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ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most prominent type of kidney 
cancer in adults. The patients within metastatic ccRCC have a poor 5-year survival 
rate that is less than 10%. It is essential to identify ccRCC -related genes to help 
with the understanding of molecular mechanism of ccRCC. In this literature, we 
aim to identify genes related to ccRCC based on a gene network. We collected gene 
expression level data of ccRCC from the Cancer Genome Atlas (TCGA) for our analysis. 
We constructed a co-expression gene network as the first step of our study. Then, 
the network sparse boosting approach was performed to select the genes which are 
relevant to ccRCC. Results of our study show there are 15 genes selected from the all 
genes we collected. Among these genes, 7 of them have been demonstrated to play 
a key role in development and progression or in drug response of ccRCC. This finding 
offers clues of gene markers for the treatment of ccRCC.

INTRODUCTION

Renal cell carcinoma (RCC) is eighth highest cause 
of cancer mortality in adults, counting for almost 3% of 
all human malignancies [1]. Clear cell RCC (ccRCC), the 
most common type of RCC, accounts for about 80% of 
RCC cases [2–4]. Most of ccRCC patients usually present 
initially with localized disease, treated with surgery. But 
unfortunately, approximately 30% of ccRCC patients 
with localized disease eventually develop metastases that 
leads to a poor 5-year survival rate that is less than 10% 
[5]. With the advent of advanced development of gene 
sequencing technology, many studies have focused on 
the molecular mechanism of cancers aimed to understand 
insight of cancers. As for ccRCC, there are evidences 
showing that some important genes play key roles in 
ccRCC tumor like frequent mutation or methylation of the 

tumor suppressor gene (VHL) [6], frequent mutations of 
PBRM1, BAP1, SETD2 and KDM5C genes [7–9].

In genomic cancer studies, gene network analysis 
is useful to help researchers to understand the biological 
function and development of cells and organisms. Gene 
network analysis can be informative sometimes because 
it can describe not only whether there is a connection 
between two genes but also the strength of the connection 
which is more accurately to present complex interactions 
like co-expression or regulatory connection between 
genes. Previous studies about ccRCC have focused on 
the differentially expression genes only which potentially 
serve role in the ccRCC [10, 11], or on identification 
of genes which express differentially associated with 
metastasis in ccRCC [12]. Although many studies about 
ccRCC have large of scale efforts, little of studies use gene 
network to reveal molecular mechanism of ccRCC.
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Thus, in this literature, we aim to identify 
gene markers associated with ccRCC on the basis on 
constructing a gene co-expression network. First, we 
identify the differentially expressed genes between normal 
samples and ccRCC tumor samples. Subsequently, a gene 
co-expression network was constructed to reveal the 
behind biological functions among differentially genes. 
Genes related to ccRCC were identified using the Network 
Sparse Boosting approach [13]. The results of this study 
may help to understand the molecular mechanism of 
ccRCC and also offer potential markers for ccRCC 
treatment or drug development.

RESULTS

The differentially expressed genes

For our analysis, we did differential genes analysis 
first to reduce the dimension. 1691 genes from the initial 
20532 genes which was collected form the TCGA. In these 
1691 genes, 932 genes displayed up-regulated between 
normal samples and tumor samples, and 759 genes 
displayed down-regulated. To reduce noise, we removed 

genes whose expression estimates with counts in less than 
20% of cases. 1675 genes were kept from this step.

Gene co-expression network construction

The 1675 node (genes) were used to construct a 
weighted gene co-expression network (WGCNA). To 
define the adjacency matrix A in the network, we need to 
determine the value of β to transfer similarity matrix into 
adjacency matrix. Figure 1 shows the trend of β value, 
according to WGCNA, we chose 7 as the soft threshold, 
which is the lowest power for which the scale-free 
topology fit index curve flattens out upon reaching a high 
value (in our data set, roughly 0.904).

According to WGCNA, genes were finally divided 
into multiple modules (subnetworks) and genes in the 
same module may have similar biological functions. All 
1675 genes were divided into 16 modules using WGCNA 
approach. Each module was represented by one color 
where the gray module which contained 71 genes was a 
noise module which was ignored. Thus, we kept the 15 
modules except the grey module for our further analysis. 
To visualize the gene co-expression network, we used 

Figure 1: Analysis of network topology for various soft-thresholding powers. The left panel shows the scale-free fit index 
(y-axis) as a function of the soft-thresholding power (x-axis). The right panel displays the mean connectivity (degree, y-axis) as a function 
of the soft-thresholding power (x-axis).
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Circos software (http://circos.ca) to display the network 
(Figure 2).

Gene functional annotation and Gene Ontology 
(GO) enrichment analysis for 15 modules

Gene functional annotation and Gene Ontology 
(GO) enrichment analysis for genes in 15 modules 
identified above discovered the behind biological 
function of each module by using DAVID 6.7 online tool. 
According to the results of GO enrichment analysis, each 
module related to different biological functions.

For instance, module1 which had 215 genes, a 
significant number of these 215 genes were related with the 
cellar component, (e.g. GO:0031224~intrinsic to membrane, 
p-value=4.54E-04, 31.58% (66/215) GO:0016021~integral to 
membrane, p-value= 0.002, GO: 0005886~plasma membrane, 
p-value=1.34E-04, GO:0044459~plasma membrane 
part, p-value=5.08E-05, GO:0005887~integral to plasma 
membrane, p-value=0.003, GO:0031226~intrinsic to plasma 
membrane, p-value=0.004, GO:0005576~extracellular region, 
p-value=0.002), transport function, (e.g. GO:0006811~ion 
transport, p-value=6.02E-06, GO:0006812~cation transport, 
p-value =0.0002, GO:0055085~transmembrane transport, 

Figure 2: The graph for module4 in gene network using Circos software. The links in center of the graph are edges which is 
greater than 0.5 between genes in the network. The histogram in the circle are the log-foldchange values of differentially expressed genes 
in network.

http://circos.ca
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p-value=0.0002, GO:0022803~passive transmembrane 
transporter activity, p-value=0.00015, GO:0030001~metal ion 
transport, p-value=0.0036), cell signal,(e.g. GO:0007267~cell-
cell signaling, p-value= 0.0089, GO:0007166~cell surface 
receptor linked signal transduction, p-value=0.04), channel 
activity (e.g. GO:0015267~channel activity, p-value=0.001, 
GO:0022838~substrate specific channel activity, p-value= 
0.001, GO:0005216~ion channel activity, p-value= 0.003). 
For module2, containing 107 genes, a part of these genes 
were related to ion binding (e.g. GO:0046872~metal ion 
binding, p-value= 0.032, GO:0043169~cation binding, 
p-value= 0.037, GO:0043167~ion binding, p-value= 0.044, 
GO:0005509~calcium ion binding, p-value= 1.27E-05), cell 

process (e.g. GO:0042127~regulation of cell proliferation, 
p-value=0.005, GO:0042981~regulation of apoptosis, 
p-value=0.044, GO:0043067~regulation of programmed 
cell death, p-value=0.046, GO:0010941~regulation of 
cell death, p-value= 0.047), and extracellular region(e.g. 
GO:0005576~extracellular region, p-value=0.0002, 
GO:0044421~extracellular region part, p-value= 4.43E-05, 
GO:0005578~proteinaceous extracellular matrix, p-value= 
2.09E-05, GO:0031012~extracellular matrix, p-value= 3.96E-
05). Functional enrichment information for the two modules 
are visualized with bar graphs (Figure 3). The results of GO 
enrichment analysis for the rest of modules were displayed in 
Supplementary Materials (Supplementary Figure 1).

Figure 3: GO annotation and enrichment plot for (A) module1, (B) module2. The colors of each annotation depict the statistical 
significance of functional enrichment and the bars show the number of target genes contained in the corresponding annotation.
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ccRCC-related gene selection based on network

In order to define the ccRCC-related genes, we 
applied the NSBoosting approach to define genes which 
is related to ccRCC based on the network. According to 
the NSBoosting algorithm, 500 iterations were performed 
for each module in each step. 15 genes were selected 
eventually including LOC150197, SUSD4, HLA-G, 
C4orf49, LOC338588, CYS1, COL5A1, PLAU, GDNF, 
OTOA, IGFN1, C2orf40 (also known as MGARP), 
BARX2, HOXB13, MUC12. The differentially expressed 
results of 15 genes and the estimates of genes in 
NSBoosting were showed in Table 1. The iteration process 
of NSBoosting approach were displayed in Supplementary 
Materials (Supplementary Figures 2 and 3).

We searched on PubMed (https://www.ncbi.nlm.nih.
gov/pubmed) to ensure that 15 genes were meaningful for 
ccRCC. Interestingly, 7 genes including HLA-G, COL5A1, 
PLAU, GDNF, OTOA, HOXB13 and C2orf40 were 
related with ccRCC in many ways like drug response, poor 

prognosis and so on. This results may make sure that the 
selection approach reasonable. There are still some genes’ 
function are not clear in tumors which means the functions 
of these gene in ccRCC should be further verified.

Association between 15 selected gene expression 
levels and ccRCC prognosis

To reveal association between 15 selected genes 
expression levels and ccRCC prognosis, we performed 
survival analysis. Association between 15 genes expression 
levels and ccRCC prognosis are significantly (log-rank test, 
P-value <0.05). Kaplan-Meier survival curves (Figure 4A)  
show that patients with lower expression levels of 7 
genes including BARX2, C2orf40, C4orf49, CYS1, 
GDNF, HLA-G and OTOA have better overall survival 
prognoses than those with higher expression levels of 
these 7 genes in ccRCC. Patients with higher expression 
levels of the rest 8 genes (COL5A1, HOXB13, IGFN1, 
LOC150197, LOC338588, MUC12, PLAU and SUSD4) 

Table 1: The differentially expressed results and estimates of 15 selected genes using NSBoosting approach

Gene Description Padja Log-
foldchangeb

Dysregulation 
formc

Estimatesd Pre-
reportede

LOC150197 long intergenic non-protein coding 
RNA 896

1.96E-02 3.6729 up -0.1537

SUSD4 sushi domain containing 4 1.73E-49 -3.7160 down -0.1910

HLA-G major histocompatibility complex, 
class I, G

1.20E-20 2.5233 up 0.1558 √

MGARP mitochondria localized glutamic acid 
rich protein

3.56E-07 2.8779 up 0.1602

SKA3 spindle and kinetochore associated 
complex subunit 3

1.12E-02 2.0727 up -0.2614

CYS1 cystin 1 3.51E-67 -2.0583 down 0.1817

COL5A1 collagen type V alpha 1 chain 4.17E-05 2.2068 up 0.2543 √

PLAU plasminogen activator, urokinase 4.21E-27 -2.1804 down -0.2805 √

GDNF glial cell derived neurotrophic factor 2.70E-02 -2.0430 down -0.2122 √

OTOA otoancorin 4.75E-03 2.6513 up 0.3545 √

IGFN1 immunoglobulin-like and fibronectin 
type III domain containing 1

4.33E-02 5.6544 up -0.1253

C2orf40 chromosome 2 open reading frame 40 6.17E-08 -2.2598 down 0.1457 √

BARX2 BARX homeobox 2 4.19E-42 2.5958 up 0.2343

HOXB13 homeobox B13 1.91E-02 3.5208 up -0.1159 √

MUC12 mucin 12, cell surface associated 5.97E-05 4.0677 up -0.1518

a Adjusted p-value is calculated in differential expression analysis with threshold of 0.05.
b Log-foldchange is calculated in differential expression analysis with threshold of 2.
c Dysregulation form indicates whether the corresponding gene is up- or down-regulated.
d Estimates of selected genes is calculated in NSBoosting approach.
e That a gene is pre-reported means some ccRCC-relevant research has been done before.

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
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have significantly worse overall survival prognoses than 
those with lower expression levels of 8 genes (Figure 4B). 
These results indicated that all these 15 genes are frequently 
associated with poor clinical outcomes in ccRCC.

DISCUSSION

In this study, we aim to identify ccRCC-related 
genes according raw sequencing data from TCGA based 
on the gene network effect. The construction of gene 
network provides an insight of correlation between 

genes and reveals the complex biological functions. The 
first step of our study is constructing a gene network. 
We adopt the weighted co-expression gene network to 
describe the correlation between genes. With WGCNA, 
genes are divided into multiple modules which means 
genes in the same modules tend to have a similar 
biological functions. The second step is selecting the 
key gene related to ccRCC based on the previously 
constructed network. We chose AFT model as the basic 
statistics model combing the NSBoost approach to 
identify the ccRCC-related genes.

Figure 4: Kaplan-Meier (KM) survival curves for (A) 7 genes and (B) 8 genes. KM survival curves show significant overall survival 
differences between higher-expression levels and lower-expression levels of ccRCC patients.
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There are some advantages of the approached we 
applied. We consider the complex relationships between 
genes to improve the accuracy of gene selection. Thus, we 
constructed a gene network to represent the relationship 
between genes. On the other hand, the selection approach 
is based on gene network which could make the results 
more biological meaningful.

The finally results is reasonable. 7 genes of the 
selected 15 genes, has been reported in many studies to 
be associated with ccRCC in different ways. For instance, 
Gene HLA-G has been reported before to reveal its 
expression, regulation, structure and function in renal 
cell carcinoma [14–16]. In addition, HLA-G-regulatory 
miRNAs like mir-548q and mir-628-5p were identified. 
The two overexpression miRNAs in ccRCC cell line 
caused a downregulation of HLA-G gene and protein and 
mir-548q could be able to revert to the immune escape 
of HLA-G expression tumor cells [17]. Gene C2orf40, 
also known as ECRG4, was found that it is regulated 
by DNA methylation and its downregulation in ccRCC 
is associated with poor prognosis [18], which means 
ECRG4 may be a marker for ccRCC survival. Aberrant 
promoter hypermethylation is a common mechanism 
for inactivation of tumor suppressor genes in cancer 
cells. Gene PLAU, plasminogen activator, urokinase, 
was showed that cancer cell-specific methylation in 
RCC cell lines [19]. Gene COL5A1, has shown that 
its deregulated level was caused by mir-25-3p in renal 
cancer. This may influencing cancerous adhesion [20]. 
Moreover, Okuda and co-authors [21] found that the 
methylation status of HOXB13 correlated with the loss of 
its expression both in RCC lines and primary tumors, and 
methyltransferase inhibitor treatment induced the recovery 
of its expression. Exogenous expression of HOXB13 in 
RCC cells that lacked endogenous HOXB13 expression 
suppressed colony formation and induced apoptotic 
features. Furthermore, HOXB13 methylation correlated 
positively with tumor grade and microvessel invasion. 
These results suggest that HOXB13 is a novel candidate 
tumor suppressor gene in RCC and that its inactivation 
may play an important role in both RCC tumorigenesis 
and progression. As for drug response, gene GDNF is 
associated with cellular targets of sorafenib, the first oral 
multikinase inhibitor that targets Raf and affects tumor 
signaling and the tumor vasculature [22]. The rest part of 
15 genes have not been reported to relevant with ccRCC 
yet, but need to be further validated to play a role in renal 
clear cell carcinoma.

MATERIALS AND METHODS

Materials

We collected the mRNA-Seq gene expression 
data (Level 3) and clinical data for the Kidney Renal 
Cell Carcinoma (KIRC) form the Cancer Genome Atlas. 

Both the two types data were download form Firehose 
(http://firebrowse.org). For mRNA-Seq data, raw counts 
workflow type was used with 537 samples of mRNA 
expression data. For clinical data, 537 sample with 
sufficient clinical information were used. Before our 
analysis, data processing was done first as follows:

First, the normal sample (68 cases in mRNA set) 
and tumor samples (469 cases) were identified. Second, 
the tumor samples were matched among mRNA data and 
clinical data. A data set that consists of a total 469 tumor 
samples with these two types data was available.

Detection of differentially expressed genes

We identified differentially expressed genes between 
normal samples and tumor samples for KIRC first for 
our analysis with Deseq R package [23]. We used the 
threshold of adjusted p-value <0.05 and log-foldchange 
>2 to identify the differentially expressed genes.

Gene expression data normalization

As read counts follow a negative binomial 
distribution, which has a mathematical theory less 
tractable than that of the normal distribution, RNA-seq 
data was normalized with the voom methodology [24]. 
The voom method estimates the mean-variance of the 
log-counts and generates a precision weight for each 
observation. This way, a comparative analysis can be 
performed with all bioinformatic workflows originally 
developed for microarray analyses.

Gene co-expression network construction

There are multiple ways to construct gene networks. 
In this study, we used the WGCNA approach [25] to 
construct a biological meaningful gene network. Many 
studies have constructed gene co-expression network using 
WGCNA approach like Giulietti et al, 2016; Sundarrajan 
et al, 2016 [26, 27]. The WGCNA approach is built on 
the understanding that the coordinated co-expression of 
genes encode interacting proteins with closely related 
biological function and cellular processes. According to 
the WGCNA, genes which have similar functions will 
be grouped in a module. The hub genes in a module, 
which are “well connected” with other a lot of genes, 
may be have important biological functions. Different 
modules in the network tend to have different biological 
functions. The algorithm of WGCNA was implemented 
by R package WGCNA [28] to construct the weighted co-
expression network.

Gene functional annotation and Gene Ontology 
(GO) enrichment analysis

Gene-annotation enrichment analysis with 
functional annotation clustering was performed for genes 

http://firebrowse.org
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in each module that was discovered by WGCNA above 
by using DAVID 6.7 (https://david-d.ncifcrf.gov) to 
reveal the biological functions of each modules. DAVID 
6.7 provides a comprehensive set of functional annotation 
tool for users to understand the biological meaning for a 
large list of genes.

Basic statistical model for ccRCC-related gene 
selection

We used the basic accelerated failure time (AFT) 
model [29] for survival analysis using gene expression and 
survival data. In order to deal with censored data, weighted 
least squares method [30] was used for the AFT model rather 
than ordinary least squares (OLS) method, because weights 
are used to account for censoring in the least square criterion.

ccRCC-related gene selection

In order to select more accurate and meaningful 
ccRCC-related genes, we applied Network Sparse 
Boosting (NSBoost) approach [11], the family of boosting 
approaches, which could consider the effect of gene 
network on ccRCC. The NSBoost is a variable selection 
approach which has a better interpretability than usual 
dimension reduction approached like Lasso because of its 
lower computational cost. We first explain the rationale of 
this method.

With NSBoost, ccRCC-related gene selection was 
achieved in two main steps based on gene co-expression 
network. In the network construction part, all genes 
were divided into multiple modules that do not overlap 
each other. In the first step, we analyzed each module 
respectively. According to the spirit of WGCNA, genes in 
the same module tend to have similar biological functions. 
Thus, it is sensible to analysis each module separately. 
For a specific module, we not only selected a group 
genes which are related to ccRCC with NSBoost but also 
constructed a super marker which is a linear combination 
of selected genes and can represent effects of all genes 
in this module. In the second step, joint effects of all 
super makers are be considered. It is necessary to conduct 
the second step of selection and discriminate ccRCC-
associated modules from noises. With the above two steps, 
we identified which modules are related to ccRCC as well 
as which genes are ccRCC-related in the selected modules.

Survival analysis

We performed survival analysis of ccRCC patients 
based on 15-gene expression data. Kaplan-Meier survival 
curves were used to show the overall survival differences 
between 15-gene higher-expression-level patients and 15-
gene lower-expression-level patients. Higher-expression-
level and lower-expression-level patients were determined 
by the median values of 15 selected expression. If the gene 

expression level in a patient was higher than the median 
value, the patient was classified as higher-expression-
level; otherwise as lower-expression-level. We used the 
log-rank test to calculate the significance of survival-
time differences between two classes of patients with a 
threshold of P-value < 0.05.
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