagenes (Figure 3B). The concordance 
index, which is the probability of a high risk patient to 

relapse before a low risk patient, was also higher with 
the CycHyp signature (Figure 3B). Finally, the Balanced 
Classification Rate (BCR), which represents the average 
between sensitivity and specificity to discriminate 
between patients with progressing disease vs. disease-
free at 5 years, was significantly higher for the CycHyp 
signature than the three other multigene assays (Figure 
3B). The sensitivity of the CycHyp was above 80% and 
the specificity of the CycHyp signature was well above 
the level of the others (Figure 3B). Of note, the metrics 
corresponding to each data set taken separately is depicted 
in Suppl. Figure 2. 

Importantly, to further validate the prognostic 
significance of the CycHyp signature, a comparison 
with random gene signatures was performed according 
to the methodology described by Venet et al. [33] and 
Beck et al. [34]. Figure 3C shows the distribution of 
the p-values (logrank test in log 10) for 1000 randomly 
generated signatures together with the p-values of the 
CycHyp and ContHyp signatures. The logrank test (or 
Mantel-Haenszel test) [35] is commonly used to assess 
whether there is a significant survival difference between 
risk groups. The discrimination between risk groups was 
significantly higher (P < 0.001) with the CycHyp signature 
as compared to each of the random signatures whereas 

Figure 2: Kaplan-Meier survival curves of patients with primary breast cancer, as determined by using the CycHyp 
signature. (A) All patients. (B.) ER+/HER2- patients, (C.) node-negative ER+/HER2-, (D.) node-negative, untreated ER+/HER2- patients 
(DFS Mantel-Cox comparison); hazard ratio (HR), balanced classification rate (BCR) and concordance index (C-index) for the prediction 
in high risk vs. low risk groups are reported; HRs are presented with their associated p-values.
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the ContHyp signature was not significantly better (vs. 
random ones; P=0.141). The same analysis was carried 
out for the three other metrics (HR, CI and BCR) to assess 
the discrimination capability between risk groups and 
confirmed the significantly higher value of the CycHyp 
signature (vs. random signatures) (Suppl. Figure 3).

The CycHyp signature in association with NPI 
offers a powerful prognostic tool

We then aimed to determine whether the CycHyp 
signature could improve the Nottingham Prognostic 

Index (NPI) for better predicting the survival of operable 
breast cancers. The NPI algorithm combines nodal status, 
tumour size and histological grade and allows to model 
a continuum of clinical aggressiveness with 3 subsets of 
patients divided into good, moderate, and poor prognostic 
groups with 15-year survival [22, 23, 36]. Since few 
patients were assigned a poor index, we merged here 
the moderate and poor indices into a high risk group to 
facilitate the comparison with the CycHyp signature. 
We found that by integrating the CycHyp signature, an 
important proportion of patients could be reclassified to 
another risk group (Figure 4). 44.1% of patients classified 
at high risk using the NPI algorithm were identified at low 

Figure 3: Comparison of the prognostic potential of the CycHyp signature vs. Gene 70 (Mammaprint), Gene 76 and 
Oncotype Dx signatures. (A) Kaplan-Meier survival curves of node-negative, untreated ER+/HER2- patients, as determined by using the 
indicated signature (DFS Mantel-Cox comparison); hazard ratio (HR), balanced classification rate (BCR) and C-index for the prediction 
in high risk vs. low risk groups are reported; HR are presented with their associated p-values. (B.) Forest plots of the hazard ratio (HR), 
Concordance index (CI), balance classification rate (BCR), sensitivity and specificity for the prediction in high risk vs. low risk groups; 
p-values refer to the comparisons of CycHyp vs. Gene 70 (Mammaprint), Gene 76 and Oncotype Dx. (C.) Graph represents the power of 
discrimination in high vs. low risk groups (expressed as the logarithm of the p-values of the logrank) of the ContHyp and CycHyp signatures 
(see red dots) versus 1,000 randomly generated signatures (yellow shapes depicting their distribution).
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risk when using the CycHyp signature and were confirmed 
to be “false positive” since they actually exhibited a profile 
of survival closer to the low risk NPI patient (Figure 4A). 
Inversely, using the CycHyp signature, we also identified 
in the patients at low risk based on the NPI criteria, 
33.1% of patients with a risk profile closer to the patients 
with a negative outcome (Figure 4B). This increased 
discriminating potential remained highly relevant when 
considering all patients or patients with a ER+ HER2- 
status (and among the latter, those with a node negative 
status or the untreated ones) (see Suppl. Figure 4). 

DISCUSSION

This study demonstrates that a gene signature 
derived from the transcriptomic adaptation of tumor cells 
to cycling hypoxia is prognostic of breast cancer. The 
CycHyp signature that we have identified and validated 
in this study has not only prognostic value independently 
of molecular risk factors but also provides significant 
additional prognostic information to clinicopathologic 
criteria. Clinical outcome of breast cancer patients is 
nowadays largely based on histological grade and the 
status of ER, PR, and HER2 receptors [12, 13, 22]. In 
early breast cancer, a lack of expression of ER (and PR) 

will almost systematically lead to the administration 
of adjuvant chemotherapy in addition to locoregional 
treatment [12, 25, 26]. Also, for patients with a tumor 
expressing HER2, chemotherapy and/or trastuzumab 
represents the option the most likely to be beneficial 
based on current clinical knowledge [12]. The impact 
of chemotherapy is actually more difficult to anticipate 
for the rest of early-stage breast cancer patients, i.e. 
those diagnosed with a ER-positive and HER2-negative 
disease. These patients represent indeed a wide spectrum 
of different risk profiles: for women with high-risk 
disease, if chemotherapy is appropriate, others will derive 
little benefit from it. Our study therefore represents a 
significant advance for this population of patients, which 
consists of two third of all breast cancers. We have indeed 
demonstrated that the CycHyp signature outperforms the 
existing major prognostic gene expression signatures 
and offers a unique decision making tool to complement 
the discrimination of breast cancer patients based on 
anatomopathologic evaluation. 

More generally, the excellent prognostic value 
of CycHyp confirms the link between cycling hypoxia 
and cancer aggressiveness [4, 5]. This gives credentials 
to the phenotypic adaptation of tumors resulting from 
heterogeneities in blood flow distribution as a trigger of 
cancer progression [3, 4]. Also, with the recent impetus 
in the understanding of tumor metabolism [37, 38], it has 
become obvious that the capacity of a given tumor cell 
to survive in both aerobic and anaerobic environments 
represents a critical advantage [39-41]. Interestingly, our 
study also documents the higher prognostic value of a 
transcriptomic signature derived from cycling hypoxia 
vs. continuous hypoxia. This confirms that although 
hypoxia is a frequent feature of poor-prognosis tumors 
and was reported to drive gene signature associated with 
negative outcome [42-45], prognostic markers integrating 
fluctuations in the hypoxic status of tumors (this study) 
introduce an additional layer of complexity that better fits 
the in vivo situation. 

Whether the CycHyp signature encompasses genes 
that actively drive cancer progression or reflects a context 
of metabolic and hypoxic stress favorable to increased 
mutagenesis and genetic instability [3], warrants further 
studies. A few hints can however be gleaned from the 
comparison of the different signatures.

First, the comparison of the CycHyp and ContHyp 
signatures indicates that the cycling nature of hypoxia 
leads to specific alterations in mRNA expression since 
only 11 common transcripts were found in the two gene 
lists (see symbols # in Table 1). Furthermore, among 
these 11 genes, most encode for proteins involved in 
housekeeping functions such as chromatin packaging 
(HIST1H 1C, 2AC, 4A and 4C) and RNA processing 
(RPS13 and 28). The only gene common to the two 
signatures with a known function related to hypoxia 
is RBX1 or E3 ubiquitin ligase which mediates the 

Figure 4: Kaplan-Meier survival curves of node-
negative, untreated ER+/HER2- patients stratified 
by using the CycHyp signature to detect. (A.) false 
positive patients among those identified at high risk based on 
the NPI nomenclature and (B.) false negative patients among 
those identified at low risk based on the NPI nomenclature (DFS 
Mantel-Cox comparison).
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ubiquitination and subsequent proteasomal degradation 
of target proteins [46], including the misfolded proteins 
known to accumulate under low pO2. Besides the RBX1 
gene, the CycHyp signature does not actually contain 
genes known to be consistently regulated in response 
to chronic hypoxia. By contrast, the ContHyp signature 
contains 14 genes already reported to be overexpressed 
under low pO2 and even directly under the control of the 
transcription factor HIF-1α, including those coding for 
glucose metabolism enzymes (ALDOA, PFKB3, PFKB4, 
PGK1, PGAM1, GPI) and the angiogenic growth factor 
VEGFA. This HIF-dependent gene expression program 
of the ContHyp signature was actually confirmed in the 
GSEA and MSigBD analyses and was consistent with 
previously reported hypoxia-driven gene signatures 
[42, 44, 45]. More generally, these findings position the 
CycHyp signature far from the conventional hypoxia-
derived signatures [29, 30] but instead as a biomarker of 
a distinct tumor biology process involving adaptation to 
fluctuations in the tumor microenvironment. 

Second, a large amount of transcripts of the CycHyp 
signature encode for proteins themselves involved in 
the regulation of transcription. Data mining revealed 
that more than 18 transcripts of the CycHyp signature 
are transcription factors/regulators and 13 others are 
directly involved in RNA processing (see symbols * and 
§ in Table 1, respectively). This represents one third of 
the genes comprising the CycHyp signature and reflects 
a major difference with the ContHyp signature. While 
hypoxia is usually associated with cell cycle arrest and 
mTOR inhibition, cycling hypoxia may be compatible 
with a maintained proliferation potential. This is further 
supported by the suppression of geroconversion (ie, the 
process leading from proliferative arrest to irreversible 
senescence) observed in response to hypoxia [47, 48] that 
offers tumor cells the opportunity to re-enter cell cycle 
when O2 is again available. Further studies are needed 
to compare the evolution of mTOR activity and mTOR-
dependent genes (including those encoding for ribosomal 
proteins) during cycling and continuous hypoxia.

Finally, the in vitro conditions at the origin of the 
establishment of the CycHyp signature may actually 
have specific bearing on its robustness and applicability. 
Indeed, we previously documented that fluctuating oxygen 
levels could also directly impact endothelial cells within 
a tumor [49, 50] indicating that non-tumor cells may also 
contribute to the same transcriptomic adaptation as tumor 
cells, thereby reinforcing the relevance of the CycHyp 
signature. Also, although we have used the CycHyp 
signature as a prognostic biomarker for early-stage breast 
cancer, this signature was identified by integrating the 
information arising from tumor cells of various origins 
and characterized by various oncogenic alterations; the 
prognostic value of the CycHyp signature in other cancers 
is currently under investigation in our laboratory.

Altogether, the above findings indicate that the 

CycHyp signature represents a new generation of 
prognostic biomarker reflecting a generic environmental 
condition in tumors that differs from the conventional 
view of a static, continuous hypoxia occurring in tumors. 
When applied to breast cancer, the CycHyp signature has 
a powerful prognostic value independently of molecular 
risk factors but also offers a unique decision making tool 
to complement the discrimination of patients based on 
anatomopathologic evaluation. The CycHyp signature is 
distinct from conventional hypoxia-related gene signature 
but also from existing prognostic metagenes, and the 
rationale behind its discovery supports a potential broad 
applicability to evaluate cancer patient outcomes. 

MATERIALS AND METHODS.

Tumor cells

Twenty cell lines derived from cancer patients (see 
Suppl. Table 1 for details) were submitted to cycling 
hypoxia (CycHyp), i.e. 24 cycles of 30 min incubation 
under normoxia and 30 min incubation under hypoxic (1% 
O2) conditions to reproduce tumor hypoxic fluctuations, 
as previously reported [5, 51]. We also considered control 
conditions of 24 h continuous exposure of tumor cells to 
either 21% O2 (Normoxia) or 1% O2 (ContHyp). For each 
culture condition, cells were immediately snap-frozen at 
the end of the last incubation period.

Identification of the signatures

mRNA extracts from each tumor cell cultured under 
the three above conditions (normoxia, cycling hypoxia and 
continuous hypoxia) were analysed by hybridization on 
Human Gene 1.0 ST Affymetrix microarrays (GEO access 
number: GSE42416): 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?tok
en=probzowmiyseqxm&acc=GSE42416

The extent of the resulting tumor cell datasets (20 
samples in each of the three conditions) led us to resort 
on a resampling mechanism to increase the robustness 
of the signatures to be identified. For every resampling 
experiment, a subset of 90 % of the samples was chosen 
uniformly at random as a training set and the remaining 
10% were used as validation set. Differentially expressed 
probesets (one probeset = a collection of probes designed 
to interrogate a given sequence) were assessed on each 
subset according to a t-test and the corresponding FDR 
corrected p-values were reported. The 100 probesets 
with the lowest corrected p-values, averaged over 200 
resamplings [52-54], formed the CycHyp (Table 1) 
or ContHyp (Table 2) signatures. All such expression 
differences were highly significant (p<1e-4) after 
Benjamini-Hochberg FDR correction for the multiplicity 
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of the test [55]. Of note, in each resampling, the 10 % data 
not used to select probesets allowed one to estimate the 
discrimination potential between (cycling or continuous) 
hypoxia versus normoxia conditions. The average 
classification accuracy over all resamplings amounted to 
97.5 % for CycHyp and 94.3% for ContHyp. 

The 100 HGU1.0 ST probesets forming the CycHyp 
signature corresponded to 94 unique Entrez GeneID in the 
NCBI database, out of which 69 genes were available on 
the HGU133a platform (i.e., the technology used in most 
clinical studies considered here). Those 69 genes were 
represented by 87 HGU133a probesets. The few datasets 
collected on HGU133plus2 were reduced to the probesets 
also present on HGU133a. 

Patient data sets

All breast cancer expression data were summarized 
with MAS5 and represented in log2 scale (except for 
GSE6532 already summarized with RMA). Breast 
cancer subtypes (ER+/HER2-, ER-/HER2- and HER2+) 
were identified with the genefu R package [56] (see 
Supplementary R Package). Disease-free survival at 5 
years was used as the survival endpoint. The data from 
all patients were censored at 10 years to have comparable 
follow-up times across clinical studies [32].

Prognostic models of the clinical outcome

The VDX dataset (GSE2034 and GSE5327 from 
the GEO database) was considered as a reference because 
of its large number of node-negative untreated patients 
[17]. This dataset formed the training set used to estimate 
a prognostic model of the clinical outcome. A risk score 
for each patient was computed from a penalized Cox 
proportional hazards model [57] implemented in the 
Penalized R package [58]; the parameters of the elastic 
net penalty were learned on the training set by cross-
validation. Prediction into a high risk vs. low risk group 
resulted from a predefined threshold value on this 
risk score. The decision threshold was chosen on the 
training set to maximize the specificity and sensitivity 
of the discrimination between patients with progressing 
disease versus disease-free patients at 5 years. Following 
the methodology described by Haibe-Kains et al. [32], 
all other datasets were used as validations to assess the 
prognostic performances on independent samples, i.e. 
balanced classification rate (BCR), concordance index 
(CI) [59] and hazard ratio (HR) [60]. The survcomp R 
packages were used to test the significance of the HR and 
CI values [33] while a Z-test allowed to infer p-values 
for the BCR relying on an approximation by a normal 
distribution.

Prognostic performances of a penalized Cox model 
defined on the CycHyp signature were also compared 

with well-established prognosis models for breast 
cancer, namely Gene 70 (Mammaprint) [14], Gene 76 
[17] and Oncotype DX [15] signatures. Those existing 
signatures were associated to specific prognostic models 
implemented in the genefu R package [56]. Comparison of 
CycHyp and ContHyp signatures was also carried out with 
random gene signatures of the same sizes, i.e. 87 and 123 
probesets, respectively. One thousand signatures of each 
size were generated and analysed using the methodology 
described by Venet et al. [11]. The objective of those 
experiments was to assess to which extent the CycHyp 
and ContHyp signatures had a better discrimination power 
between risk groups than random signatures. Gene Set 
Enrichment Assay (GSEA) analysis was also performed 
using the molecular signature database (MSigDB) and the 
CycHyp and ContHyp signatures expanded to 2118 and 
2065 differentially expressed genes, respectively (after 
FDR correction and averaged over all resamplings.
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