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ABSTRACT
In the biological field, the identification of the associations between microRNAs 

(miRNAs) and diseases has been paid increasing attention as an extremely meaningful 
study for the clinical medicine. However, it is expensive and time-consuming to 
confirm miRNA-disease associations by experimental methods. Therefore, in recent 
years, several effective computational models for predicting the potential miRNA-
disease associations have been developed. In this paper, we proposed the Spy and 
Super Cluster strategy for MiRNA-Disease Association prediction (SSCMDA) based 
on known miRNA-disease associations, integrated disease similarity and integrated 
miRNA similarity. For problems of mixed unknown miRNA-disease pairs containing 
both potential associations and real negative associations, which will lead to 
inaccurate prediction, spy strategy is adopted by SSCMDA to identify reliable negative 
samples from the unknown miRNA-disease pairs. Moreover, the super-cluster strategy 
could gather as many positive samples as possible to improve the accuracy of the 
prediction by overcoming the shortage of lacking sufficient positive training samples. 
As a result, the AUCs of global leave-one-out cross validation (LOOCV), local LOOCV 
and 5-fold cross validation were 0.9007, 0.8747 and 0.8806+/-0.0025, respectively. 
According to the AUC results, SSCMDA has shown a significant improvement compared 
with some previous models. We further carried out case studies based on various 
version of HMDD database to test the prediction performance robustness of SSCMDA. 
We also implemented case study to examine whether SSCMDA was effective for new 
diseases without any known associated miRNAs. As a result, a large proportion of the 
predicted miRNAs have been verified by experimental reports.

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs which 
are composed of approximately 22 nucleotides [1]. The 
miRNAs can influence some important biological process, 

such as cell development, proliferation, and apoptosis 
[2]. As an important research result, the miRNAs have 
been shown to be responsible for the regulation of 
approximately 60% of the coding genes in mammalian 
[3]. Furthermore, their regulatory functions have also been 
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shown to be related to some special gene expressions in 
the post transcription stage [4]. For example, they can 
inhibit translation or cause miRNA degradation of target 
genes to repress gene expression [5]. The first miRNA 
was found about twenty years ago, after that a large 
amount of miRNAs have been discovered from a wide 
variety of species including human [6, 7]. Furthermore, 
increasing numbers of miRNAs have been experimentally 
shown to be associated with the development processes 
of various human diseases [8, 9]. For example, the study 
of Benjamin et al. has identified differentially expressed 
miRNAs between malignant pleural mesothelioma (MPM) 
and various carcinomas using microarrays. Among them, 
hsa-miR-193-3p was over-expressed in MPM, while 
hsa-miR-200c and hsa-miR-192 were over-expressed 
in peripheral lung adenocarcinoma and carcinomas that 
frequently metastasize to lung pleura [10]. Additionally, in 
the study of William et al. in 2010, they demonstrated the 
critical role of miR-155 in regulation of cell survival and 
chemosensitivity through down-regulation of FOXO3a 
in breast cancer [11]. Moreover, Wang et al. confirmed 
that the concentrations of plasma miR-17-5p/20a were 
significantly associated with the differentiation status 
and TNM stages of gastric cancer, where the TNM is a 
notation system that describes the stage of a cancer which 
originates from a solid tumour with alphanumeric codes 
[12]. Though so many associations between miRNAs and 
diseases have been discovered, the known associations 
are only the tip of the iceberg. As far as we know, a 
large amount of experiments has been implemented 
for discovering their potential associations because the 
identification of miRNA-disease association has great 
significance for the diagnosis and treatment of human 
complex diseases. However, experimental methods are 
expensive and time-consuming. Therefore, increasing 
studies have focused on the computational algorithms to 
predict the probabilities of the potential miRNA-disease 
associations [13–26]. By choosing the most promising 
associated miRNAs, experiment methods could be more 
effective [27, 28]. 

Based on the assumption that functionally similar 
miRNAs are more likely to have relevance to diseases 
with similar phenotypic traits, Jiang et al. [29] proposed 
a hypergeometric distribution-based model which could 
provide the prediction of miRNA-disease associations 
through the disease phenotype similarity network, 
miRNA functional similarity network, and known human 
disease-miRNA association network. However, this 
computational model strongly relies on predicted miRNA-
target interactions which have high rates of false-positive 
and false-negative prediction results. Shi et al. [30] 
introduced a modified random walk algorithm by taking 
advantage of the miRNA-target interactions, disease-gene 
associations and protein-protein interactions (PPIs) to 
acquire potential associations between the miRNAs and 
diseases. Mork et al. [31] presented a miRNA-Protein-

Disease based miRNA-disease association prediction 
(miRPD) method through combining the protein-disease 
associations with the protein-miRNA interactions based on 
the shared proteins between miRNAs and the diseases to 
provide miRNA-disease association prediction scores. Xu 
et al. [32] constructed a miRNA prioritization method by 
integrating known disease-gene associations and miRNA-
target interactions. Instead of using the known miRNA-
disease associations, this method analyzed the similarity 
between the targets of miRNAs and disease genes. 
All these aforementioned methods could not generate 
sufficient accurate prediction results, because they 
strongly rely on the predicted miRNA-target interactions, 
which have high rates of false positive and false negative. 
Another reason is that current disease-gene association 
network is incomplete.

Several computational methods were proposed to 
overcome limitations of the previous methods. Xuan et al. 
[33] constructed an effective miRNA-disease association 
prediction model named HDMP based on weighted k most 
similar neighbors by assigning higher weights to similarity 
scores between members in the same miRNA cluster or 
family when calculating miRNA similarity. However, 
the HDMP was not suitable for detecting the potential 
association with respect to new diseases or new miRNAs. 
Additionally, HDMP could not perform better than most 
of the previous models that were calculated based on the 
global network similarity measures. Chen et al. [34] were 
the first to propose the global-network-similarity-based 
computational model called Random Walk with Restart 
for MiRNA-Disease Association prediction (RWRMDA) 
based on the global information of human miRNA 
functional similarity network and known human miRNA-
disease association network. RWRMDA performed 
well in the cross validations and case studies on several 
human complex diseases. However, its unavailability 
for new diseases without any known related miRNAs 
was still a certain limitation. Chen et al. [20] presented 
another model of Within and Between Score for MiRNA-
Disease Association prediction (WBSMDA) to predict 
potential miRNA-disease associations based on miRNA-
disease associations, integrated miRNA similarity and 
integrated disease similarity. WBSMDA could predict 
the potential related miRNAs for new diseases without 
any known related miRNAs and new miRNAs without 
any known associated diseases, which could overcome 
the limitation of RWRMDA and HDMP. Chen et al. [35] 
also developed a Heterogeneous Graph Inference model 
for MiRNA-Disease Association prediction (HGIMDA) 
by using an iterative process based on global network 
similarity information to find the optimal solutions, which 
had better performances in comparison with the previous 
models. Li et al. [36] developed a matrix completion for 
miRNA-disease association prediction model (MCMDA) 
based on the known miRNA-disease associations in the 
Human MicroRNA Disease Database (HMDD). MCMDA 
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used the singular value thresholding (SVT) algorithm to 
accomplish the matrix completion procedure. It obtained 
excellent performances although it merely depended on 
known miRNA-disease associations.

More and more studies have taken focus on the 
using of machine learning methods to predict associations 
between miRNAs and diseases [37–40]. Among those 
studies, Xu et al. [41] proposed a miRNA-target 
dysregulated network (MTDN) through combining 
miRNA-target interactions and expression pattern of 
miRNAs and mRNAs. They constructed the support 
vector machine (SVM) classifier to distinguish positive 
miRNA-disease associations from negative samples 
based on the network topologic information feature. 
However, it was hard to obtain the true negative miRNA-
disease associations, which influenced the accuracy 
of the supervised classifier. Chen et al. [42] used semi-
supervised learning to construct the Regularized Least 
Squares for MiRNA-Disease Association prediction 
(RLSMDA) model with disease semantic similarity, 
miRNA functional similarity and known miRNA-disease 
associations. RLSMDA could calculate the associated 
probabilities of related miRNAs for diseases without any 
known associated miRNAs. Meanwhile, it could avoid the 
problem of using negative associations between miRNAs 
and diseases. However, the choice of parameters for 
RLSMDA and the ways of combining the classifiers in 
different spaces together could influence the accuracy of 
prediction results. Furthermore, Chen et al. [14] developed 
the Restricted Boltzmann Machine for Multiple types of 
MiRNA-Disease Association prediction (RBMMMDA) 
method based on miRNA-disease associations. This 
model presented restricted Boltzmann machine (RBM) 
with a two-layer (visible and hidden) undirected graph 
RBMMMDA could obtain both new miRNA-disease 
associations and their corresponding association types.

In this paper, we proposed Spy and Super Cluster 
strategy for MiRNA-Disease Association prediction 
(SSCMDA) model based on the Regularized Least Square 
(RLS) classifier to predict the potential miRNA-disease 
associations. To fully integrate the known information, we 
used the known miRNA-disease associations, integrated 
miRNA similarity and integrated disease similarity as 
our input data. Firstly, we took spy samples from positive 
samples to determine potential negative samples with a 
high degree of confidence. Furthermore, the super cluster 
strategy has been used to increase as many positive 
samples as possible to improve the prediction accuracy. 
According to the results of cross validation, the areas 
under the ROC curves (AUCs) of global and local 
leave-one-out cross validation (LOOCV) were 0.9007 
and 0.8747, respectively. The 5-fold cross validation 
showed an average AUC of 0.8806+/-0.0025. For further 
validation, we carried out the case studies based on 
known miRNA-disease associations in the latest version 
and previous version of HMDD database to test whether 

the predicted associations had been verified by reports 
in other databases, respectively. We also implemented 
case studies for new diseases that did not have any 
known related miRNAs. As a result, there were high 
proportions of the predicted miRNAs confirmed by recent 
experimental reports. According to the performances of all 
the evaluation methods implemented above, SSCMDA has 
shown anticipated prediction accuracy.

RESULTS

Performance evaluation

As is known, the receiver operating characteristic 
curve (ROC) is popular to indicate the evaluation 
performance of the prediction accuracy based on 
corresponding cross validations. Therefore, we drew ROC 
curve to present the visible accuracy description [43]. 
Through plotting the true positive rate (TPR, sensitivity) 
versus the false positive rate (FPR, 1-specificity) at 
different thresholds, we obtained the curve that is closer 
to the upper left corner to mean the better prediction 
effectiveness. Specifically, sensitivity refers to the 
percentage of the true positive samples whose rankings 
are higher than the given threshold in the whole positive 
samples. Meanwhile, specificity denotes the percentage of 
negative samples with rankings lower than the threshold 
in the whole negative samples. Furthermore, AUC 
was calculated to demonstrate the prediction ability of 
SSCMDA. If the AUC equals to 1, it indicates that the 
model has perfect prediction performance. If the AUC 
equals to 0.5, it indicates that the model only has a random 
prediction performance. According to the validation index 
mentioned above, we firstly used global LOOCV based 
on the known miRNA-disease associations in latest 
version of HMDD database to evaluate the accuracy of 
SSCMDA. In each round, we changed one of the known 
miRNA-disease associations to candidate one which 
was deemed as unknown miRNA-disease pair. Then we 
used the SSCMDA to predict all the probability scores 
of the candidate pairs, and compared the score of the test 
sample which was changed above with the scores of other 
candidate pairs to observe whether it ranked above the 
given threshold. Different from the global LOOCV, local 
LOOCV just considered miRNAs that were associated 
with the investigated disease. Specifically, we compared 
the score of the test sample with the scores of candidate 
miRNA-disease pairs that were just related to the 
investigated disease. As a result, SSCMDA obtained the 
AUC of 0.9007 in the global LOOCV and AUC of 0.8747 
in the local LOOCV as shown in Figure 1. In comparison 
with some previous models, the SSCMDA has really 
shown an improvement of the prediction accuracy in some 
extent. For example, the AUCs obtained from MCMDA, 
HGIMDA, RLSMDA, HDMP, WBSMDA were 0.8749, 
0.8781, 0.8426, 0.8366, 0.8030 in global LOOCV and 
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0.7718, 0.8077, 0.6953, 0.7702, 0.8031 in local LOOCV, 
respectively. However, RWRMDA only had AUC of local 
LOOCV (0.7891) which was a defect because it could 
not uncover the missing associations for all the diseases 
simultaneously. In conclusion, the proposed model 
SSCMDA performed well in the global LOOCV and 
local LOOCV (See Figure 1). To show the comparison 
with a more clear form, we also concluded the global and 
local Growth Rate (GR) of SSCMDA compared with the 
previous models and show them in Table 1 together with 
their AUCs of global and local LOOCV (See Table 1).

We also carried out 5-fold cross validation for 
a further evaluation for the accuracy of the SSCMDA 
model. Firstly, we randomly divided the whole known 
associations equally into five sections and treated each 
section as test samples in turn by removing the associations 
of these test samples simultaneously. The miRNA-disease 
pairs without known association evidences were regarded 
as candidate pairs. Afterwards, all the test samples would 
be scored and compared with the scores of candidate 
pairs. We repeated the procedure of 5-fold cross validation 
100 times randomly to obtain the average AUC value. 
In comparison with MCMDA, RLSMDA, HDMP and 
WBSMDA, whose average AUCs were 0.8767+/-0.0011, 
0.8569+/-0.0020, 0.8342+/-0.0010 and 0.8185+/-0.0009, 
we could further confirm the effectiveness of SSCMDA 
for potential miRNA-disease association prediction with 
the average AUC of 5-fold cross validation 0.8806+/-
0.0025.

Case Studies

We studied three different typical cases that were 
case studies for known diseases, case study for new 

disease, and case study based on old data. We used a total 
of five major human diseases including breast neoplasm, 
esophageal neoplasm, lymphoma, hepatocellular 
carcinoma and glioblastoma to test the prediction effect 
of the proposed model in all the types of case studies. To 
present the results of case studies, we further counted the 
number of the miRNAs verified by at least one database 
in the top 10, top 20 and even top 50 prediction results 
of the investigated disease-related miRNAs. For the first 
case, the numbers of verified miRNAs related with breast 
neoplasm, esophageal neoplasm and lymphoma in top 50 
were 42, 40 and 39, respectively. For the second case, the 
number of verified miRNAs related with hepatocellular 
carcinoma in top 50 was 41. For the third case, the number 
of verified miRNAs related with Glioblastoma in top 50 
was 29.

Case studies for known diseases

We have studied three known diseases based on 
the confirmation from the other two miRNA-disease 
association databases dbDEMC [44] and miR2Disease 
[45] to examine the effectiveness of predicting miRNAs 
by SSCMDA. 

Breast neoplasm is the most common malignancy 
for women’s health, causing large amounts of death each 
year. The breast neoplasms consist of multiple types 
of breast neoplasm cells, but only a minority of breast 
neoplasm cells had the ability to form new tumors [46]. In 
the western world, over eighty percent of breast neoplasms 
are hormone-receptor positive [47]. Nowadays, lots of 
scientists have paid attention to the original etiology of 
breast cancers in the perspective of miRNAs. Increasing 
numbers of evidences showed that some miRNAs were 

Figure 1: AUC of global LOOCV (left) compared with MCMDA, HGIMDA, RLSMDA, HDMP and WBSMDA; AUC 
of local LOOCV (right) compared with MCMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA. As a 
result, SSCMDA achieved AUCs of 0. 9007 and 0.8747 in the global and local LOOCV, which exceed all the previous classical models. 
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highly correlated with breast neoplasm and played 
important roles in the development of breast neoplasm. 
For example, among the differentially expressed miRNAs, 
miR-10b, miR-125b, miR145, miR-21, and miR-155 
emerged to be the most consistently deregulated in breast 
neoplasm. Three of them, miR-10b, miR-125b, and miR-
145, were down-regulated and the remaining two, miR-21 
and miR-155, were up-regulated, suggesting that they may 
potentially act as tumor suppressor genes or oncogenes, 
respectively [48]. Through implementing SSCMDA, 
we obtained the total ranking of the unknown miRNA-
disease pairs. As the result shown, among the top 10, 20 
and 50 potential associations between breast neoplasm 
and miRNAs, there were 9, 19 and 42 miRNA-disease 
associations confirmed by experiments, respectively (See 
Table 2). Taking the hsa-mir-215 as an example, which 
was ranked the first in our prediction results, recent study 
had shown that its difference in expression was observed 
between serum samples from healthy volunteers and 
serum samples from untreated patients with metastatic 
breast cancer [49].

Esophageal neoplasm is a deadly cancer but 
rarely studied worldwide. Additionally, the esophageal 
neoplasm is age-specific which means that the incidence 
and mortality rates increased with age [50]. Through 
the efforts of researchers, great development has been 
achieved in the epidemiologic patterns associated 
with this disease during the past three decades. Recent 
advances in the diagnosis, staging, treatment and 
prognosis of esophageal neoplasm have led to small but 
significant improvements in survival [51]. Furthermore, 
recent researches have shown that the expression of 
miRNAs has tight associations with the development of 
esophageal neoplasm. For example, low expression of 
let-7b and let-7c in biopsies from 74 untreated patients of 
the training set significantly correlated with poor response 
to chemotherapy of both clinic and histopathology 
[52]. Based on the aforementioned facts, SSCMDA 
was implemented to identify potential related miRNAs 

for esophageal neoplasm based on known associations 
in the HMDD database. As a result, 9 out of the top 10 
and 40 out of the top 50 predicted associations between 
esophageal neoplasm and miRNAs were confirmed 
by experimental reports from dbDEMC database and 
miR2Disease database (See Table 3). For example, hsa-
mir-150 was ranked third among the predicted potential 
associations and it has been verified to regulate the EMT-
inducer ZEB1 in esophageal squamous cell carcinoma 
[53].

Lymphoma is a form of cancer which encompasses 
a variety of cancers specific to the lymphatic system 
[54]. Some of the cells in the lymphatic system grow 
abnormally and are out of control when lymphoma occurs 
[54]. Eventually, they may form a tumor whose cells will 
continue to grow as the cancerous cells and will also 
continue to reproduce [54]. If all these cancerous cells are 
the same, they are called malignant or cancerous, because 
they will continue to grow and eventually harm the body’s 
systems [55]. Because there is lymph tissue throughout 
the body, the cancer cells may spread to other organs, 
or even into the bone marrow [55]. Recent experimental 
studies showed that profound mRNA expression changes 
of potential target genes involving cell cycle control, 
apoptosis and B-cell differentiation was concerned with 
the down-regulation of miR-16, miR-26a, miR-101, 
miR-29c and miR138 in the t(14;18)-negative  follicular 
lymphoma subset [56]. Therefore, it is important to take 
lymphomas as a case to study. Through implementing 
SSCMDA for potential miRNA-disease association 
prediction, 6 out of top 10 potential lymphoma-associated 
miRNAs in the prediction result list have been verified by 
the recent studies. Furthermore, for the top 50 lymphoma-
associated miRNAs predicted by SSCMDA, 39 of them 
have experimental literature evidences (See Table 4). For 
example, the hsa-mir-221 was ranked first in the prediction 
and it has been confirmed to have a significant difference 
in expression of lymphoid tissues between the lymphoma 
patient and healthy groups [57].

Table 1: Comparison of the proposed method with all the previous methods according to the 
AUCs of global and local LOOCV and their Growth Rate (GR) of SSCMDA compared with the 
other models

Model Global LOOCV Global GR of SSCMDA Local LOOCV Local GR of SSCMDA

SSCMDA 0.9007 —— 0.8747 ——

HGIMDA 0.8781 2.57% 0.8077 8.30%

RLSMDA 0.8426 6.90% 0.6953 25.80%

HDMP 0.8366 7.66% 0.7702 13.57%

WBSMDA 0.8030 12.17% 0.8031 8.92%

RWRMDA —— —— 0.7891 10.85%

MCMDA 0.8749 2.95% 0.7718 13.33%
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For demonstrating all the prediction results, 
we showed the prediction scores of all the candidate 
miRNA-disease pairs in Supplementary Table 1. This 
table contains the potential miRNAs associated with all 
the human diseases investigated in HMDD database (See 
Supplementary Table 1).

Case study for new disease in the simulation 
experiments

To validate the prediction effectiveness for new 
diseases, we also conducted another case study by hiding 
the information of miRNAs related with the investigated 
disease. For each investigated disease, we removed the 
known associations between this disease and all its related 
miRNAs. Through implementing the SSCMDA based 
on the changed input association matrix, we obtained 
the ranking of all the candidate miRNA-disease pairs 
by comparing their prediction scores. We could find that 

9, 18 and 41 out of the top 10, 20 and 50 miRNAs of 
hepatocellular carcinoma had been confirmed by at least 
one of the three databases, namely HMDD, dbDEMC and 
miR2Disease (See Table 5). Specially, the has-miR-16, 
whose ranking is the first of the prediction result, has 
been studied by researchers and they found that the 
cyclooxygenase-2 whose expression has been detected in 
human hepatocellular carcinoma is a target of has-miR-16 
[58].

Case study on previous version dataset

Finally, we tested our model based on the old version 
of the database HMDD to see whether the SSCMDA still 
performed well on it. Through the experiment, there were 
7, 13 and 29 respectively out of top 10, 20 and 50 miRNAs 
related with the Glioblastoma confirmed by at least one of 
three databases mentioned above (See Table 6). Taking the 
hsa-mir-338 as an example, which ranked the first among 

Table 2: Prediction of the top 50 predicted miRNAs associated with breast neoplasms based on 
known associations in HMDD database

miRNA Evidence miRNA Evidence
hsa-mir-215 dbdemc hsa-mir-18a dbdemc;miR2Disease
hsa-mir-15b dbdemc hsa-mir-590 dbdemc
hsa-mir-16 dbdemc hsa-mir-143 dbdemc;miR2Disease
hsa-mir-29b dbdemc;miR2Disease hsa-mir-675 unconfirmed
hsa-mir-221 dbdemc;miR2Disease hsa-mir-326 dbdemc
hsa-mir-15a dbdemc hsa-mir-194 dbdemc
hsa-mir-345 dbdemc hsa-mir-218 dbdemc
hsa-mir-99b dbdemc hsa-mir-183 dbdemc
hsa-mir-483 dbdemc hsa-mir-1302 unconfirmed
hsa-let-7g dbdemc hsa-mir-922 unconfirmed

hsa-mir-150 dbdemc hsa-mir-202 dbdemc;miR2Disease
hsa-let-7c dbdemc hsa-mir-195 dbdemc;miR2Disease

hsa-mir-498 dbdemc hsa-mir-181 unconfirmed
hsa-let-7b dbdemc hsa-mir-765 dbdemc
hsa-let-7f dbdemc;miR2Disease hsa-mir-100 dbdemc

hsa-mir-145 dbdemc;miR2Disease hsa-mir-30d dbdemc
hsa-mir-92 dbdemc hsa-mir-1323 unconfirmed

hsa-mir-1247 unconfirmed hsa-mir-200b dbdemc;miR2Disease
hsa-let-7d dbdemc;miR2Disease hsa-let-7a dbdemc;miR2Disease
hsa-let-7e dbdemc hsa-mir-103a unconfirmed

hsa-mir-223 dbdemc hsa-mir-10b dbdemc;miR2Disease
hsa-mir-200a dbdemc;miR2Disease hsa-mir-9 dbdemc;miR2Disease
hsa-mir-29a dbdemc hsa-mir-17 miR2Disease
hsa-mir-198 dbdemc hsa-mir-2355 unconfirmed
hsa-mir-25 dbdemc hsa-mir-141 dbdemc;miR2Disease

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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all the miRNAs verified by dbDEMC or miR2Disease, 
recent research showed that the mir-338-3p inhibited 
malignant biological behaviors of Glioblastoma cells by 
targeting MACC1 gene [59].

DISCUSSION

In this paper, we proposed the Spy and Super 
Cluster strategy for MiRNA-Disease Association 
prediction (SSCMDA) based on known miRNA-disease 
associations, integrated miRNA similarity and integrated 
disease similarity. The Regularized Least Square (RLS) 
was used as the baseline classifier. The spy strategy 
was implemented to identify the negative samples with 
high degree of confidence from the mixed sample set 
which contains potential associations and real negative 
associations. Because the shortage of positive samples 
would lead to lower accuracy of prediction, the super 
cluster strategy was conducted to increase as many 

positive samples as possible. To examine the accuracy of 
the SSCMDA, three types of cross validations including 
global LOOCV, local LOOCV and 5-fold cross validation 
had been implemented. Furthermore, we also implemented 
three types of case studies based on different miRNA-
disease association databases. As a result, SSCMDA 
performed well both in the cross validations and the case 
studies.

The excellent performances of SSCMDA could 
be attributed to the following several important factors. 
Firstly, the increasing disease-miRNA association data 
have been discovered and confirmed with the development 
of the biological experiments. This advantage was 
beneficial to the SSCMDA because the SSCMDA was 
dependent on the known associations to improve the 
prediction accuracy. Secondly, because SSCMDA was 
constructed based on the integrated disease similarity 
and integrated miRNA similarity, it could make full use 
of various similarity information to recover the potential 

Table 3: Prediction of the top 50 predicted miRNAs associated with esophageal neoplasm based 
on known associations in HMDD database

miRNA Evidence miRNA Evidence
hsa-mir-215 dbdemc hsa-mir-106b dbdemc
hsa-mir-15b dbdemc hsa-mir-191 dbdemc
hsa-mir-150 dbdemc hsa-mir-222 dbdemc
hsa-mir-675 unconfirmed hsa-mir-1915 unconfirmed
hsa-mir-15a dbdemc hsa-mir-18b dbdemc
hsa-mir-141 dbdemc hsa-mir-22 dbdemc
hsa-mir-146a dbdemc hsa-mir-10b dbdemc

hsa-let-7a dbdemc hsa-mir-29b dbdemc
hsa-mir-143 dbdemc hsa-mir-155 dbdemc
hsa-mir-200b dbdemc hsa-mir-26b dbdemc
hsa-mir-29a dbdemc hsa-mir-590 dbdemc
hsa-mir-17 dbdemc hsa-mir-301b unconfirmed
hsa-mir-198 dbdemc hsa-mir-26a dbdemc
hsa-mir-125a dbdemc hsa-mir-92a unconfirmed
hsa-mir-2355 unconfirmed hsa-mir-28 dbdemc
hsa-mir-1247 unconfirmed hsa-mir-34b dbdemc
hsa-mir-100 dbdemc hsa-mir-130b dbdemc
hsa-mir-219 unconfirmed hsa-mir-520b dbdemc
hsa-mir-145 dbdemc hsa-mir-192 dbdemc;miR2Disease
hsa-mir-450b unconfirmed hsa-let-7c dbdemc
hsa-mir-20a dbdemc hsa-mir-335 dbdemc
hsa-mir-765 dbdemc hsa-mir-181b dbdemc
hsa-mir-345 dbdemc hsa-mir-181 unconfirmed
hsa-mir-328 dbdemc hsa-mir-527 dbdemc
hsa-mir-1302 unconfirmed hsa-mir-373 dbdemc;miR2Disease

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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miRNA-disease associations. Thirdly, to improve the 
prediction accuracy, SSCMDA could adopt spy strategy 
to identify reliable negative samples from all the unknown 
miRNA-disease pairs, which contained mixed training 
samples including both potential associations and real 
negative samples. Meanwhile, the super cluster strategy 
could add as many positive samples as possible with 
the help of the similarity information. Last but not least, 
the baseline method of RLS performed well in previous 
computational biology research, which guaranteed the 
basic accuracy of our proposed model. In view of reasons 
mentioned above, SSCMDA could improve the prediction 
accuracy in comparison with the previous proposed 
methods.

However, there are still some limitations in this 
model. First of all, the proposed model relied heavily 
on the known association data, which will lead to an 
unstable prediction effect when the training samples 
were changed. Secondly, the RLS is so sensitive to the 

changes of parameters that it is hard to obtain the optimal 
combining parameters to combine all the proposed 
strategies to improve prediction accuracy. Therefore, 
the method of obtaining optimal combining parameters 
is expected to be theoretically solved in the future. 
Furthermore, the literature of Wang et al. has pointed out 
the more important fact that it is unwise to use a single 
disease-related miRNA to judge cancer risks for all the 
persons [60]. The recent study has also found that cancer 
signals are of not stable, which motivates us to construct 
various cancer hallmark networks to effectively evaluate 
cancer risks based on the miRNA profiles of each person. 
Furthermore, the re-sampling test should be developed 
in the future for estimating the robustness of the models 
[60, 61]. Additionally, there are still some important 
problems in the personalized medicine and treatment in 
the framework of miRNA-disease association prediction 
[60, 62]. According to the recent studies on the genome 
sequencing technology of cancer systems biology, we can 

Table 4: Prediction of the top 50 predicted miRNAs associated with lymphoma based on known 
associations in HMDD database

miRNA Evidence miRNA Evidence
hsa-mir-221 dbdemc;miR2Disease hsa-mir-422a dbdemc
hsa-mir-2355 unconfirmed hsa-mir-17 dbdemc;miR2Disease
hsa-mir-1247 unconfirmed hsa-mir-29c dbdemc
hsa-mir-215 dbdemc hsa-mir-222 dbdemc
hsa-mir-922 unconfirmed hsa-mir-181c dbdemc
hsa-mir-9 dbdemc hsa-mir-26a dbdemc

hsa-mir-202 unconfirmed hsa-mir-183 dbdemc
hsa-mir-29b dbdemc hsa-mir-200b dbdemc
hsa-mir-326 dbdemc hsa-mir-92a dbdemc
hsa-mir-1915 unconfirmed hsa-mir-103a unconfirmed
hsa-mir-10b dbdemc hsa-mir-204 dbdemc
hsa-let-7d dbdemc hsa-mir-139 dbdemc;miR2Disease

hsa-mir-1302 unconfirmed hsa-mir-181a dbdemc
hsa-mir-18a dbdemc hsa-mir-92 dbdemc;miR2Disease
hsa-mir-15b dbdemc hsa-mir-182 dbdemc
hsa-mir-99b dbdemc hsa-let-7a dbdemc
hsa-let-7e dbdemc;miR2Disease hsa-mir-195 dbdemc
hsa-let-7f dbdemc hsa-mir-21 dbdemc;miR2Disease

hsa-mir-498 unconfirmed hsa-mir-200a dbdemc
hsa-let-7g dbdemc hsa-mir-33a dbdemc

hsa-mir-518a unconfirmed hsa-mir-27a dbdemc
hsa-let-7c dbdemc hsa-mir-181b dbdemc

hsa-mir-10a dbdemc;miR2Disease hsa-mir-20a dbdemc;miR2Disease
hsa-let-7b dbdemc hsa-mir-320e unconfirmed

hsa-mir-483 unconfirmed hsa-mir-31 dbdemc
The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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anticipate that cancer subclones and other clone-based 
analysis would be helpful for predicting and treating 
cancer in the future [63, 64].

MATERIALS AND METHODS

Human miRNA-disease associations

We downloaded the human miRNA-disease 
associations data from the HMDD v2.0 database [65], 
which contained 5430 distinct experimentally confirmed 
human miRNA-disease associations between 383 diseases 
and 495 miRNAs. To conveniently deal with all these 
data in the following computations, we constructed 
an adjacency matrix A ϵ R nd×nm to formalize the human 
miRNA-disease associations, where nm and nd were 

denoted as the number of miRNAs and diseases in 
HMDD v2.0 database, respectively. If miRNA mj had been 
experimentally verified to be associated with disease di, 
then Aij equaled to 1, otherwise 0.

MiRNA functional similarity

Based on the assumption that functionally similar 
miRNAs are more likely to be associated with diseases 
with similar characters, Wang et al. [66] proposed a 
method to calculate the miRNA functional similarity. We 
downloaded the miRNA functional similarity data from 
http://www.cuilab.cn/files/images/cuilab/misim.zip. We 
denoted the matrix MS to represent the miRNA functional 
similarity. The element MSij represented the value of 
similarity between the miRNA mi and mj.

Table 5: Prediction of the top 50 miRNAs associated with Hepatocellular Carcinoma in HMDD 
database

miRNA Evidence miRNA Evidence
hsa-mir-16 dbdemc;miR2Disease;HMDD hsa-mir-126 dbdemc;miR2Disease;HMDD
hsa-mir-182 miR2Disease;HMDD hsa-mir-139 miR2Disease;HMDD
hsa-mir-143 dbdemc;miR2Disease hsa-mir-1302 unconfirmed
hsa-mir-146a dbdemc;miR2Disease;HMDD hsa-mir-125a dbdemc;miR2Disease;HMDD
hsa-mir-15a dbdemc;miR2Disease;HMDD hsa-mir-17 miR2Disease;HMDD
hsa-mir-382 unconfirmed hsa-mir-26b dbdemc;miR2Disease
hsa-mir-200c HMDD hsa-let-7i dbdemc;HMDD
hsa-mir-107 dbdemc;miR2Disease;HMDD hsa-mir-223 miR2Disease;HMDD
hsa-mir-345 HMDD hsa-mir-922 unconfirmed
hsa-mir-103a HMDD hsa-let-7c dbdemc;miR2Disease;HMDD
hsa-mir-200a dbdemc;miR2Disease;HMDD hsa-mir-1247 unconfirmed
hsa-mir-655 unconfirmed hsa-mir-205 miR2Disease;HMDD
hsa-mir-141 miR2Disease;HMDD hsa-mir-203 miR2Disease;HMDD
hsa-mir-152 miR2Disease;HMDD hsa-mir-215 miR2Disease
hsa-let-7d miR2Disease;HMDD hsa-mir-29b dbdemc;HMDD

hsa-mir-10b HMDD hsa-mir-148b dbdemc;miR2Disease;HMDD
hsa-mir-92a miR2Disease;HMDD hsa-mir-1972 unconfirmed
hsa-let-7a dbdemc;miR2Disease;HMDD hsa-mir-191 dbdemc;HMDD

hsa-mir-181b dbdemc;miR2Disease;HMDD hsa-mir-106a dbdemc;miR2Disease;HMDD
hsa-mir-20a dbdemc;miR2Disease;HMDD hsa-mir-100 dbdemc;HMDD
hsa-mir-132 miR2Disease hsa-mir-299 unconfirmed
hsa-mir-194 dbdemc;miR2Disease hsa-mir-195 dbdemc;miR2Disease;HMDD
hsa-mir-204 unconfirmed hsa-mir-27b dbdemc
hsa-mir-9 miR2Disease hsa-mir-27a miR2Disease;HMDD

hsa-mir-200b miR2Disease;HMDD hsa-mir-675 unconfirmed
The hepatocellular carcinoma was treated as new disease which does not have any related miRNAs. The first column records 
top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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Disease semantic similarity model 1

We constructed a Directed Acyclic Graph (DAG) to 
describe the diseases according to the literature of Chen et 
al. [26] based on the MeSH descriptors downloaded from 
the National Library of Medicine (http://www.nlm.nih.
gov/). According to the DAG, we denoted the contribution 
values of disease d in DAG(D) to the semantic value of 
disease D as follows:

( )
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where Δ was the semantic contribution decay factor. 
The self semantic value of disease D was defined as 
follows:
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where T(D) represented all ancestor nodes of D and 

D itself. According to the observation that two diseases 
with larger shared part of their DAGs had larger similarity 

score, the semantic similarity score between disease di and 
dj could be defined as follows:
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Disease semantic similarity model 2

As what we had considered, it was not reasonable 
to assign the same contribution value to the diseases in 
the same layer of DAG(D). As far as we have observed, a 
more specific disease which appears in less DAGs should 
contribute a higher value to the semantic similarity of 
disease D. Therefore, according to the model which was 
proposed by Xuan et al. [33], we defined the contribution 
of disease d in DAG(D) to the semantic value of disease 
D as follows:

2 ( ) log[the number of DAGs including t / the number of diseases]DD d = −  (4)

Table 6: Prediction of the top 50 predicted miRNAs associated with Glioblastoma based on known 
associations in previous version HMDD database

miRNA Evidence miRNA Evidence
hsa-mir-561 unconfirmed hsa-mir-135b dbdemc
hsa-mir-338 dbdemc hsa-mir-194 dbdemc
hsa-mir-301a unconfirmed hsa-mir-423 unconfirmed
hsa-mir-342 dbdemc;HMDD hsa-let-7b unconfirmed
hsa-mir-25 dbdemc;miR2Disease;HMDD hsa-mir-185 dbdemc
hsa-mir-499 unconfirmed hsa-mir-525 unconfirmed
hsa-mir-370 dbdemc hsa-let-7e dbdemc
hsa-mir-134 HMDD hsa-mir-532 unconfirmed
hsa-mir-23b miR2Disease;HMDD hsa-mir-218 dbdemc;HMDD
hsa-mir-421 dbdemc hsa-mir-181c dbdemc;miR2Disease;HMDD
hsa-mir-136 dbdemc hsa-mir-514 unconfirmed
hsa-mir-34a dbdemc;miR2Disease;HMDD hsa-mir-518c unconfirmed
hsa-mir-330 unconfirmed hsa-mir-638 unconfirmed
hsa-mir-199b dbdemc hsa-mir-19a dbdemc;HMDD
hsa-mir-583 unconfirmed hsa-mir-335 unconfirmed
hsa-mir-30b unconfirmed hsa-mir-325 unconfirmed
hsa-mir-451 miR2Disease hsa-mir-126 unconfirmed
hsa-mir-520f unconfirmed hsa-mir-383 dbdemc
hsa-mir-520c dbdemc hsa-mir-539 HMDD
hsa-mir-210 dbdemc;HMDD hsa-mir-135a unconfirmed
hsa-mir-29a HMDD hsa-mir-365 unconfirmed
hsa-mir-596 unconfirmed hsa-mir-153 dbdemc;miR2Disease;HMDD
hsa-mir-300 dbdemc hsa-mir-379 dbdemc
hsa-mir-206 dbdemc;HMDD hsa-mir-382 dbdemc
hsa-mir-128a miR2Disease hsa-mir-130b unconfirmed

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs. 
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We defined the semantic similarity of disease di and 
dj as the ratio of the shared ancestor nodes’ contributions 
to all the ancestor nodes’ contributions. Therefore, disease 
semantic similarity model 2 was calculated as follows:

( ) ( )
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D 2 2 ( )Dd T D

V D D d
∈

= ∑  (6)

Gaussian interaction profile kernel similarity

Based on the Gaussian kernel function which is one 
of the Radial Basis function whose value depends only 
on the distance from the origin, Gaussian interaction 
profile kernel similarity were constructed as another 
algorithm of disease semantic similarity and miRNA 
functional similarity [67]. As the ith row and jth column 
of adjacent matrix A contains the information whether 
the disease or the miRNA associated with each of the 
miRNAs or the diseases, so we denoted vector IP(di) and 
IP(rj) to represent the ith row vector and jth column vector, 
respectively. Therefore, the similarity of diseases and 
miRNAs could be computed as follows:

2
( , ) exp( ( ) ( ) )i j d i jGD d d IP d IP dβ= − −  (7)

2
( , ) exp( ( ) ( ) )i j m i jGR m m IP m IP mβ= − −  (8)

where adjustment coefficient βd and βm for the kernel 
bandwidth were denoted as follows:
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where β′d and β′m were the original bandwidths. 

In the end, matrix GD and GR represented the Gaussian 
interaction profile kernel similarity of diseases and 
miRNAs, respectively.

Integrated similarity for miRNAs and diseases

Through combining the disease semantic similarity 
with disease Gaussian interaction profile kernel similarity, 
we obtained the integrated disease similarity. Specifically, 
if disease di and dj have semantic similarity, then the 
final integrated similarity is the average of SS1 and SS2, 
otherwise the integrated disease similarity equals to the 
value of Gaussian interaction profile kernel similarity. The 
formulations show as follows:
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Furthermore, by combining the miRNA functional 
similarity with miRNA Gaussian interaction profile kernel 
similarity, we obtained the integrated miRNA similarity 
as follows:

( , )     and  has functional similarity
( , )   

( , )                   otherwise
i j i j
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SSCMDA

The whole process of the proposed method was 
shown in Figure 2. Based on the materials prepared 
above, we adopted the RLS as our basic classifier, which 
was proposed to fit the known sample data and further 
predict the potential miRNA-disease associations [68]. 
According to the RLS and Lagrange multiplier method, 
we could construct our score function of association 
between disease di and miRNA mj as follows:

1( ) ( )
j

T
m i i d jS d SD SD I Aλ −= +  (13)

where Smj(di) was the predicted association 
score of disease di to miRNA mj, SDi was the ith row 
of the integrated disease similarity matrix, λd was the 
regularization parameter rooting in the lagrangian 
multiplier of RLS and experimentally set as 2 which was a 
common set in the experiments, I represented the identity 
matrix and AT

j represents the nd×1 class label vector of 
training samples namely the association between all the 
diseases and the jth miRNA. On the other hand, the score 
function of miRNA to disease was as follows:

1( ) ( )
jd i i r jS m SR SR I Aλ −= +

 (14)

where Sdj(mi) was the predicted score of miRNA 
mi to disease dj, SRi was the ith row of the integrated 
miRNA similarity matrix, λr was also a regularization 
parameter rooting in the lagrangian multiplier of RLS 
and experimentally set as 2 which was also a common set 
in the experiments. Differently, Aj represented the 1×nm 
vector which was the jth column of the adjacent matrix 
A. Afterwards, we combined the two score functions as 
follows:
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2
i jd j m i
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S m S d
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where FS(di, mj) was formed as the final basic score 

function based on the RLS.

Spy strategy

As far as we had realized, the unknown miRNA-
disease pairs contained both the potential associations 
and the real negative samples. The fuzzy situation 
would lead to an inaccurate prediction result because the 
boundary of negative training samples was not exact. To 
solve this problem, we utilized the spy strategy which 
was a semi-supervised strategy to identify the reliable 
negative samples with high degree of confidence from 
all the unknown miRNA-disease pairs. Specifically, we 
randomly selected 10% from the positive associations as 
spy samples, and set these spy samples to unlabeled ones, 
namely changed them from 1 to 0. Based on the newly 
formed training samples, we used the RLS model to obtain 
the prediction score. Then, we took the minimum score of 
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the spy samples as the threshold. If the prediction score 
of a candidate association was below the threshold, this 
association would be identified as a reliable negative 
sample which would be set as -1 in the miRNA-disease 
association adjacent matrix. Repeating the selection of 
spy samples for 200 times, we took the intersection of the 
reliable negative sets as the final reliable negative set to 
ensure its reliability. Finally, we obtained a new adjacent 
matrix AN with all the reliable negative samples. Figure 3 
illustrates the procession of spy strategy and the prediction 
score by adopting spy strategy could be calculated as 
follows:

( ) ( )
( , )

2
i jd j m i

i j

Spy m Spy d
FSpy d m
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=
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where

1( ) ( )
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Super cluster strategy

In consideration that most of the diseases might 
associate with only one or a few miRNAs and vice 
versa. This imbalance would lead to a biased prediction 
which was likely to determine potential associations as 
negative associations. The shortage of known miRNA-

disease associations would aggravate this bias. Therefore, 
we proposed the super cluster strategy to ameliorate 
this problem (See Figure 4). The main thought of super 
cluster strategy is to cluster as many as possible similar 
diseases or miRNAs as an integrated super-disease or 
super-miRNA. Furthermore, all the diseases related to at 
least one miRNA in the super-miRNA would be seemed 
as having association with the super-miRNA. On the other 
hand, the association between miRNA and super-disease 
would be constructed in the same way. Obviously, the 
integrated similarity of miRNA and disease would be used 
to construct the distances between two miRNAs or two 
diseases. According to these distances, we implemented 
the agglomerative hierarchical clustering to obtain super 
cluster. The agglomerative hierarchical clustering adopted 
a bottom-up strategy which deemed each entity as a cluster 
at the beginning of the process, then one cluster would 
merge the other clusters based on the linkage criterion of 
Ward’s minimum variance method [69]. After clustering, 
we cut the hierarchical clustering tree to obtain different 
super-clusters with a suitable threshold. However, there 
was a situation that diseases associated with miRNAs in 
super-miRNA are significantly different, which betrayed 
the assumption that similar diseases were likely to be 
associated with similar miRNAs. Therefore, we would 
remove the association between a disease associated 

Figure 2: The whole process flowchart of the SSCMDA method. The upper half part shows the input data including the known 
miRNA-disease associations, miRNA integrated similarity, and disease integrated similarity. The middle part shows the main algorithm 
including the Spy strategy and the Super cluster strategy. The final part is the prediction results.
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Figure 3: The flowchart of spy strategy. Spy instances (S) are randomly selected from positives (P). The spy-based classifier is built 
by remaining positives (P’) and new unknown miRNA-disease pairs (U’) combined S with U. And the reliable negatives (RN) are identified 
by comparing with the minimum score of S.

Figure 4: The flowchart of super-cluster strategy. The first section shows the original known associations between diseases and 
miRNAs. The second section shows the process of constructing super-miRNAs based on miRNA functional similarity and agglomerative 
hierarchical clustering. The third section shows the process of constructing the new associations between diseases and super-miRNAs. If 
the disease has association with the miRNAs in the super-miRNA, then this disease is associated with the super-miRNA.



Oncotarget1839www.impactjournals.com/oncotarget

with super-miRNA sr if there were not any of its k 
nearest neighbors simultaneously associated with sr. The 
probability score of disease di associated with super-
miRNA srj could be calculated as follows:

1( ) ( )
j

T
sr i i d jS d SD SD I Asrλ −= +  (19)

where Asr was the new adjacent matrix formed 
according to the associations between diseases and super-
miRNAs. Accordingly, the score of miRNA mi and super-
disease sdj could be calculated as follows:

1( ) ( )
jsd i i r jS m SR SR I Asdλ −= +  (20)

where Asd was the adjacent matrix of associations 
between miRNA and super-disease. The new associations 
are really not as accurate as the old associations. 
However, the main dilemma of us is not the accuracy 
of associations currently, but that the exact known 
association is rare, which prevented improving the 
accuracy of prediction. Thus, our aim is to excavate more 
useful information of the known associations based on 
which we can further separate the more likely miRNAs 
associated with disease from the mixed miRNAs. It is 
obvious that excessive sacrifices of known association 
accuracy will lead to predictive accuracy degradation. 
Therefore, it is a problem of clustering criterion to 
balance the relationship between the two situations. 
Fortunately, the experimental common clustering 
criterion used in other similar problems is still effective 
for our model. Furthermore, we also implemented the 
experiments to compare the accuracy of the model with 
and without the new associations, whose comparison 
results really reflect the effectiveness of this strategy to 
improve the prediction accuracy.

Two layer prediction model

We integrated the spy strategy and super-cluster 
strategy to form a two-layer prediction model. For disease 
di and miRNA mj, the prediction score obtained by 
adopting spy strategy and the prediction score obtained 
by adopting super-cluster strategy were combined as 
follows to compute the final miRNA-disease association 
prediction score:

( , ; ) ( ) ( , ; ) ( )
( , )

2
p qi j i p sd j i j j q sr i

i j

FSpy d m d sd S m FSpy d m m sr S d
TS d m

∈ + ∈
=  (21)

where ( , ; )i j i pFSpy d m d sd∈  represented the prediction 
score of di and mj by adopting spy strategy which satisfied 
that i pd sd∈  and ( , ; )i j j qFSpy d m m sr∈  satisfied that j qm sr∈ .

ACKNOWLEDGMENTS

XC was supported by National Natural Science 
Foundation of China under Grant Nos.61772531 and 
11631014. QZ was supported by National Natural 
Science Foundation of China under Grant No.61772531, 
Innovation Team Project from the Education Department 
of Liaoning Province under Grant No.LT2015011 and 

the Doctor Startup Foundation from Liaoning Province 
under Grant No. 20170520217. HL was supported by 
National Natural Science Foundation of China under 
Grant No. 31570160 and Innovation Team Project from 
the Education Department of Liaoning Province under 
Grant No. LT2015011. FW was supported by the Priority 
Academic Program Development of Jiangsu Higher 
Education Institutions (PAPD), the 2016 annual general 
university graduate research and innovation program of 
Jiangsu Province, China (Grant No. KYLX16_0526). 
GYY was supported by National Natural Science 
Foundation of China under Grant No. 11371355 and 
11631014.  

CONFLICTS OF INTEREST

The authors declare no conflicts of interest. 

REFERENCES

 1. Ribeiro AO, Schoof CR, Izzotti A, Pereira LV, Vasques 
LR. MicroRNAs: modulators of cell identity, and their 
applications in tissue engineering. MicroRNA. 2014; 
3:45–53. 

 2. Lee RC, Feinbaum RL, Ambros V. The C. elegans 
heterochronic gene lin-4 encodes small RNAs with 
antisense complementarity to lin-14. Cell. 1993; 75:843–
54. 

 3. Friedman RC, Farh KK, Burge CB, Bartel DP. Most 
mammalian mRNAs are conserved targets of microRNAs. 
Genome Res. 2009; 19:92–105.

 4. Wightman B, Ha I, Ruvkun G. Posttranscriptional 
regulation of the heterochronic gene lin-14 by lin-4 
mediates temporal pattern formation in C. elegans. Cell. 
1993; 75:855–62. 

 5. Dluzen DF, Noren Hooten N, Zhang Y, Kim Y, Glover 
FE, Tajuddin SM, Jacob KD, Zonderman AB, Evans MK. 
Racial differences in microRNA and gene expression in 
hypertensive women. Sci Rep. 2016; 6:35815. 

 6. Kozomara A, Griffiths-Jones S. miRBase: integrating 
microRNA annotation and deep-sequencing data. Nucleic 
Acids Res. 2011; 39:D152–57. 

 7. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow 
P. Modulation of hepatitis C virus RNA abundance by a 
liver-specific MicroRNA. Science. 2005; 309:1577–81. 

 8. Lynam-Lennon N, Maher SG, Reynolds JV. The roles of 
microRNA in cancer and apoptosis. Biol Rev Camb Philos 
Soc. 2009; 84:55–71. 

 9. Meola N, Gennarino VA, Banfi S. microRNAs and genetic 
diseases. PathoGenetics. 2009; 2:7. 

10. Benjamin H, Lebanony D, Rosenwald S, Cohen L, 
Gibori H, Barabash N, Ashkenazi K, Goren E, Meiri E, 
Morgenstern S, Perelman M, Barshack I, Goren Y, et 
al. A diagnostic assay based on microRNA expression 



Oncotarget1840www.impactjournals.com/oncotarget

accurately identifies malignant pleural mesothelioma. J 
Mol Diagn. 2010; 12:771–79. 

11. Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola 
D, Cheng JQ. MicroRNA-155 regulates cell survival, 
growth, and chemosensitivity by targeting FOXO3a in 
breast cancer. J Biol Chem. 2010; 285:17869–79. 

12. Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L, Zhao C, 
Tao Y, Xu W. Circulating miR-17-5p and miR-20a: molecular 
markers for gastric cancer. Mol Med Rep. 2012; 5:1514–20. 

13. Chen X. Predicting lncRNA-disease associations and 
constructing lncRNA functional similarity network based 
on the information of miRNA. Sci Rep. 2015; 5:13186. 

14. Chen X, Yan CC, Zhang X, Li Z, Deng L, Zhang Y, Dai 
Q. RBMMMDA: predicting multiple types of disease-
microRNA associations. Sci Rep. 2015; 5:13877. 

15. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q. 
Constructing lncRNA functional similarity network based 
on lncRNA-disease associations and disease semantic 
similarity. Sci Rep. 2015; 5:11338. 

16. Chen X, Yan GY. Novel human lncRNA-disease 
association inference based on lncRNA expression 
profiles. Bioinformatics. 2013; 29:2617–24. 

17. Chen X, Yan CC, Zhang X, You ZH. Long non-coding 
RNAs and complex diseases: from experimental results to 
computational models. Brief Bioinform. 2017; 18:558–76.  

18. Chen X, Liu MX, Cui QH, Yan GY. Prediction of 
disease-related interactions between microRNAs and 
environmental factors based on a semi-supervised 
classifier. PLoS One. 2012; 7:e43425.

19. Chen X. KATZLDA: KATZ measure for the lncRNA-
disease association prediction. Sci Rep. 2015; 5:16840.

20. Chen X, Yan CC, Zhang X, You ZH, Deng L, Liu Y, Zhang 
Y, Dai Q. WBSMDA: Within and Between Score for 
MiRNA-Disease Association prediction. Sci Rep. 2016; 
6:21106. 

21. Chen X. miREFRWR: a novel disease-related microRNA-
environmental factor interactions prediction method. Mol 
Biosyst. 2016; 12:624–33.

22. Huang YA, You ZH, Chen X, Chan K, Luo X. Sequence-
based prediction of protein-protein interactions using 
weighted sparse representation model combined with 
global encoding. BMC Bioinformatics. 2016; 17:184. 

23. Huang YA, Chen X, You ZH, Huang DS, Chan KC. 
ILNCSIM: improved lncRNA functional similarity 
calculation model. Oncotarget. 2016; 7:25902–14. https://
doi.org/10.18632/oncotarget.8296.

24. Chen X, Huang YA, Wang XS, You ZH, Chan KC. 
FMLNCSIM: fuzzy measure-based lncRNA functional 
similarity calculation model. Oncotarget. 2016; 7:45948–
58. https://doi.org/10.18632/oncotarget.10008.

25. Wong L, You ZH, Ming Z, Li J, Chen X, Huang YA. 
Detection of interactions between proteins through 
rotation forest and local phase quantization descriptors. 
Int J Mol Sci. 2015; 17:21. 

26. Chen X, You ZH, Yan GY, Gong DW. IRWRLDA: 
improved random walk with restart for lncRNA-disease 
association prediction. Oncotarget. 2016; 7:57919–31. 
https://doi.org/10.18632/oncotarget.11141.

27. Pasquier C, Gardès J. Prediction of miRNA-disease 
associations with a vector space model. Sci Rep. 2016; 
6:27036.

28. Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ. 
Development of the human cancer microRNA network. 
Silence. 2010; 1:6.

29. Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu 
Y, Wang Y. Prioritization of disease microRNAs through a 
human phenome-microRNAome network. BMC Syst Biol. 
2010; 4:S2.

30. Shi H, Xu J, Zhang G, Xu L, Li C, Wang L, Zhao Z, Jiang 
W, Guo Z, Li X. Walking the interactome to identify 
human miRNA-disease associations through the functional 
link between miRNA targets and disease genes. BMC Syst 
Biol. 2013; 7:101.

31. Mørk S, Pletscher-Frankild S, Palleja Caro A, Gorodkin 
J, Jensen LJ. Protein-driven inference of miRNA-disease 
associations. Bioinformatics. 2014; 30:392–97. 

32. Xu C, Ping Y, Li X, Zhao H, Wang L, Fan H, Xiao Y, Li 
X. Prioritizing candidate disease miRNAs by integrating 
phenotype associations of multiple diseases with matched 
miRNA and mRNA expression profiles. Mol Biosyst. 
2014; 10:2800–09. 

33. Xuan P, Han K, Guo M, Guo Y, Li J, Ding J, Liu Y, Dai 
Q, Li J, Teng Z, Huang Y. Prediction of microRNAs 
associated with human diseases based on weighted k most 
similar neighbors. PLoS One. 2013; 8:e70204.

34. Chen X, Liu MX, Yan GY. RWRMDA: predicting novel 
human microRNA-disease associations. Mol Biosyst. 
2012; 8:2792–98. 

35. Chen X, Yan CC, Zhang X, You ZH, Huang YA, Yan 
GY. HGIMDA: heterogeneous graph inference for 
miRNA-disease association prediction. Oncotarget. 2016; 
7:65257–69. https://doi.org/10.18632/oncotarget.11251.

36. Li JQ, Rong ZH, Chen X, Yan GY, You ZH. MCMDA: 
matrix completion for MiRNA-disease association 
prediction. Oncotarget. 2017; 8:21187–99. https://doi.
org/10.18632/oncotarget.15061.

37. Chen X, Yan CC, Zhang X, Zhang X, Dai F, Yin J, Zhang 
Y. Drug-target interaction prediction: databases, web 
servers and computational models. Brief Bioinform. 2016; 
17:696–712. 

38. Chen X, Ren B, Chen M, Wang Q, Zhang L, Yan G. 
NLLSS: Predicting Synergistic Drug Combinations Based 
on Semi-supervised Learning. PLOS Comput Biol. 2016; 
12:e1004975. 

39. Hu H, Zhu C, Ai H, Zhang L, Zhao J, Zhao Q, Liu H. 
LPI-ETSLP: lncRNA-protein interaction prediction using 
eigenvalue transformation-based semi-supervised link 
prediction. Mol Biosyst. 2017; 13:1781–87.



Oncotarget1841www.impactjournals.com/oncotarget

40. Zhang L, Ai H, Zhao Q, Zhu J, Chen W, Wu X, Huang 
L, Yin Z, Zhao J, Liu H. Computational Prediction of 
Influenza Neuraminidase Inhibitors Using Machine 
Learning Algorithms and Recursive Feature Elimination 
Method. International Symposium on Bioinformatics 
Research and Applications. 2017: 344-49. https://doi.
org/10.1007/978-3-319-59575-7_32.

41. Xu J, Li CX, Lv JY, Li YS, Xiao Y, Shao TT, Huo X, Li 
X, Zou Y, Han QL, Li X, Wang LH, Ren H. Prioritizing 
candidate disease miRNAs by topological features in 
the miRNA target-dysregulated network: case study of 
prostate cancer. Mol Cancer Ther. 2011; 10:1857–66. 

42. Chen X, Yan GY. Semi-supervised learning for potential 
human microRNA-disease associations inference. Sci Rep. 
2014; 4:5501.

43. Metz CE. Basic principles of ROC analysis. Semin Nucl 
Med. 1978; 8:283–98. 

44. Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang 
Y, Miao R, Cao Y, Zhao Y, Zhong Y, Zhao H. dbDEMC: 
a database of differentially expressed miRNAs in human 
cancers. BMC Genomics. 2010; 11:S5. 

45. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, 
Wang G, Liu Y. miR2Disease: a manually curated database 
for microRNA deregulation in human disease. Nucleic 
Acids Res. 2009; 37:D98–104.

46. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison 
SJ, Clarke MF. Prospective identification of tumorigenic 
breast cancer cells. Proc Natl Acad Sci USA. 2003; 
100:3983–88. 

47. Van Asten K, Neven P, Lintermans A, Wildiers H, 
Paridaens R. Aromatase inhibitors in the breast cancer 
clinic: focus on exemestane. Endocr Relat Cancer. 2014; 
21:R31–49. 

48. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, 
Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, 
Ménard S, Palazzo JP, Rosenberg A, et al. MicroRNA gene 
expression deregulation in human breast cancer. Cancer 
Res. 2005; 65:7065–70. 

49. van Schooneveld E, Wouters MC, Van der Auwera 
I, Peeters DJ, Wildiers H, Van Dam PA, Vergote I, 
Vermeulen PB, Dirix LY, Van Laere SJ. Expression 
profiling of cancerous and normal breast tissues identifies 
microRNAs that are differentially expressed in serum 
from patients with (metastatic) breast cancer and healthy 
volunteers. Breast Cancer Res. 2012; 14:R34.

50. Zeng H, Zheng R, Zhang S, Zuo T, Xia C, Zou X, Chen 
W. Esophageal cancer statistics in China, 2011: estimates 
based on 177 cancer registries. Thorac Cancer. 2016; 
7:232–37. 

51. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J 
Med. 2003; 349:2241–52. 

52. Sugimura K, Miyata H, Tanaka K, Hamano R, Takahashi T, 
Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Mori 
M, Doki Y. Let-7 expression is a significant determinant of 

response to chemotherapy through the regulation of IL-6/
STAT3 pathway in esophageal squamous cell carcinoma. 
Clin Cancer Res. 2012; 18:5144–53.

53. Yokobori T, Suzuki S, Tanaka N, Inose T, Sohda M, Sano 
A, Sakai M, Nakajima M, Miyazaki T, Kato H. MiR-150 
regulates the EMT-inducer ZEB1 in esophageal squamous 
cell carcinoma. Wound healing assays of premiR-150-
treated esophageal squamous cell carcinoma TE-8 cells. 
Cancer Sci. 2013; 104.

54. England CG, Rui L, Cai W. Lymphoma: current status 
of clinical and preclinical imaging with radiolabeled 
antibodies. Eur J Nucl Med Mol Imaging. 2017; 44:517–
32. 

55. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, 
Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell 
JI, Yang L, Marti GE, et al. Distinct types of diffuse large 
B-cell lymphoma identified by gene expression profiling. 
Nature. 2000; 403:503–11. 

56. Leich E, Zamo A, Horn H, Haralambieva E, Puppe B, 
Gascoyne RD, Chan WC, Braziel RM, Rimsza LM, 
Weisenburger DD, Delabie J, Jaffe ES, Fitzgibbon J, et 
al. MicroRNA profiles of t(14;18)-negative follicular 
lymphoma support a late germinal center B-cell 
phenotype. Blood. 2011; 118:5550–58. 

57. Guo HQ, Huang GL, Guo CC, Pu XX, Lin TY. Diagnostic 
and prognostic value of circulating miR-221 for extranodal 
natural killer/T-cell lymphoma. Dis Markers. 2010; 
29:251–58.

58. Agra Andrieu N, Motiño O, Mayoral R, Llorente Izquierdo 
C, Fernández-Alvarez A, Boscá L, Casado M, Martín-Sanz 
P. Cyclooxygenase-2 is a target of microRNA-16 in human 
hepatoma cells. PLoS One. 2012; 7:e50935.

59. Shang C, Hong Y, Guo Y, Xue YX. Mir-338-3p Inhibits 
Malignant Biological Behaviors of Glioma Cells by 
Targeting MACC1 Gene. Med Sci Monit. 2016; 22:710–
16.

60. Wang E, Zaman N, Mcgee S, Milanese JS, Masoudi-Nejad 
A, O’Connor-McCourt M. Predictive genomics: a cancer 
hallmark network framework for predicting tumor clinical 
phenotypes using genome sequencing data. Semin Cancer 
Biol. 2015; 30:4–12. 

61. Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima 
EO, O’Connor-McCourt MD, Wang E. Identification of 
high-quality cancer prognostic markers and metastasis 
network modules. Nat Commun. 2010; 1:34. 

62. Wang E. Understanding genomic alterations in cancer 
genomes using an integrative network approach. Cancer 
Lett. 2013; 340:261–69.

63. Wang E, Zou J, Zaman N, Beitel LK, Trifiro M, Paliouras 
M. Cancer systems biology in the genome sequencing era: 
part 1, dissecting and modeling of tumor clones and their 
networks. Semin Cancer Biol. 2013; 23:279–85. 

64. Wang E, Zou J, Zaman N, Beitel LK, Trifiro M, Paliouras 
M. Cancer systems biology in the genome sequencing era: 



Oncotarget1842www.impactjournals.com/oncotarget

part 2, evolutionary dynamics of tumor clonal networks 
and drug resistance. Semin Cancer Biol. 2013; 23:286–92. 

65. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD 
v2.0: a database for experimentally supported human 
microRNA and disease associations. Nucleic Acids Res. 
2014; 42:D1070–74.

66. Wang D, Wang J, Lu M, Song F, Cui Q. Inferring the 
human microRNA functional similarity and functional 
network based on microRNA-associated diseases. 
Bioinformatics. 2010; 26:1644–50.

67. Chen X, Huang YA, You ZH, Yan GY, Wang XS. A novel 
approach based on KATZ measure to predict associations 
of human microbiota with non-infectious diseases. 
Bioinformatics. 2017; 33:733–39. 

68. Ancona N, Maglietta R, D’Addabbo A, Liuni S, Pesole G. 
Regularized Least Squares Cancer classifiers from DNA 
microarray data. BMC Bioinformatics. 2005; 6:S2. 

69. Ward JH Jr. Hierarchical Grouping to Optimize an 
Objective Function. J Am Stat Assoc. 1963; 58:236–44.


