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ABSTRACT

Since tumor is seriously harmful to human health, effective diagnosis measures 
are in urgent need for tumor therapy. Early detection of tumor is particularly 
important for better treatment of patients. A notable issue is how to effectively 
discriminate tumor samples from normal ones. Many classification methods, such 
as Support Vector Machines (SVMs), have been proposed for tumor classification. 
Recently, deep learning has achieved satisfactory performance in the classification 
task of many areas. However, the application of deep learning is rare in tumor 
classification due to insufficient training samples of gene expression data. In this 
paper, a Sample Expansion method is proposed to address the problem. Inspired by 
the idea of Denoising Autoencoder (DAE), a large number of samples are obtained by 
randomly cleaning partially corrupted input many times. The expanded samples can 
not only maintain the merits of corrupted data in DAE but also deal with the problem 
of insufficient training samples of gene expression data to a certain extent. Since 
Stacked Autoencoder (SAE) and Convolutional Neural Network (CNN) models show 
excellent performance in classification task, the applicability of SAE and 1-dimensional 
CNN (1DCNN) on gene expression data is analyzed. Finally, two deep learning 
models, Sample Expansion-Based SAE (SESAE) and Sample Expansion-Based 1DCNN 
(SE1DCNN), are designed to carry out tumor gene expression data classification by 
using the expanded samples. Experimental studies indicate that SESAE and SE1DCNN 
are very effective in tumor classification.

INTRODUCTION

Tumors, which seriously endanger human health, 
are part of the major malignant diseases in the world. 
Early detection of the tumor is under a very important 
meaning for the better treatment of patients. The 
emergence and development of DNA microarray has 
promoted the research of tumor at the molecular level 
[1-3]. By mining the useful knowledge and information 
from the massive tumor gene expression data, we can 
have a comprehensive understanding of the nature of 
the tumor at the genetic level which plays an important 

role in promoting the clinical diagnosis and treatment of 
tumors as well as developing new drugs [4, 5]. Generally, 
gene expression data can be obtained from multiple tissue 
samples, including diseased samples and normal samples. 
By comparing the gene expression levels in diseased 
samples and normal samples, researchers can get a better 
insight into the disease pathology of the tumor [6, 7]. An 
urgent problem need to be addressed is how to effectively 
discriminate tumor samples from normal ones. To deal 
with this, many classification methods, such as Support 
Vector Machines (SVMs) [8] and Neural Networks [9]-
[10], have been proposed for tumor gene expression data 
classification.
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Among all classification methods, deep learning 
models show very good performance and draw more 
and more attention. Deep learning models have 
many advantages over conventional methods. On the 
one hand, deep learning models intrinsically learn a 
high level representation of the data so that avoiding 
laborious work [11]. On the other hand, deep structure 
has exponentially stronger expressive power than 
conventional shallow structure. Deep learning has 
achieved promising performance in many fields, such as 
computer vision, speech recognition, and natural language 
processing. According to [12], a review of deep learning 
in bioinformatics, deep learning models have also been 
widely used in the area of bioinformatics, including 
biomedical signal processing, biomedical imaging and 
omics. However, the application of deep learning is rare 
in tumor classification. The only available literature 
was written by Fakoor et al. [13]. Therefore, we attempt 
to use deep learning models to classify the tumor gene 
expression data.

Among a variety of deep learning models, Stacked 
Autoencoder (SAE) [14] is a widely used and effective 
method. SAE is a multi-layer neural network that 
reproduces the input signal as much as possible. It has 
been widely used in many areas, such as medical image 
processing [15], object recognition [16], and video 
classification [17]. In [13], SAE was successfully applied 
to the gene expression data for classifying the tumor 
samples. The classification process of SAE for a specific 
tumor type is given as follows: Firstly, the dimensionality 
of the feature space is reduced by using principle 
component analysis (PCA) due to the characteristics 
of the small sample problem in high-dimensional gene 
expression data. Secondly, other tumor gene expression 
data from the same platform are used as unlabeled data 
for feature learning since the number of samples for the 
specific tumor is really small. Thirdly, the weights of the 
features learned in the second step are tuned using the 
specific labeled data. Finally, the tumor gene expression 
data is classified. The drawback of literature [13] is that 
the gap between specific tumor data and other tumor gene 
expression data from the same platform is not considered, 
thus may have a negative effect on tumor classification. In 
this paper, we use SAE to achieve tumor classification in 
a different way with [13].

Convolutional Neural Network (CNN) [18] plays a 
dominant role in the community of deep learning models. 
CNN exploits spatially local correlation by enforcing a 
local connectivity pattern between neurons of adjacent 
layers. CNN has been demonstrated to provide better 
performance than other conventional methods on various 
vision tasks, such as face recognition [19], object detection 
[20], and image classification [21, 22]. In addition 
to vision tasks, CNN has also been applied to speech 
recognition [23, 24], natural language processing [25] 
and other fields. However, there are rare literatures on the 

technique with CNN for tumor classification. In this paper, 
CNN is considered to be applied to classify the tumor gene 
expression data.

CNN is the most widely used method in the field 
of image processing. Generally, a 2-dimensional image 
sample is taken as the input of CNN to implement 
convolution operation. However, each sample is a 
1-dimensional array in tumor gene expression data which 
makes traditional CNN models not applicable for tumor 
classification. Fortunately, 1-dimensional CNN (1DCNN), 
a special CNN model, is proposed, and it requires the 
input is a 1-dimensional vector. 1DCNN has been used 
to analyze 1-dimensional sample in many areas. For 
example, Hu et al. have successfully utilized 1DCNN to 
process the spectral channels [26]. But the applicability 
of 1DCNN in the tumor gene expression data requires 
further study. Here, we introduced 1DCNN into tumor 
classification.

A large number of labeled data are usually required 
for training the deep learning models, including SAE and 
1DCNN. However, the number of labeled samples of 
tumor gene expression data is quite small. For instance, 
there are 60 labeled samples in colon data [27] and 
only 20 labeled samples in breast cancer data [28]. In 
this paper, we propose a novel Sample Expansion (SE) 
method to address the problem of insufficient labeled 
samples. Inspired by Denoising Autoencoder (DAE) 
[29], a large number of labeled samples are obtained 
by randomly cleaning partially corrupted input many 
times. These labeled samples are taken as the expanded 
samples. Then we merged the expanded samples and 
untreated samples into a matrix as the training samples. 
This method can deal with the problem of insufficient 
training samples of tumor gene expression data to a certain 
extent. Furthermore, in order to benefit from both deep 
learning and SE, we suggest two deep learning-based 
methods, Sample Expansion-Based SAE (SESAE) and 
Sample Expansion-Based 1DCNN (SE1DCNN), for 
tumor classification. The tumor classification process is 
given as follows. Firstly, due to the high dimensionality of 
tumor gene expression data, we reduce the dimensionality 
of gene expression data. For each gene expression data, 
each feature represents one gene and has its natural 
meaning. Therefore, gene selection is more convincing 
than feature extraction in processing tumor gene 
expression data. Here, Infinite Feature Selection (Inf-FS) 
[30] is used as the dimensionality reduction strategy to 
select genes. Secondly, SE is implemented to expand the 
number of labeled samples. Finally, two deep learning 
models, SESAE and SE1DCNN, are utilized to achieve 
tumor classification based on the expanded samples. 
Experimental results demonstrate that SESAE and 
SE1DCNN are very effective in tumor gene expression 
data classification.

The main contributions of our work are summarized 
as follows. Firstly, for the first time, 1DCNN, an 
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excellent deep learning model, is successfully applied to 
the tumor classification task. Secondly, a novel sample 
expansion method is proposed to deal with the problem 
of insufficient labeled samples when using deep learning 
models to implement tumor classification.

The remainder of the paper is structured as follows. 
In Section 2, SE is proposed and how to select cancer 
characteristic genes by SESAE or SE1DCNN is explained. 
Experimental results and discussion on tumor gene 
expression datasets are presented in Section 3. In Section 
4, the conclusions are given.

RESULTS AND DISCUSSION

This section shows the experimental results. In 
this paper, microarray data was used to perform our 
experiment. We performed our method on three publicly 
available gene expression datasets, i.e., breast cancer [28], 
leukemia [31] and colon cancer [27]. We determined the 
parameters of SESAE and SE1DCNN. To demonstrate 
the effectiveness of SESAE and SE1DCNN for tumor 
classification, 1DCNN [26], traditional SAE, SAE in [13], 
SAE with fine tuning in [13], and Softmax/SVM were 
employed for comparison. In this paper, the programs 
are implemented by using Python language and Theano 
library [32] on a PC equipped with an Intel Core i7 and 
Nvidia GeForce GTX 980 graphics card.

Tumor gene expression datasets

We tested the proposed SESAE and SE1DCNN on 
three tumor datasets: breast cancer [28], leukemia [31] 
and colon cancer [27]. The statistics of the three datasets 
were summarized in Table 1. Inflammatory Breast Cancer 
(IBC) is a clinically defined variant of breast cancer 
characterized by its rapid onset and swollen, erythematous, 
and edematous presentation of the breast. The IBC dataset 
contains 30006 genes on 20 samples. There are two classes 
in 20 samples: 8 IBC samples and 12 non-IBC samples. 
Leukemia is a heterogeneous disease, usually caused by 
non-random chromosomal translocations that produce 
aberrant gene fusions or inappropriate expression of 
oncogenes and the prognosis for cure differs considerably 
among these genetic subtypes. Leukemia dataset contains 

12600 genes on 60 samples. In [31], the 60 samples was 
processed into four classes: mercaptopurine alone (MP), 
high-dose methotrexate alone (HDMTX), high-dose 
methotrexate and mercaptopurine (HDMTX+MP), low-
dose methotrexate and mercaptopurine (LDMTX+MP) 
and the corresponding number of samples are 12, 20, 
10, 18. Colon cancer is a malignant tumor arising from 
the inner wall of the large intestine. In [27], colon cancer 
contains 2000 genes on 62 samples. There are 22 normal 
and 40 tumor colon samples.

Parameter determination

For each dataset, Inf-FS method was adopted as 
the dimensionality reduction algorithm to select genes. 
For fair comparison, 500 genes were selected by Inf-FS 
for each method. We performed 10-fold cross-validation 
and results were presented in terms of the average 
classification accuracy. In this subsection, the number of 
corrupted genes a  was tested. For each a, we provided 
the parameters of SESAE and SE1DCNN on different 
tumor datasets. For SESAE and SE1DCNN, the choices 
of parameters might not be the best but effective for tumor 
classification.

Here, a 1,2,3,4,5=  were tested. We tested the number 
of nodes of hidden layers in SESAE. Simultaneously, we 
also tested the number and size of convolution filters and 
the size of filters in max pooling. For each dataset, we 
took 20% samples of each class to expand the training 
samples and the rest 80% samples as testing samples. The 
parameters and classification accuracies of SESAE and 
SE1DCNN with different number of corrupted genes on 
breast cancer were summarized in Tables 2-3, respectively. 
In the case of a 1,2,3,4,5= , the number of training samples 
is 2505, 1255, 835, 630, 505, respectively. From Table 2, 
the best classification results of SESAE on breast cancer is 
87.33% when a 1= . From Table 3, in the case of a 1=  and 
a 2= , SE1DCNN can reach the best performance 95.33%. 

The parameters and classification accuracies 
of SESAE and SE1DCNN with different number of 
corrupted genes on leukemia dataset were summarized 
in Tables 4-5, respectively. When a 1,2,3,4,5= , the 
number of training samples is 6513, 3263, 2171, 1638, 
1313, respectively. From Table 4, the best classification 

Table 1: Summery of tumor gene expression datasets

Dataset Data Labels Number of

Genes Samples

Breast cancer 1=non-IBC, 2=IBC 30006 20

Leukemia
1=MP, 2=HDMTX, 
3=HDMTX+MP, 
4=LDMTX+MP

12600 60

Colon cancer 1=cancer, 2= normal 2000 62
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result of SESAE is 49.79% when a 1= . From Table 5, the 
best performance of SE1DCNN is 57.87% when a 1= .

The parameters and classification accuracies of SESAE 
and SE1DCNN with different number of corrupted genes on 
colon cancer were summarized in Tables 6-7, respectively. 

When a 1,2,3,4,5= , the number of training samples is 6513, 
3263, 2171, 1638, 1313, respectively. From Table 6, the best 
classification result of SESAE is 84.49% when a 1= . From 
Table 7, the best performance of SE1DCNN is 85.51% when 
a 2= .

Table 3: The parameters and classification accuracies of SE1DCNN with different number of corrupted genes on 
breast cancer

Layer a=1 a=2 a=3 a=4 a=5

C1 Filter
Number 11 11 5 11 11

Size 21 21 21 21 21

M1 Filter Size 4 4 4 4 4

C2 Filter
Number 5 5 5 5 5

Size 21 21 21 21 21

M2 Filter Size 4 4 4 4 4

Accuracy (%) 95.33 95.33 93.33 94.67 94.00

Table 2: The parameters and classification accuracies of SESAE with different number of corrupted genes on breast 
cancer

Layer a=1 a=2 a=3 a=4 a=5

Hidden Layer1 Number of Nodes 50 50 50 50 50

Hidden Layer2 Number of Nodes 50 50 50 50 50

Accuracy (%) 87.33 86.67 86.00 86.67 86.00

Table 4: The parameters and classification accuracies of SESAE with different number of corrupted genes on 
leukemia dataset

Layer a=1 a=2 a=3 a=4 a=5

Hidden Layer 1 Number of Nodes 30 30 30 30 30

Hidden Layer 2 Number of Nodes 30 30 30 30 30

Accuracy (%) 49.79 49.36 48.72 48.30 48.51

Table 5: The parameters and classification accuracies of SE1DCNN with different number of corrupted genes on 
leukemia dataset

Layer a=1 a=2 a=3 a=4 a=5

C1 Filter
Number 22 17 22 9 17

Size 21 21 21 21 21

M1 Filter Size 4 4 4 4 4

C2 Filter
Number 5 5 5 16 5

Size 21 21 21 21 21

M2 Filter Size 4 4 4 4 4

Accuracy (%) 57.87 57.02 57.24 56.17 55.96
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Furthermore, we expanded all the samples, and tested 
whether the corrupted samples can be correctly classified. 
The classification accuracies of SESAE and SE1DCNN on 
three datasets with different a were provided in Table 8. For 
breast cancer, in the case of a 1= , SESAE and SE1DCNN 
have the best results 99.88% and 99.94%, respectively. For 
leukemia, in the case of a 1= , SESAE and SE1DCNN have 
the best results 99.78% and 99.84%, respectively. For colon 
dataset, in the case of a 1= , SESAE and SE1DCNN have 
the highest accuracies 99.96% and 99.98%, respectively. 
The results indicate that the corrupted samples can be 
correctly classified and the meaningful features are 
successfully captured by the corrupted samples.

Comparison with other methods

To demonstrate the effectiveness of SESAE and 
SE1DCNN for tumor classification, traditional 1DCNN 

[26], traditional SAE, SAE in [13], SAE with fine 
tuning in [13], and Softmax/SVM were employed for 
comparison. SAE in [13] and SAE with fine tuning in 
[13] use other tumor gene expression data from the same 
platform to achieve feature learning since the number of 
labeled samples in tumor data is really small. The results 
were shown in Table 9. The best performance in Table 9 
was indicated by bold.

On all the three datasets, SE1DCNN has better 
performance than all the other methods. On colon and 
breast cancer datasets, except for SE1DCNN, SEASE 
outperforms the other methods. On leukemia dataset, 
except for SE1DCNN and 1DCNN, SESAE have the best 
performance among all the 5 methods. This indicates that 
our SE method is very effective in classifying tumor data. 
Without SE method, 1DCNN outperforms traditional SAE, 
SAE in [13], SAE with fine tuning in [13], and Softmax/
SVM on breast and colon cancer. Except for SE1DCNN, 

Table 6: The parameters and classification accuracies of SESAE with different number of corrupted genes on colon 
cancer

Layer a=1 a=2 a=3 a=4 a=5

Hidden Layer 1 Number of Nodes 100 100 100 100 100

Hidden Layer 2 Number of Nodes 100 100 100 100 100

Accuracy (%) 84.49 83.68 83.28 83.89 83.69

Table 7: The parameters and classification accuracies of SE1DCNN with different number of corrupted genes on 
colon cancer

Layer a=1 a=2 a=3 a=4 a=5

C1 Filter
Number 25 5 20 12 20

Size 21 21 21 21 21

M1 Filter Size 4 4 4 4 4

C2 Filter
Number 20 10 7 9 5

Size 21 21 21 21 21

M2 Filter Size 4 4 4 4 4

Accuracy (%) 84.90 85.51 85.30 84.49 85.10

Table 8: The classification accuracies (%) of SESAE and SE1DCNN on three datasets with different values of    
when all the samples are expanded 

Dataset Method a=1 a=2 a=3 a=4 a=5

Breast
Cancer

SESAE 99.88 99.78 99.75 99.53 99.49

SE1DCNN 99.94 99.84 99.81 99.74 99.68

Leukemia
SESAE 99.78 99.55 99.46 99.20 98.94

SE1DCNN 99.84 99.67 99.54 99.37 99.12

Colon
Cancer

SESAE 99.96 99.94 99.93 99.86 99.86

SE1DCNN 99.98 99.95 99.93 99.88 99.86

a
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1DCNN has better performance than the other methods, 
including SESAE, on leukemia dataset. The performance 
of SE1DCNN and 1DCNN demonstrate that 1DCNN is 
a powerful method when achieving tumor classification.

METHODOLOGY

Sample expansion method

In the classification problem, it is particularly critical 
to obtain a good feature representation. The traditional 
Autoencoder (AE) can learn a useful representation by 
encoder. However, we cannot obtain robust features by 
using Autoencoder. A very different strategy is proposed by 
Vincent et al. to get a high-level representation: cleaning 
partially corrupted input, or in short denoising [29]. There 
are two underlying ideas in this strategy: Firstly, a good 
representation should be robust and stable when the input is 
damaged; Secondly, denoising is required to extract features 
that obtain useful structure in the input distribution. This 
denoising strategy was successfully used into Autoencoder 
and Denoising Autoencoder. The graphical representation 
of AE and DAE is described in Figure 1. In Figure 1(A), 
denote a vector x  as an input firstly. Secondly, x  is 
mapped to y  via an encoder. Thirdly, the Autoencoder 
attempts to reconstruct x  by decoding, y  and generates the 
reconstruction vector z . Finally, the Autoencoder calculates 
the reconstruction error between x  and z . In Figure 1(B), 
DAE performs some different operations compared 
with Autoencoders. Firstly, raw data x  is stochastically 
corrupted to �x . In �x , each value filled with black is forced 
to be 0. Secondly, the corrupted data �x  is mapped to y  via 
an encoder. Thirdly, DAE reconstructs x  by decoding y
, and generates the reconstruction vector z . Finally, DAE 
calculates the reconstruction error between x and z  with a 
loss function.

The process of denoising, that is, mapping a 
corrupted sample back to an uncorrupted one, can be 
given an intuitive geometric interpretation under the so-
called manifold assumption, which states that natural high 
dimensional data concentrates close to a non-linear low-
dimensional manifold. Based on uncorrupted samples X

, corrupted samples �X  obtained by applying corruption 
process q( | )�X X . During denoising training, we learn a 
stochastic operator p( | )X X�  that maps a corrupted �X  back 
to its uncorrupted X , Corrupted samples are much more 
likely to be outside and farther from the manifold than 
the uncorrupted ones. Thus stochastic operator p( | )X X�  
learns a map that tends to go from lower probability points 
�X  to nearby high probability points X , on or near the 

manifold. Note that when �X  is farther from the manifold, 
p( | )X X�  should learn to make bigger steps, to reach the 

manifold. Successful denoising implies that the operator 
maps even far away points to a small region close to 
the manifold. The denoising idea can thus be seen as a 
way to define and learn a manifold. And it can better 
learn a higher level representation which is rather stable 
and robust under corruptions of the input. The detailed 
interpretation of denoising idea can be founded in [29]. As 
a kind of natural high dimensional data, gene expression 
data also has the manifold structure. So the denoising idea 
can be used to analyze gene expression data. Experiments 
in [29] show that the corrupted data is very useful. There 
are two main reasons can explain this result: Firstly, the 
corrupted data can be trained to obtain smaller weight 
noise than non-corrupted data; Secondly, the corrupted 
data reduces the generation gap between the training and 
testing data to a certain extent [29].

Thanks to the denoising idea, in this paper, a novel 
Sample Expansion method is proposed to address the 
problem of insufficient training samples for tumor gene 
expression data. Denote �X m n∈ ×  as a tumor dataset 
with m  genes and n  samples. For each sample in X , SE 
method randomly chooses a a m ( )≤  genes and corrupts 
corresponding values to 0. Supposing the locations of 
the corrupted genes are non-repeated, we repeat this 
process floor m a( )  times, where floor()  is a function 
that is rounded down, and it guarantee the number of 
expanded samples is an integer. And each processed 
sample is saved for future operations. In this approach, 
floor m a( )  expanded samples can be obtained from one 
sample. Similarly, n floor m a( )×  expanded samples can 
be obtained from all n samples. Finally, n floor m a( )×  

Table 9: The classification accuracies (%) of different methods on three datasets

Methods Breast Cancer Leukemia Colon Cancer

SE1DCNN 95.33 57.87 84.90

1DCNN 86.00 51.49 83.67

SESAE 87.33 49.79 84.49

SAE 80.67 32.55 82.07

SAE in [13] 63.33 33.71 66.67

SAE (Fine tuning) in [13] 83.33 33.71 83.33

Softmax/SVM 85.0 46.33 83.33
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expanded samples and n raw samples are merged into one 
matrix to be taken as training data.

We give the visualization of SE method in Figure 
2. Denote a tumor gene expression dataset as �∈ ×X m n 
with each row representing a gene and each column 
representing a sample. To be more specific, here, we set 
a to 2. In Figure 2, the values of the corrupted genes are 
filled with black in expanded samples. Statistically, for 
the first sample in X , floor m( )2  expanded samples are 
obtained by using SE method. Including the first sample in 
X , floor m( 2) 1+  samples are obtained from one sample. 
Other samples in X  are processed in the same manner. 
Finally, n floor m n( 2)× +  samples are stored in a matrix 
Y  that can be taken as the training data. By utilizing SE, 
a large number of training samples can be obtained. The 

expanded samples maintain the merits of the corrupted data 
and address the problem of insufficient training samples of 
gene expression data to a certain extent.

We attempt to interpret the rationality of SE from 
a biological perspective. Generally, the differential 
expression of multiple genes may be expected to result in 
various diseases. Moreover, the realization of a biological 
process usually requires interaction of multiple genes. 
Unfortunately, we cannot accurately determine which 
combinations of genes are the decisive ones we want. After 
being processed by SE, the non-corrupted genes in each 
expanded sample are taken as a combination. The corrupted 
samples can generate a variety of gene combinations. Some 
of these gene combinations may indicate distinct biological 
processes or different gene co-expression [33]. From this 

Figure 1: The graphical representation of Autoencoder (A) and Denoising Autoencoder (B).
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perspective, the class of samples can be represented more 
effectively by large number of gene combinations, thereby 
improving the classification accuracy.

Sample expansion-based SAE

An Autoencoder usually has three layers: one input 
layer, one hidden layer, and one reconstruction layer (See 
Figure 1(A)).

During training, the input x  is mapped to the hidden 
layer and produces the latent activity y . This step is called 
an encoder and can be formulated as follows

y = W x bf ( ), (1)y y+  (1)
where Wy  denotes the input-to-hidden weights, by  

denotes the bias of hidden units, and ⋅f ( ) denotes the 
activation function. Here, the sigmoid function is taken as 
the activation function.

Then, y  is mapped to a reconstruction layer by a 
decoder. The reconstructed value is denoted as z . This step 
can be written as

z = W y bf ( ), (2)z z+  (2)
where Wz  denotes the hidden-to-output weights, bz 

denotes the bias of output units.
In this paper, we hold the following constraint: 

W W Wy z= =  This can help to halve model parameters. 
Therefore, three groups of parameters, W , by  and bz , need 
to be learned.

The goal of Autoencoder is to minimize the 
reconstruction error between x  and z

arg min ( ), ( )
, ,W b by z

x, z cost 3
 (3)

where cost( )x,z  denotes the reconstruction error. 
The weight updating rule can be defined as

W W x,z
W

cost( )
, (4)η= −

∂
∂  (4)

b b x,z
b

cost( )
, (5)y y

y

η= −
∂

∂  (5)

b b x,z
b

cost( )
, (6)z z

z

η= −
∂

∂  (6)
where η  denotes the learning rate.
After the model training, the learned feature lies in 

the hidden layer, which can be used for classification. It 
can also be used as the input of a higher layer to learn 
a deeper feature in deep learning models. The power of 
Autoencoder lies in the form of reconstruction-oriented 
training. During reconstruction, Autoencoder only uses the 
information in y . If an Autoencoder perfectly recovers the 
input from y , y  can maintain enough information of the 
input. In addition, the learned nonlinear transformation in 
y  can be regarded as a good feature extraction process. 
Therefore, stacking the encoders can minimize the loss 
of information in data. In the meantime, the abstractive 
and invariant information can be preserved in the deeper 
features. All these characteristics promote us to choose 
Autoencoder to extract deep features for tumor gene 
expression data.

Figure 2: The schematic representation of sample expansion method.
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The Stacked Autoencoder (SAE) can be 
constructed by stacking the input and hidden layers 
of Autoencoder together. The SESAE is designed by 
applying the SE method to SAE for tumor classification. 
The SESAE architecture is given in Figure 3. It consists 
of one input layer, two hidden layers and one output 
layer. SESAE first implements SE method to obtain a 
large number of labeled samples. Then the expanded 
samples and raw samples are fed into SAE. SAE first 
maps inputs in Input Layer to Hidden Layer 1. This 
step is similar with Autoencoder. After the training of 
Hidden Layer 1 in SAE, the inputs of subsequent layer 

of SAE are the output of the previous layer. We try to 
reconstruct the output of Hidden Layer 1according to 
the activity of Hidden Layer 2. After this, the decoder of 
the Hidden Layer 2 is cast away, and only the input-to-
hidden parameters are incorporated as weights between 
Hidden Layer 1 and Hidden Layer 2. The subsequent 
classifier is also implemented as a neural network. 
We adopt fine-tuning strategy to adjust the parameters 
during training procedure. Here, we train the classifier 
using the back propagation method that searching 
for a minimum in a peripheral region of parameters 
initialized by the former step.

Figure 3: The SESAE architecture consisting of sample expansion process, one input layer, two hidden layers and one 
output layer.
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Sample expansion-based 1DCNN

CNN is a classical deep learning model that 
exploits spatially local correlation by enforcing a local 
connectivity pattern between neurons of adjacent layers. 
CNN architecture consists of various combinations of 
convolutional layers, max pooling layers and fully-
connected layers. Neurons in the same convolutional 
layer are sparsely connected to the neurons in the next 
layer and share the same weight. Weight sharing can 
reduce the number of trainable parameters and make 
CNN an effective model. The output of a convolutional 
layer is usually taken as the input of a max pooling 
layer. Max pooling layers divide the input into multiple 
non-overlapping windows and output the maximum 
value for each window. Max pooling can reduce the 
computation complexity for upper convolutional layers 
and provide translation invariance of features from the 
location. In the classification task, a fully-connected 
layer is used to integrate all the feature maps of the last 
pooling layer.

The training process of CNN contains two key 
steps: forward propagation and back propagation. The 
former step computes the actual classification results 
with current parameters while the later step updates the 
trainable parameters to narrow the gap between the actual 
classification results and the desired classification results.

Denote x i  as the output of the i-th layer and the 
input of the next layer. Define x i  to be

x ui if= ( ), ( )7 (7)
with
u W x b= , (8)i i i i-1 +  (8)
where W i  is a weight matrix of the i -th layer and 

bi  is an additive bias vector of the i -th layer. In Eq. (7), 
f ui( )  is the activation function of the i -th layer. In this 

paper, the Rectified Linear Unit (RELU) is taken as the 
activation function. For a classification problem with C  
classes and N  training samples, the squared-error loss 
function [34] is given as

J t y1
2

( ) , (9)N
c
n

c
n

c

C

n

N
2

11
∑∑= −

==  (9)
where tc

n is the c-th class of the n-th label, yc
n is 

the value of the c-th output layer unit in response to the 
n-th label.

Due to the error over the whole dataset is a sum over 
the individual errors on each sample, the backpropagation 
is considered with respect to a single sample. The error 
function of the n-th sample is

J t y1
2

( ) . (10)n
c
n

c
n

c
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2

1
∑= −

=  (10)
The errors can be regarded as sensitivities of each 

unit with respect to perturbations of b , that is

b u
u
b

J J
. (11)

∂
∂

=
∂
∂

∂
∂  (11)

Since u b=1∂ ∂ , we can define

u
J

. (12)δ =
∂
∂  (12)

This derivative plays a decisive role in the back 
propagation from higher layers to lower layers. The 
following formula is used to implement the back 
propagation

�W uf( ) ( ), (13)i i T i i1 1δ δ= ′+ +
 (13)

where � is element-wise multiplication. The 
sensitivities for the output layer neurons take a different 
form

�u y tf ( ) ( ). (14)output i n nδ = ′ −  (14)
Finally, the delta rule is used to update weights and 

biases for the neurons. For the i -th layer, the weight is 
updated by

W u
u
W

xJ J
( ) , (15)i i
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=
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η∆ = −
∂
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J

, (16)i
i  (16)

where η is the learning rate. The bias is updated by

b u
u
b

J J
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With the increase of the number of iterations, the 
value of the loss function is smaller which indicates the 
actual output is closer to the desired output. Finally, CNN 
can be utilized to classify the dataset.

In image processing, the input of CNN should be 
a 2-dimensional image for convolution. However, each 
sample of gene expression data is a 1-dimensional array 
and the above process cannot be achieved. Therefore, 
1DCNN, which asks for a 1-dimensional vector as input, is 
introduced in this paper. By combining the SE method and 
1DCNN, we design the SE1DCNN to implement tumor 
classification task. In Figure 4, the designed architecture 
of SE1DCNN is shown. Except for the sample expansion 
process, 1DCNN has 7 layers: one input layer, two 
convolutional layers C1 and C2, two max pooling layers 
M1 and M2, one fully-connected layer F and one output 
layer. In each tumor gene expression dataset, each sample 
can be taken as the input of 1DCNN. In Figure 4, the 
input layer is a sample with m1 genes. Suppose W1

 with 
size w 11 ×  and W2 with size w 12 ×  are the convolutional 
kernels of the first and second convolutional layers C1 
and C2, respectively; P1 with size ×p 11  and P2  with size 

×p 12  are the filtering kernels of the first and second max 
pooling layer M1 and M2, respectively; k1 and k2 are the 
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number of kernels. After convolving the input layer, C1 
contains × ×k m 11 2  nodes where = − +m m w 12 1 1 . M1 
contains × ×k m 11 3  nodes where =m m p3 2 1

. C2 contains 
× ×k m 12 4  nodes where = − +m m w 14 3 2 . M2 contains 
× ×k m 12 5

 nodes where =m m p5 4 2. The fully-connected 
layer F and the output layer contain m6 and m7  nodes, 
respectively. 

The classification process of SE1DCNN is the same 
as that of CNN. The main difference between SE1DCNN 

and CNN is that SE1DCNN has a sample expansion step 
and needs a 1-dimensional vector as input.

Tumor classification via sample expansion-based 
deep learning

In tumor classification task, the management 
of high-dimensional gene expression data requires 
an efficient feature selection method to individuate 

Figure 4: The SE1DCNN architecture consisting of sample expansion process, two convolutional layers, two max 
pooling layers and one fully-connected layer.
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redundant and/or irrelevant features and avoid overfitting 
[35]. In [30], Roffo et al. proposed a novel unsupervised 
feature selection method dubbed Infinite Feature 
Selection (Inf-FS). The feature selection problem is 
mapped to an undirected fully-connected graph without 
label information in Inf-FS. Then a subset of features is 
considered as a path to connect vertices in the graph. The 
cost of the path, which is embedded into a cost matrix, is 
implemented by the combination of pairwise relationships 
between features and is modeled as a function of both 
standard deviation and Spearman’s rank correlation 
coefficient. By construction, Inf-FS allows exploiting the 
convergence properties of power series of matrices, and 
the relevance and redundancy of one feature with respect 
to all the other features are calculated.

Inf-FS is an excellent feature selection method by 
ranking the importance individuates candidate features. 
The most appealing characteristic of Inf-FS is that the 
importance of a feature is assessed by considering all 
the possible subsets of all the features. In addition, the 

relevance and redundancy of each feature are influenced 
by all the other ones. Numerous experiments demonstrate 
that Inf-FS outperforms many classical feature selection 
methods, such as SVM-RFE [8], Fisher [36] and Relief-F 
[37]. Therefore, we adopt Inf-FS as the dimensionality 
reduction strategy to select genes from gene expression 
data.

In this paper, the framework of tumor gene 
expression data classification via Sample Expansion-based 
deep learning is given in Figure 5.

Firstly, Inf-FS is used as the dimensionality 
reduction strategy to select genes.

Secondly, the dimensionality reduced data is 
normalized. We use the following normalization

= −X X X X
X

Xmean std
std

meanˆ ( ( ))
( ˆ )
( )

+ ( ˆ ), (19)

where Xmean( )  is the mean of the dimensionality 
reduced data matrix X  by row, Xstd( ) is the standard 
deviation of X  by row, �Xstd( ) is the standard deviation 

Figure 5: The flowchart of tumor classification by using SESAE or SE1DCNN.
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of the expected matrix �X  by row and �Xmean( )  is the 
mean of the expected matrix �X  by row. Here, �Xstd( ) and 

�Xmean( ) are simply set to 1 and 0 respectively.
Thirdly, SE method is used to obtain a large number 

of training samples. The gene expression data is divided 
into two parts: training data and testing data. We use SE 
method to increase the number of labeled training data by 
using the separated training data.

Finally, two deep learning models, SAE and 
1DCNN, are adopted to classify tumor data. The expanded 
and raw training data are merged into a matrix that is used 
as the new training data to train SAE and 1DCNN. We test 
SESAE and SE1DCNN by using the testing data.

CONCLUSIONS

In this paper, two sample expansion-based deep 
learning models, Sample Expansion-Based Stacked 
Autoencoder (SESAE) and Sample Expansion-Based 
1D Convolutional Neural Network (SE1DCNN), are 
designed to classify tumor gene expression data. Firstly, 
since feature selection is more believable than feature 
extraction, an excellent feature selection method Inf-FS is 
used to reduce the dimensionality of gene expression data. 
Secondly, inspired by the denoising idea in DAE, a Sample 
Expansion method is proposed. The expanded samples not 
only have the benefits of corrupted data in DAE but also 
solve the problem of insufficient labeled training samples 
of gene expression data to a certain extent when using 
deep learning models. We also give an interpretation of 
SE method from a biological perspective. Finally, since 
SAE and CNN can provide excellent classification effect 
in many fields, the applicability of SAE and 1DCNN on 
gene expression data is discussed. A 4-layer SAE and a 
7-layer 1DCNN are designed to classify the tumor gene 
expression data by using the expanded samples and raw 
samples.

We tested the proposed SESAE and SE1DCNN on 
three tumor datasets: breast cancer, leukemia and colon 
cancer. We first provided the parameters of SESAE and 
SE1DCNN on different tumor datasets with different a
. This is a guide to the choice of parameters. Moreover, 
we expanded all samples to determine the effectiveness 
of the corrupted samples. The high classification 
accuracies of SESAE and SE1DCNN on three datasets 
demonstrate that the corrupted samples are very useful. 
Traditional 1DCNN, traditional SAE, SAE in [13], SAE 
with fine tuning in [13], and Softmax/SVM are employed 
for comparison. The classification results indicate that 
SE1DCNN has the best performance than the competitive 
methods on all the three datasets. Except for SE1DCNN 
and 1DCNN, SEASE outperforms the other methods 
on all three datasets. The performance of SESAE and 
SE1DCNN suggests that joint SE method and deep 
learning models can effectively achieve tumor gene 

expression data classification. The main reason is that SE 
method provides more and useful training samples for 
two deep learning models. In addition, we also find that 
except for SE1DCNN, 1DCNN has better performance 
than the other methods on leukemia dataset. And except 
for SE1DCNN and SESAE, 1DCNN outperforms the 
other methods on breast cancer and colon cancer datasets. 
Experimental studies on SE1DCNN and 1DCNN indicate 
that 1DCNN is more efficient than the other methods for 
tumor classification.

The limitation of this paper is mainly the explanation 
of SE method from a biological perspective is insufficient. 
In this paper, we give a short interpretation of SE method 
from a biological perspective. We believe that the non-
corrupted genes in expanded samples can be taken as a 
gene combination and the corrupted samples can generate 
a variety of gene combinations. These gene combinations 
may indicate distinct biological processes or different gene 
co-expression. From this perspective, the class of samples 
can be represented more effectively by large number of 
gene combinations, thereby improving the performance of 
tumor classification. The pathogenesis of the tumor needs 
to be studied in future to discover the useful combinations 
of genes. By analyzing these combinations of genes, our 
SE method may give a more persuasive interpretation. In 
future, we will focus on the biological meaning of different 
combinations of genes to propose a more reasonable 
sample expansion strategy for tumor classification when 
using deep learning.
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