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ABSTRACT

Clinical and genetic features incompletely predict outcome in acute myeloid 
leukemia (AML). The value of clinical methylation assays for prognostic markers has not 
been extensively explored. We assess the prognostic implications of methylC-capture 
sequencing (MCC-Seq) in patients with de novo AML by integrating DNA methylation 
and genetic risk stratification. MCC-Seq assessed DNA methylation level in 44 samples. 
The differentially methylated regions associated with prognostic genetic information 
were identified. The selected prognostic DNA methylation markers were independently 
validated in two sets. MCC-Seq exhibited good performance in AML patients. A panel 
of 12 differentially methylated genes was identified with promoter hyper-differentially 
methylated regions associated with the outcome. Compared with a low M-value, a high 
M-value was associated with failure to achieve complete remission (p = 0.024), increased 
hazard for disease-free survival in the study set (p = 0.039) and poor overall survival in 
The Cancer Genome Atlas set (p = 0.038). Hematopoietic stem cell transplantation and 
survival outcomes were not adversely affected by a high M-value (p = 0.271). Our study 
establishes that MCC-Seq is a stable, reproducible, and cost-effective methylation assay 
in AML. A 12-gene M-value encompassing epigenetic and genetic prognostic information 
represented a valid prognostic marker for patients with AML.

INTRODUCTION

Acute myeloid leukemia (AML) is a clonal disorder 
of myeloid hematopoiesis and a predominantly fatal 
hematopoietic malignancy with high heterogeneity [1]. 
Genetic heterogeneity has been appreciated since early 
karyotyping studies; somatic mutations have shown a 
comprehensive landscape of AML and contributed to 
disease classification and prognostic stratification [1–3]. 
However, a precise prognosis for nearly 50% of AML cases 

with a normal karyotype and patients with no mutations is 
still difficult to achieve [4]. DNA methylation, as the core 
and most widely studied epigenetic modification, is altered 
in numerous cancers and often correlates with clinically 
relevant information (i.e., subtypes, prognosis, and drug 
response) [5]. Indeed, aberrant DNA methylation is a 
common theme and a hallmark of AML [6]. Recent studies 
on genome-wide DNA methylation have emphasized the 
importance of dysregulated methylation profile in AML 
from biological and clinical views [7–11]. Aberrant DNA 
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methylation has also been found suitable as a prognostic 
biomarker [7, 8, 10, 12–14]. However, the methylation 
techniques employed in these studies are difficult to apply 
in routine clinical practice [15].

Numerous DNA methylation detection techniques 
have thus far been developed, including those for genome 
scale and target enrichment methylation [15]. Currently, 
bisulfite treatment-based methylation microarray and 
next-generation sequencing (NGS) are commonly used 
for base resolution DNA methylomes, such as Illumina 
Human Methylation 450/850 BeadChip array (Illumina 
450K/850K array) [16–18], whole-genome bisulfite 
sequencing (WGBS) [19], reduced representation bisulfite 
sequencing (RRBS) [20], Agilent SureSelect Human 
Methyl-Seq (www.genomics.agilent.com) [21], and 
NimbleGen SeqCap Epi CpGiant (www.nimblegen.com) 
[22]. With high robustness and accuracy, DNA methylation 
analysis based on an NGS platform has been confirmed 
to be feasible and reliable in clinical diagnosis and 
precision medicine, particularly for highly heterogeneous 
diseases such as AML [23]. However, only ~20% or 
less of cytosine–phosphate–guanine (CpGs) are variable 
across individuals or tissues [24]. WGBS is inefficient 
for large-scale population studies because it entails high 
costs and requires in-depth sequencing capacity to achieve 
sufficient coverage. Meanwhile, RRBS is limited to the 
restriction enzyme cutting site in a fixed region, which can 
potentially result in loss of data with the lowest genome 
coverage [15]. Agilent SureSelect allows only single-
strand capture of smaller target regions and requires 
larger amounts of input DNA, rendering it unsuitable for 
comprehensive genotype profiling [15]. Thus, alternative 
approaches to regulatory active functional methylome 
should be developed for comprehensive yet cost-effective 
identification of biologically and clinically relevant CpGs 
associated with complex diseases [25]. MethylC-capture 
sequencing (MCC-Seq) is an NGS capture approach 
that interrogates functional methylomes based on the 
NimbleGen SeqCap Epi CpGiant system with a unique 
design and long probes [26]. The technique provides 
comparable accuracy to alternative approaches but enables 
more efficient cataloguing of functional and disease-
relevant methylation variants for large-scale epigenome-
wide methylation studies [25, 26].

The current study presents MCC-Seq for the 
detection of prognostic methylation markers in AML 
and proposes a panel of 12 different functional DNA 
methylation genes.

RESULTS

MCC-Seq and study control

An outline of MCC-Seq is presented (Supplementary 
Figure 1). The sequence statistics obtained from 44 
samples are summarized in Supplementary Table 1. 

We targeted more than 5Mb CpG sites of sequence 
covering genome-CpGs-scale with a total of 240,513 
regions and a total size of 80Mb. The average percentages 
of CpG sites with coverage depths of no less than 1×, 
5×, 10×, and 20× were 92.73%, 80.32%, 67.20%, and 
43.81%, respectively. All 44 DNA samples for MCC-Seq 
(in excess of 30×) yielded 430Gb of sequence data. The 
converted rate for all samples exceeded 99.5%. A total 
of 58,147,036 (range: 40,663,694–79,302,058) clean 
reads on the average, were generated with an average of 
95.03% (range: 92.65%–98.05%) clean Q30 base rate. 
Total mapping efficiency was 92.90 % (range: 80.52%–
96.40%) and the average percentage of clean reads that 
mapped within the target CpGs was 72.32% (range: 
38.54%–85.31%).

We further performed a sample-based validation 
of MCC-Seq. Two single bone marrow samples were 
obtained from randomly selected patients with AML in 
relapse (C22 and C23) and then prepared in replicate 
experiments (S22-Rep1 and S22-Rep2; S23-Rep1 
and S23-Rep2). The effects of technical variability on 
methylation profiles were assessed by comparing the 
results of the replicates with independent captures and 
different degrees of multiplexing (≥ 1×, 5×, 10×, 20×) 
(Supplementary Materials). The results indicated highly 
concordant methylation calls for overlapping CpGs 
between S22-Rep1 and S22-Rep2, and the correlation 
improved with increasing read depth cutoffs (R = 0.959, 
0.971, 0.978, 0.985 for the cutoffs of 1×, 5×, 10×, 20×), 
similar to S23-Rep1 and S23-Rep2 (Supplementary Figure 
2).

In all subsequent population-based analyses in 37 
samples with sequence depths ≥ 5×, a total of 5,068,466 
CpGs were yielded for further consideration with an 
average sequence depth of 23.6× and a minimum of 5× 
(Supplementary Figure 3). Approximately 43.9% of 
the captured CpGs showed a hypomethylated pattern 
( < 20% methylation) and 48.5% exhibited hemi- to 
hypermethylated pattern ( > 50% methylation) in the 21 
samples with de novo AML (Supplementary Figure 4). For 
subsequent DMR analysis, a ≥ 10× coverage was required 
by removing those with below 10× coverage of sites over 
the 21 samples with de novo AML for distribution across 
all CpGs.

Correlation between DNA methylation and 
clinical features

We correlated some clinical features with 
the indicator of the DNA methylation level (DMI) 
(Supplementary Table 2) of genome-wide captured CpGs 
to determine whether a specific factor was associated with 
DMI in the 21 patients with de novo AML. Notably, the 
DMI was independent of the blast percentage of samples, 
age, gender, disease French–American–British (FAB) 
subtype, cytogenetic risk, molecular risk, and abundance 
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of somatic mutations. Meanwhile, elder patients burdened 
a significantly higher DMI (≥ 50 y vs. < 50 y, 49.39% 
± 3.43% vs. 46.75% ± 2.31%, p = 0.048) (Figure 1). 
To further assess associations between DMI and blast 
percentage of samples, we prepared DNA samples derived 
from sorted and concentration graded bone marrow 
with blast percentages of 70%, 80%, 90% and 100% of 
patient C21 (Supplementary Materials). We found a high 
correlation between each percentage of blast samples (R 

≥ 0.95) with different read depth cutoffs (Supplementary 
Figure 5).

Promoters have major different functional DNA 
methylation signatures

As MCC-Seq has a genome-wide scale coverage 
of CpGs, the DNA methylation signature of different 
genomic features (i.e. all CpGs, CpG islands, promoters, 

Figure 1: DMI of genome-wide captured CpGs detected in diagnosis were independent of clinical features. (A-B) Scatter 
plots of DMI (%) compared to patient percentage blast of samples (A) and ages (B). (C-H) Box plots of DMI (%) grouped by patient gender 
(C), FAB disease classification (D), cytogenetic risk status (E), molecular risk status (F), number of somatic mutations (G), and age divided 
by 50 years old (H). Pearson correlation was used to determine r, and Student’s t test or one-way ANOVA was used for mean tests.
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exons, exon 1, introns, enhancers, 5’untranslated region 
(5’UTR), etc.) (Supplementary Table 2) was compared 
among different clinical groups. Comparison of the DMI 
of these genomic features between de novo AML and 
normal bone marrow (NBM) indicated that only the DMI 
in promoters and enhancers were significantly higher in 
AML (p = 0.025 and p = 0.021, respectively) (Figure 2A). 
Furthermore, a significant decrease in DMI in promoters 
(p = 0.018) was observed but not in enhancers (p = 0.145) 
by comparing the results from 8 paired samples (complete 
remission 1 (CR1) samples vs. diagnosis samples) (Figure 
2B). Comparison of results from 3 other paired samples 
indicated that the DMI in promoters was similar between 
diagnosis and relapsed samples (p = 0.305). These results 
could indicate that the DNA methylation signature in 
promoters was representative in AML and associated with 
clinical response.

We compared the number of differentially 
methylated regions (DMRs) in mainly functional elements 
(promoter, exon 1, enhancer, 5’UTR) between de novo 
AML samples and NBM; the DMRs had the greatest 
number of promoters (60.9%, 669/1099, p < 0.001), which 
mainly consisted of hyper-DMRs (75.0%, 502/669, p < 
0.001) (Figure 2C). We also compared the DMRs among 
different cytogenetic risk groups and molecular risk 

groups within AMLs, then annotated genes that refered 
to these DMRs in functional elements (mainly in the 
promoter and enhancer regions)—that is, differentially 
methylated genes (DMGs) [22]. The results demonstrated 
that most DMGs were associated in promoters (p < 0.001) 
(Figure 2D, Supplementary Table 3). Thus, these results 
indicated that promoters have major different functional 
DNA methylation signatures, which were associated 
with established genetic prognostic stratifications. We 
subsequently explored prognostic methylation markers 
according to the DNA methylation signatures in promoters.

Differentially methylated genes associated with 
established prognostic stratification

A diagram illustrating the generation and validation 
of annotated DMGs according to the DMRs in promoter 
regions is summarized (Figure 3). To identify unfavorable 
genes with hyper DNA methylation and develop a 
molecular risk panel that incorporated both epigenetic and 
genetic prognostic information, we compared the DMRs 
in promoters among the different cytogenetic risk groups 
and molecular risk groups of 21 patients with de novo 
AML patients, both poor vs. intermediate, intermediate vs. 
good and poor vs. good subgroups. A total of 100 hyper-

Figure 2: Promoters have major different functional DNA methylation signatures. (A) DMI of different genomic features 
compared between de novo AML and NBM samples. Student’s t test was used for mean tests. (B) DMI of different genomic features 
compared between 8 paired de novo AML and complete remission 1 (CR1) samples. (C) DMRs in functional elements between de novo 
AML and NBM samples. (D) DMGs in promoters compared among prognostic stratifications. Cyto-risk, Cytogenetics risk; Mole-risk, 
Molecular risk.
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DMGs were generated from the comparison of cytogenetic 
risks. Meanwhile, 44 hyper-DMGs were generated from 
the comparison of molecular risks (Supplementary Table 
3). Subsequently, 18 hyper-DMGs were obtained by 
overlapping the 100 and 44 hyper-DMGs, both of which 
were associated with higher cytogenetic and molecular 
risks (Table 1).

Additional details, including the role of these 18 
genes in cancer are summarized in Table 1. Except for 3 
pseudogenes (GUCY1B2, HNRNPA1P33, and TUBA3FP), 
all of the remaining 15 genes showed the most involvement 
as tumor suppressor genes in distinct carcinomas, and 
four genes (TUBGCP2, PLEC, CLEC11A, and BARD1) 
were associated with AML. In addition, 7 genes (PLEC, 

LSP1, IL18, IGF1, FOXD2, DEFB1, and CLEC11A) 
were reportedly regulated by DNA methylation. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways analysis were performed 
for the remaining 15 genes and 2 genes (MIR3150B and 
MIR4638) had no molecular function. We downloaded the 
DNA methylation datasets of AML for the 18 genes from 
The Cancer Genome Atlas (TCGA) data portal; however, 
no DNA methylation results on 5 genes (HNRNPA1P33, 
TUBA3F, MIR3150B, MIR4638, and PLEC) were 
available. Six genes were excluded due to pseudogenes, 
no molecular function, or no results in TCGA. A panel 
of 12 functional DMGs (BARD1, BCL9L, CLEC11A, 
DEFB1, FOXD2, IGF1, IL18, ITIH1, LSP1, P2RX6, 

Figure 3: Diagram of the generation and validation of differentially methylated genes according to the DMRs in 
promoter. N, number of patients; n, number of genes; * , 4 genes were doubly counted, 2 of which were pseudogenes and the other 2 were 
without molecular functions in GO and KEGG analysis.
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Table 1: 18 hyper-DMGs associated with higher cytogenetic and molecular risks

Gene symbol Full name Chr. location Role in cancer ID in NCBI 
gene database

BARD1 BRCA1 associated 
RING domain 1 2q35 Down-regulation in MDS with progression 

to AML, tumor suppressor genes [27] 580

BCL9L B-cell CLL/lymphoma 
9-like 11q23.3 Down-regulation associated with tumor cell 

migration in ovarian cancer [28] 283149

CLEC11A C-type lectin domain 
family 11 member A 19q13.33

Hyper-methylation in pancreatic cancer 
[29]; Associated with leukemia cell 
proliferation [30]

6320

DEFB1 defensing beta 1 8p23.1
DNA methylation-mediated down-
regulation in prostate cancer [31]; tumor 
suppressor genes [32]

1672

FOXD2 forkhead box D2 1p33
DNA methylation-mediated down-
regulation in colorectal cancer [33]; tumor 
suppressor genes [34]

2306

GUCY1B2a
guanylate cyclase 1 
soluble subunit beta 2 
(pseudogene)

13q14.3 Pseudogene 2974

HNRNPA1P33a
heterogeneous nuclear 
ribonucleoprotein A1 
pseudogene 33

10q11.22 Pseudogene 728643

IGF1 insulin like growth 
factor 1 12q23.2 Hyper-methylation involved in solid 

tumor [35] 3479

IL18 interleukin 18 11q23.1 Dual role involved in solid tumor [36, 37] 360

ITIH1 inter-alpha-trypsin 
inhibitor heavy chain 1 3p21.1 Down-regulation involved in solid tumor 

[38] 3697

LSP1 lymphocyte-specific 
protein 1 11p15.5 Regulated by DNA methylation [39];

Low expression in breast cancer [40] 4046

MIR3150Ba microRNA 3150b 8q22.1 High expression in breast tumor [41] 100500907

MIR4638a microRNA 4638 5q35.3 High expression in breast tumor [41] 100616342

P2RX6 purinergic receptor 
P2X 6 22q11.21 Regulated by p53, role in cancer 

unknown [42] 9127

PLECa plectin 8q24.3 With genetic and epigenetic alterations in 
AML [43] 5339

RNASE3 ribonuclease A family 
member 3 14q11.2 Low expression in pancreatic cancer [44] 6037

TUBA3FPa tubulin alpha 3f 
pseudogene 22q11.21 Pseudogene 113691

TUBGCP2
tubulin gamma 
complex associated 
protein 2

10q26.3 High expression in AML [45] 10844

a These 6 genes were excluded for clinical validation.
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RNASE3, and TUBGCP2) associated with established 
genetic prognostic stratification were generated, and the 
prognostic significance was evaluated (Figure 3).

Validation of 12-DMG panel for clinical 
implications

We calculated the DNA methylation level of 
individual patients, based on the 12 DMGs. The M-value, 
which was the mean DMI of 12 DMGs for individual 
patients, was obtained. The clinical impact of M-value 
was then tested in 21 patients with AML in our study and 
validated in 169 patients with AML in the TCGA study.
M-value is not associated with patient characteristics

We correlated some clinical features with the 
M-value of the 12 DMGs to determine whether a specific 
factor was associated with the M-value both in the study 
set and TCGA set. Similarly, the M-value was independent 
of the age, gender, and blast percentage of the samples, 
similar to the DMI in all captured CpGs. However, 
patients with a higher cell differentiation subtype of FAB 
in the TCGA set burdened a higher M-value (p < 0.001) 
(Supplementary Figure 6).
M-value is significantly associated with AML genetic 
characteristics

Given the relationship of genetic characteristics 
and outcome in AML, we assessed the association of the 
M-value with AML genetic characteristics. In both the 
study set and the TCGA set, the M-value was shown to 
significantly improve with increasing cytogenetic and 
molecular risk stratifications (Table 2, Supplementary 
Figure 7). Moreover, unsupervised analysis using 
hierarchical clustering suggested that the patients in the 
study could be segregated into 3 groups (cluster 1, n = 
7; cluster 2, n = 10; cluster 3, n = 4) according to the 
methylation profiles of these 12 DMGs (Figure 4A). The 
M-values of these 3 clusters were significantly different 
(26.59% ± 4.36% vs. 41.08% ± 4.72% vs. 68.47% ± 
4.33%, p = 0.001). Notably, all 5 patients with good-
risk cytogenetics were in cluster 1 with a low M-value; 2 
patients with poor-risk cytogenetic were in cluster 3 with 
a high M-value; and 10 of 14 patients with intermediate-
risk cytogenetics were in cluster 2 with an intermediate 
M-value. Four patients with cytogenetics intermediate-
risk group (S01, S03, S15, S17-1) were assigned to low 
M-value cluster 1 (S03, S17-1) and high M-value cluster 
3 (S01, S15). Hierarchical clustering of 169 patients with 
AML from the TCGA data portal showed that patients 
could be segregated into 2 groups (cluster 1, n = 98; 
cluster 2, n = 71) according to the methylation profiles 
of these 12 DMGs (Figure 4B). The M-value of these 2 
clusters were significantly different (47.22% ± 4.32% vs. 
59.11% ± 5.42%, p < 0.001). Notably, 79 of 108 patients 
with intermediate-risk cytogenetic were assigned to cluster 
1 with a low M-value, whereas 29 patients were assigned 

to cluster 2 with a high M-value, similarly to the case 
with molecular intermediate risk (79 to cluster 1 and 22 
to cluster 2). These results suggested a high consistency 
between the DNA methylation profiles of 12 DMGs and 
the genetic signature for AML prognosis. Interestingly, 
some patients with intermediate-risk cytogenetics group 
could be distinguished by the M-value, which could 
further improve the prognosis stratification.
M-value is associated with AML induction remission

The mean M-value for patients in CR was lower 
than that for patients with no response (NR) (37.42% ± 
15.79% vs. 49.69% ± 12.51%, p = 0.09). To further assess 
the association between the M-value and CR, we divided 
the study set of 21 patients with AML to the low M-value 
group (n = 11) and the high M-value group (n = 10) 
according to the median of the M-value (Supplementary 
Table 4). Approximately, 90.9% (10/11) of the patients 
achieved CR in the low M-value group, which was 
significantly higher than that in the high M-value group 
40.0%, 4/10; p = 0.024). Moreover, 5 of 6 (83.3%) 
intermediate-risk AML (IR-AML) with a low M-value 
achieved CR, whereas only 3 of 8 (37.5%) IR-AML 
with a high M-value achieved CR. We also found that 
the CR rate remained the same regardless of the regimen 
received by the patients—that is, the standard “7+3” 
regimen or the “decitabine + cytarabine + aclarubicin + 
granulocyte colony-stimulating factor” (DCAG) regimen 
(Supplementary Table 4). These results indicated that 
patients with a low M-value were more likely to achieve 
CR in both total AML and IR-AML, independent of the 
induction regimen. This finding could not be verified in 
the TCGA set because of lack of information regarding 
induction remission response.
M-value is associated with survival

The relationship between M-value and survival was 
also examined both in the study set and the TCGA set 
(Figure 5). The patients were divided into the low M-value 
group and the high M-value group, as determined by the 
median of the M-value in each data set (Supplementary 
Table 5). First, the median overall survival (OS) / disease-
free survival (DFS) and 1-year cumulative OS/DFS of the 
21 patients with AML were 23.8 months/not defined and 
78.9%/69.1%, respectively (Table 3). A high M-value was 
associated with increased hazard for DFS alone (HR: 6.83, 
95%CI: 1.07–40.28) (Figure 5C). The values obtained for 
the low M-value group and the high M-value group were 
as follows: median OS, not defined and 14.93 months (p 
= 0.062); DFS, not defined and 10.97 months (p = 0.039); 
1-year cumulative OS, 88.9% and 68.6% (p = 0.145); and 
DFS, 90.9% and 30.0% (p < 0.001), respectively (Figure 
5A, 5C).

In the TCGA set, the high M-value group obtained a 
significantly poor OS than that of the low M-value group 
(median OS: 15.1 months vs. 16.4 months; HR: 1.491, 
95%CI: 1.043-2.151, p = 0.038) (Figure 5B). A trend 
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in unfavorable prognosis for DFS without significant 
difference was observed in the high M-value group 
(median DFS: 13.8 months vs. 16.6 months; HR: 1.251, 
95%CI: 0.822-1.920, p = 0.296) (Figure 5D). In addition, 
the high M-value group showed significantly lower 
2-year OS and DFS (OS: 35.9% vs. 45.9%, p = 0.001; 
DFS: 30.2% vs. 44.2%, p < 0.001). The M-value based 
risk was meaningful for OS (p = 0.038, Figure 5B), and 
treatment with hematopoietic stem cell transplantation 
(HSCT) significantly improved OS (HSCT vs. no HSCT, 
median OS: 27 months vs. 7.7 months; HR: 0.4846, 
95%CI: 0.3214-0.6738, p < 0.0001, Supplementary Figure 
8A); thus, we assessed whether HSCT alters the M-value 
based risk. The results indicated that HSCT and survival 
outcomes were not adversely affected by the high M-value 
(p = 0.271, Supplementary Figure 8B), which suggested 
that the adverse prognostic effect of a high M-value could 
be mitigated by HSCT.

DISCUSSION

In this study, genome-wide MCC-Seq was primarily 
used to detect prognostic DNA methylation markers in 
patients with AML. The sequencing profile showed a good 
converted rate (> 99.5%), clean Q30 base rate (95.03%), 
mapping efficiency (92.90%), and a high concordance of 
replicate experiments. These results indicated that MCC-
Seq is stable, reproducible and suitable for the analysis 
of bone marrow samples. By a series of comparative 
screening, a panel of 12 DMGs was identified with 
promoter hyper-DMRs associated with the outcome. A 
high M-value was associated with failure to achieve CR 
and poor survival, and its adverse prognostic effect could 
be mitigated by HSCT.

MCC-Seq is a NGS capture approach with the 
quantitative detection of DNA methylationn level 
(defined as DMI). To promote the clinical application 

of MCC-Seq in AML, we assessed the potential factors 
that could influence the DMI, which was found to be 
not associated with patient characteristics (e.g., age, 
gender, blast percentage of samples, FAB classification, 
etc.). Independent of blast percentage, DMI was further 
confirmed by bone marrow grading with different blast 
percentages from the same sample. These results were 
consistent with previous studies despite the differences in 
AML cohort, methods of detection and analysis, genomic 
regions analyzed, and DNA methylation index [10, 13, 46, 
47]. Thus, BM blasts were regarded as a mere index of 
disease burden that, exerted no influence on methylome 
analysis. The reason was unclear and could suggest that 
DNA methylation assays reflect aberrant methylation in 
both blasts and more differentiated myeloid cells derived 
from leukemic precursors [13, 46]. The independence and 
stability of DNA methylation analysis renders it suitable 
as a prognostic biomarker in AML.

DNA methylation is important for gene silencing 
via the hypermethylation of CpG islands in promoter 
regions [48]. The DNA promoter regions of critical tumor 
suppressor genes are inactivated via hypermethylation, 
which seems to significantly influence the pathogenesis 
and prognosis of AML [49, 50]. Recent DNA methylome 
studies demonstrated that multi-locus DNA methylation 
assay in promoters can predict outcomes in de novo AML 
[7, 12–14]. Meanwhile, some studies revealed more 
diverse DNA methylation functions dependent on genomic 
location, particularly in enhancers [10, 24, 48, 51]. In the 
current study, with a genome-wide scale coverage of CpGs 
by MCC-Seq, the DNA methylation signature of different 
genomic features was evaluated to avoid regional bias. 
Consequently, promoters obtained a significantly higher 
DMI in de novo AML (p = 0.025) and was significantly 
lower in CR1 (p = 0.018). The most number of DMRs 
and DMGs were distributed in promoters compared 
with other regions (p < 0.001). These results collectively 

Table 2: Correlation between M-value and genetic risk stratifications

 Study set (n = 21) TCGA set (n = 169)

Cytogenetic risk   

Good 27.89% ± 4.42% (n = 5) 47.01% ± 4.59% (n = 19)

Intermediate 42.31% ± 13.01% (n = 14) 51.96% ± 7.28% (n = 108)

Poor 69.96% ± 6.95% (n = 2) 55.23% ± 8.17% (n = 42)

P value 0.001 0.000

Molecular risk   

Good 32.01% ± 6.69% (n = 8) 47.01% ± 4.59% (n = 19)

Intermediate 45.61% ± 18.76 (n = 6) 52.19% ± 7.41% (n = 101)

Poor 48.84% ± 16.38 (n = 7) 54.29% ± 8.03% (n = 49)

P value 0.047 0.002
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Figure 4: Hierarchical clustering of the study set (A, n = 21) and the TCGA set (B, n = 169) according to their methylation profiles of the 
12 DMGs grouped by clusters, cytogenetics risk stratifications and molecular risk stratifications, respectively.
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indicated that promoters have major different functional 
DNA methylation signatures in AML, as demonstrated in 
previous and recent studies [6, 9, 10, 12, 47].

AML is a complex disease with genetic and 
epigenetic changes [3, 10]. However, classification and 
prognostication of the disease for AML patients have 
thus far been largely dependent on cytogenetic and 
genetic testing (recurrent somatic mutations), whereas 
epigenetic changes, including DNA methylation, have 
not been considered [1]. Marcucci et al. were the first 
to integrate genetic and epigenetic information for 
prognostication and treatment response prediction in AML 
[12]. They reported a gene expression score involving 7 
oncogenes associated with somatic mutations and DNA 
methylation for a meaningful prognosis. The limitation 
was that the genes were derived from a cohort of older 
patients with cytogenetically normal AML (CN-AML) 
and only validated in CN-AML sets. The present study 
encompassed both genetic (cytogenetic risk and molecular 
risk) and epigenetic (DNA methylation) information from 
a new standpoint to develop a novel prognostic gene panel 
in all non AML-M3 subtypes. On the basis of cytogenetic 
and molecular risk stratification, we identified DMRs 
and DMGs to select hypermethylated genes in higher-
risk stratification subgroups. To ensure the accuracy and 
reliability of these hyper-DMGs, 18 overlapping hyper-
DMGs associated with both increased risk of cytogenetics 
and molecular stratification were obtained. A panel of 
12 DMGs with a strict selection process was formed. 
Most of these genes acted as tumor suppressors in cancer 
and were regulated by DNA methylation (Table 1), 

which was consistent with our screening process (genes 
hypermethylated in the higher-risk group).

The prognostic value of these 12 DMGs was 
evaluated in the study set and the TCGA set. The M-value 
of the 12 DMGs was significantly associated with AML 
genetic characteristics. Consistent with previous studies, 
the M-value obtained in the present study not only 
predicted CR rates and DFS or OS duration in all patients 
with AML but also represented the prognostic value for 
patients in CR with IR-AML [10, 12–14]. Luskin et al. did 
not assess whether HSCT alters their DNA methylation-
based risk because of insufficient power in their cohort 
[13]. In the current study, we investigated this issue by 
using the M-value-based risk in 81 patients with HSCT 
from the TCGA set. The results indicated that HSCT may 
mitigate the adverse prognostic effect of high M-value. 
High M-values were associated with failure to achieve CR 
and with poor OS or DFS; however, patients with high 
M-values could benefit from HSCT, which is clearly an 
essential area of future investigation.

In summary, genome-CpGs-scale detection of 
prognostic methylation markers by MCC-Seq is feasible 
and revealed an M-value for 12 genes that could be used as 
a valuable biomarker for risk stratification. The M-value 
is suitable for all patients with AML, particularly those 
without genetic and molecular markers. It is expected to 
be used as a biomarker to guide demethylation therapy. 
Patients predicted to have poor outcomes based on high 
M-value may benefit from more intensive post-remission 
treatment (e.g., HSCT) or enrollment in a clinical trial. 
None of these 12 genes were reported in other prognostic 

Figure 5: Kaplan-Meier curves for low and high M-value groups. (A, C) overall survival (OS) and disease-free survival (DFS) 
of the study set; (B, D) OS and DFS of the TCGA set.
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Table 3: Patient and sample characteristics

Patient characteristics N = 21

Age (y) 45.71 ± 16.50

Male sex: no. (%) 7 (33.3)

AML FAB subtype: no. (%)  

AML with maturation: M2 4 (19.0)

Acute myelomonocytic leukemia: M4 9 (42.9)

Acute monoblastic or monocytic leukemia: M5 7 (33.3)

Acute erythroid leukemia: M6 1 (4.8)

AML WHO subtype: no. (%)  

AML, NOS 8 (38.1)

AML with t(8;21)(q22;q22.1) 3 (14.3)

AML with MDS-related changes 2 (9.5)

AML with biallelic mutations of CEBPA 4 (19.1)

AML with CBFB-MYH11 2 (9.5)

AML with mutated NPM1 2 (9.5)

Bone marrow blasts at diagnosis:% 64.46 ± 19.98

Normal cytogenetic profile: no. (%) 9 (42.9)

Whitecell count at diagnosis: per mm3  

Mean 21,822 ± 34,371

Median (range) 11,390 (590, 137,630)

Cytogenetic risk group: no. (%)  

Good 5 (23.8)

Intermediate 14 (66.7)

Poor 2 (9.5)

Molecular risk group: no. (%)  

Good 8 (38.1)

Intermediate 6 (28.6)

Poor 7 (33.3)

Remission induction: no. (%)  

7+3* 9 (42.9)

DCAG# 12 (57.1)

Response: no. (%)  

Complete remission (CR) 14 (66.7)

No response (NR) 7 (33.3)

Median follow-up (OS/DFS) 12.9 Months/ 10.0 Months

1-year Cumulative OS 78.9% ± 9.6%

1-year Cumulative DFS 69.1 ± 12.3%

Median OS 23.8 Months

Median DFS /
(Continued )
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studies based on methylation status [7, 9, 10, 13, 14]. 
However, methodologic differences prevented a direct, 
meaningful comparison of our integrated genetic risk 
and different DNA methylation prognostic markers with 
previously reported results. Our conclusions are currently 
limited, given the small size of the cohort study. The 
prognostic value of the M-value has to be verified in 
future larger-scale studies.

MATERIALS AND METHODS

Ethics statement

The study protocol was approved by the author’s 
institutional ethics committee, the Ethics Committee of 
the General Hospital of Chinese People’s Liberation Army, 
and was conducted in accordance with the Declaration of 
Helsinki. Written informed consent was obtained from 
each participant prior to specimen collection.

Patients and samples

A total of 21 patients with de novo AML, 2 
patients with AML in relapse, and 5 healthy donors for 
related allogeneic HSCT who visited our hematology 
department between August 2014 and June 2016 were 
enrolled in the study. DNA samples from bone marrow 
and clinical information were collected (Supplementary 
Materials). A total of 35 samples from the bone marrow 
of 21 adult patients with AML (non AML-M3) were 
obtained. In addition, four replicate samples were obtained 
from another set of 2 randomly selected relapsed AML 
patients, and 5 samples from NBM were obtained. The 
characteristics of the patients with de novo AML and all 
samples are fully described in Table 3  and Supplementary 
Table 6. The diagnosis and prognosis of AML were based 

on World Health Organization 2016 classification and the 
AML guidelines of the National Comprehensive Cancer 
Network (NCCN; AML, Version 1.2017; http://www.
nccn.org/). The 21 patients consisted of 14 women and 7 
men with a median age of 50 y (range, 18-73 y). Median 
follow-up was 12.9 months (range, 4.6-24.1 months) for 
OS and 10.0 months (range, 3.6-22.9 months) for DFS.

MCC-Seq protocol

A total of 44 DNA samples were used for MCC-
Seq (Table 3). The concentration and integrity of DNA 
were detected by electrophoresis to confirm the quality. 
In MCC-Seq, a whole-genome methylation sequencing 
library is prepared with the qualified DNA samples, 
bisulfate-converted, and amplified, followed by a capture 
enriched for targeted bisulfite-converted DNA fragments. 
This process is achieved using the novel SeqCap Epi probe 
design platform developed by Roche NimbleGen. This 
platform enables the capture of double-stranded targets 
regardless of their methylated state via high-density tiling 
of probes [22, 25]. Each capture was sequenced on a single 
lane of the 125 bp paired-end Illumina HiSeq2500 System 
(Supplementary Materials).

MCC-Seq methylation analysis

The glossaries used in this study are summarized in 
Supplementary Table 2. Raw sequence reads were filtered 
to remove adapter contamination and poor-quality reads. 
Clean sequences were first mapped to the human genome 
(build GRCh37) by using Bismark (v0.10.1; parameters: 
–pe, –bowtie2, –directional, –unmapped). Methylation 
calls were extracted after duplicate sequences had been 
excluded. DMRs were analyzed in R 3.1.0 by using 
the methylKit package. The minimum read coverage 

Sample characteristics N = 44

NBM N = 5

AML samples N = 39

De novo 21

Paired complete remission (cycle 1) 8

Paired relapsed 3

Concentration gradients 3

Reduplicate 4

* “7+3”, standard induction regimens based on a backbone of cytarabine plus an anthracycline, with details according to the 
NCCN guideline for AML.
# DCAG, decitabine 20mg/m2 d1-5, cytarabine 10mg/m2 q12h d1-5, aclarubicin 20mg d1, 3, 5, G-CSF 300μg/d until 
recovery from neutropenia.
FAB, French–American–British; WHO, World Health Organization; OS, overall survival; DFS, disease-free survival; 
NBM, normal bone marrow.
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to call a methylation status for a base was set to 5. All 
off-target reads were removed. The methylation level at 
each site was determined by dividing the number of reads 
supporting methylation for that site by the total number of 
reads covering that site. CpGs were included in subsequent 
analyses if the number of sequence reads was 5 or greater. 
Data visualization and analysis were performed using 
Integrative Genomics Viewer, custom R, and Perl scripts 
(Supplementary Materials).

To ensure the reliability of the sequencing results 
without bias, both the technicians and bioinformatics 
analyst were blinded to the clinical information of the 
samples.

Analyses of DNA methylation data from TCGA 
AML cohort

TCGA performed profiling using Illumina Infinium 
HumanMethylation450 BeadChip for 194 samples of 
200 clinically annotated adult cases of de novo AML 
[3]. Clinical data and DNA methylation datasets for the 
AML cohort are publicly available through the TCGA data 
portal (https://tcga-data.nci.nih.gov/tcga/). The MCC-Seq 
platform targets the same set of genes as the 450K (99% 
of RefSeq genes) [15, 22]; thus, we included 169 patients 
with non AML-M3 with complete cytogenetic/molecular 
risk information and DNA methylation profiles into this 
study to validate the correlation of DNA methylation and 
clinical features (Supplementary Table 7).

Statistical analyses

The demographics and characteristics were 
summarized using descriptive statistics. Student’s t 
test or the Mann-Whitney U-test were used to compare 
continuous variables. Categorical variables were compared 
using the Fisher’s exact test or Chi-square test. Outcome 
measures were assessed using Kaplan-Meier estimates in 
a univariate analysis. OS was defined as the time from 
diagnosis to death from any cause or last follow-up. DFS 
was defined as the time from CR to the date of relapse, 
death, or last follow-up. A two-sided p-value < 0.05 was 
considered statistically significant. All statistical analyses 
were performed with SPSS software version 19.0 (IBM 
Corp., Armonk, NY, USA), GraphPad Prism 6 (GraphPad 
Software Inc., San Diego, California, USA).
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