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ABSTRACT
Despite known age-related DNA methylation (aDNAm) changes in breast tumors, 

little is known about aDNAm in normal breast tissues. Breast tissues from a cross-
sectional study of 121 cancer-free women, were assayed for genome-wide DNA 
methylation. mRNA expression was assayed by microarray technology. Analysis of 
covariance was used to identify aDNAm’s. Altered methylation was correlated with 
expression of the corresponding gene and with DNA methyltransferase protein DNMT3A, 
assayed by immunohistochemistry. Publically-available TCGA-BRCA data were used for 
replication. 1,214 aDNAm’s were identified; 97% with increased methylation, and all on 
autosomes. Sites with increased methylation were predominantly in CpG lslands and non-
enhancers. aDNAm’s with decreased methylation were generally located in intergenic 
regions, non-CpG Islands, and enhancers. Of the aDNAm’s identified, 650 are known to 
be involved in cancer, including ESR1 and beta-estradiol responsive genes. Expression of 
DNMT3A was positively associated with age. Two aDNAm’s showed borderline significant 
associations with DNMT3A expression; KRR1 (OR 6.57, 95% CI: 2.51–17.23) and DHRS12 
(OR 6.08, 95% CI: 2.33–15.86). A subset of aDNAm’s co-localized within vulnerable 
regions for somatic mutations in cancers including breast cancer. Expression of C19orf48 
was inversely and significantly correlated with its methylation level. In the TCGA dataset, 
84% and 64% of the previously identified aDNAm’s were correlated with age in both 
normal-adjacent and tumor breast tissues, with differential associations by histological 
subtype. Given the similarity of findings in the breast tissues of healthy women and 
breast tumors, aDNAm’s may be one pathway for increased breast cancer risk with age.  
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INTRODUCTION

It is well established that breast cancer incidence 
increases with age [1, 2]. Among U.S. women, 
approximately 12% of invasive breast cancers are 
diagnosed in women < 45 years of age while 68% are 
diagnosed among women who are over age 55 [1, 2]. 
The underlying mechanism for this large difference in 
risk is not well understood. One potential mechanism 
is epigenetic alterations, including DNA methylation, 
which is one of the hallmarks of aging [3] and breast 
carcinogenesis [4–7].

Increased age is associated with global 
hypomethylation of CpG loci outside of CpG Islands 
and also regional hypermethylation of CpG Islands [6–
11]. Methylation of the tumor suppressor genes ESR1, 
IGFBP3, and RASSF1A specifically increases with age 
[6, 7, 10, 12], but the converse occurs with methylation 
of repetitive elements [11]. Little is known about the 
timing of altered DNA methylation or age-related DNA 
methylation (aDNAm) in breast carcinogenesis, and 
whether it is different from normal aging in normal breast 
epithelial cells. A few studies that consist of only small 
sample sizes (n = 23 and n = 15 in two separate analyses) 
have examined aDNAm in normal breast tissues from 
healthy individuals [7, 13]. A recently published study 
with 100 samples showed aDNAm at regulatory regions 
[14]. However, to date, there has been no study of the role 
of aDNAm with gene expression in normal breast tissues, 
although, there some contradictory evidence for this in 
blood cells [13, 15–18]. 

In this study, aDNAm was assessed in the breasts 
of women with no prior history of cancer, and the results 
were compared to aDNAm tumor tissues from The Cancer 
Genome Atlas (TCGA). Further, to better understand 
the mechanism of these changes and their impact on 
carcinogenesis, gene expression for these aDNAm 
were assessed, and if the aDNAm varied with DNA 
methyltransferase protein levels.  

RESULTS

Characteristics of study subjects

Characteristics of study subjects are given in 
Table 1. Subjects’ ages ranged from 17 to 76 years, with a 
mean of 38 years. The women were 77% premenopausal 
and 67% were of European American ancestry. Consistent 
with patients who typically seek breast reduction surgery, 
many women were overweight or obese (mean BMI: 30 
kg/m2; range 21–46). 

Landscape of age-related DNA methylation

Using a Bonferroni corrected P < 0.05, after 
adjusting for race and BMI, 1,214 aDNAm’s were 

identified. As shown in Supplementary Table 1, for most 
of the aDNAm’s there was a gain of methylation (97%, 
1,179/1,214). The aDNAm’s were located in 803 unique 
coding genes (978 CpGs), 8 unique long-noncoding 
RNAs (lncRNAs) (11 CpGs), and 8 unique microRNAs 
(miRNAs; mir-7-3, mir-15b, mir-16-2, mir-148A, mir-
425, mir-596, mir-935, and mir-1253) (15 CpGs). All the 
miRNA aDNAm’s were located in core promoter regions, 
TSS1500 or TSS200.

A Manhattan plot of the aDNAm’s is shown in 
Figure 1. The aDNAm’s are spread across all of the 
autosomes; although 2.3% of aDNAm’s would be expected 
to be on the X chromosome by chance, none were found. 
The top 30 aDNAm’s are listed. A substantially higher 
frequency of aDNAm’s were found on chromosomes 3, 9, 
18, and 19 (> 20%, indicated in red), and a substantially 
lower frequency on chromosomes 12, 14, 21, and 22 (< 
-20%, blue) than expected given the proportion of CpGs 
on the array (Figure 1B). 

Overall, the correlations for those aDNAm’s with 
increased methylation were stronger (partial correlations 
0.41 to 0.78) than for those with decreased methylation 
(partial correlations -0.53 to -0.45) (Supplementary Table 
1). aDNAm’s most strongly associated with age, with 
increased and decreased methylation are shown as dot 
plots in Figures 1C and 1D. The three aDNAm’s with the 
strongest statistical association with age were localized 
in the 5’UTR or 1stExon of ZNF274, the gene body of 
PTPRN, and an intergenic CpG locus (cg04880546) 
(Figure 1C). Those which decreased mostly strongly in 
association with age were localized in the TSS1500 of 
CDKN1A, the body of PALLD, and one intergenic CpG 
(cg02315421) (Figure 1D). 

Genomic features of aDNAm’s

Of the 1,214 aDNAm’s identified, 73% and 60% 
were located in annotated promoters and CpG Islands, 
respectively. The distribution of aDNAm’s between 
gain and loss of methylation was significantly different 
across functionally annotated genomic locations and 
CpG Islands/shores/shelf at P = 8.7 × 10−5 and P = 
2.0x10−22, respectively (Figure 2A–2B). Compared to 
the total number of CpGs analyzed, overall, aDNAm’s 
with increased methylation (n = 1,179) were enriched 
in core promoter regions [TSS1500 (24%) and TSS200 
(18%)] (Figure 2A) and CpG Islands (Figure 2B), while 
aDNAm’s with decreased methylation (n = 35) were 
enriched in TSS1500 (43%), intergenic (25%) (Figure 2A) 
and open sea (57%) regions (Figure 2B). About half of the 
aDNAm’s (49%) with decreased methylation were located 
in enhancer regions, while a majority of aDNAm (83%) 
with increased  methylation was located in non-enhancers 
(P = 1.6 × 10−6) (Figure 2C).

The overlapping genomic location of aDNAm’s 
with sites prone to mutation in human cancer was found 
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using the COSMIC mutation database. Fifteen aDNAm’s 
were co-localized within vulnerable genomic regions 
where somatic mutations occur, including for breast 
cancer (NEFM) (Supplementary Table 2). Three of these 
loci were in genes for transcriptional regulators (PAX5, 
SOX21, and ZGPAT). All overlapped aDNAm’s were 
located in CpG Islands (n = 10) or shores/shelf (n = 4) 
except one locus (Supplementary Table 2).

Potential biological implications of identified 
aDNAm’s

Among the 829 unique genes containing aDNAm’s, 
784 were included in the IPA dataset. Molecular and 
cellular functions of genes containing aDNAm’s were 
significantly enriched for cell-to-cell signaling and 
interactions (n = 89), cell death and survival (n = 219), cell 

Table 1: Characteristics of study participants

Characteristic 
Study samples (n = 121)

No. Mean (range) or %
Demographic and clinical characteristics    
Age, years 121 38 (17–76)
Race    
   European American 81  67%
   African American 40  33%
BMI, kg/m2 121 30 (21–46)
Age at menarche 91 13 (9–16)
   Missing 30 -  
Parity    
   Nulliparous 53  55%
   1 14  14%
   2 20  21%
   3+ 10  10%
   Missing 24 -  
Age at first birth, years 34 27 (17–38)

   Missing 87 -  

Alcohol statusa    
   Ever drinker 99  88%
   Never drinker 14  12%
   Missing 8 -  

Smoking statusb    
   Ever smoker 33  34%
   Never smoker 65  66%
   Missing 23   
Menopausal status    
   Pre-menopausal 91  77%
   Post-menopausal 27  23%
   Missing 3   
1st degree relatives with breast cancer    
   No 81  91%
   Yes 8  9%
   Missing 32   
a ≥12 [ever] and < 12 [never] beverages over the course of a lifetime  
bEver smoked >= 100 and Never < 100 cigarettes over the course of your lifetime.
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morphology (n = 178), cellular growth and proliferation 
(n = 273), and gene expression (n = 145) (Figure 3A). 
IPA’s upstream analysis showed enrichment for genes for 
ESR1 (n = 72) and beta-estradiol responsive genes (n = 61) 
(Figure 3B). Of these, 25 genes were responsive to both 
ESR1 and beta-estradiol responsive genes. 

Among the 784 genes available in the IPA dataset, 
650 (83%) were involved in cancer of some type. About 
13% of these cancer-related genes (n = 86) are known 
to play a role in breast cancer (Figure 3C). Of the breast 
cancer related genes, thirty-five (41%) are nuclear proteins 
and 15 (17%) are transcription regulators [CBX4, EGR4, 
FHL2, GATA3, HEY2, MGA, MYB, NFATC2, NPAS4, 
PRDM1, PRDM2, RELB, RREB1, SMAD2, and ZNF3 
(Figure 3C)]. Among breast cancer-related genes, 50% 
were also associated with age in both breast tumor tissues 
and adjacent normal tissues in the TCGA-BRCA dataset 
(orange in Figure 3C). An additional 30 (35%) and 7 (8%) 
were associated with age in the adjacent normal (light blue 
in Figure 3C) or tumor (pink in Figure 3C), respectively. 

Association of DNMT3A protein expression with 
age and aDNAm’s

Expression of DNMT3A protein varied (score 
= 2–6) among normal breast tissues; 43 subjects were 
classified as having low expression (score = 2–5) and 

66 had high expression (score = 6). Examples of low 
and high IHC results are shown in Figure 4A. High 
expression of DNMT3A was significantly associated 
with age above the median (OR 2.43, 95% CI: 1.02–
5.78; P = 0.04). Two aDNAm’s showed borderline 
significant associations with DNMT3A expression; 
KRR1 (cg18557556 located in TSS1500 and S_Shore) 
(OR 6.57, 95% CI: 2.51–17.23; FDR q = 0.051)) and 
DHRS12 (cg04925385 located in TSS1500 and CpG 
Island) (OR 6.08, 95% CI: 2.33–15.86; FDR q = 0.051) 
(Supplementary Table 3). We confirmed that age was not 
confounder in the association of DNMT3A expression 
with these two aDNAm’s.

Correlation between aDNAm’s and their gene 
expression

We found a significant inverse correlation between 
gene expression of C19orf48 and its methylation level 
(cg01534416 located in TSS1500) (r = -0.42, FDR q = 
0.011) (Figure 4B). Another four genes showed borderline 
significant correlations at FDR q < 0.1. Three of these were 
located in functional promoter regions (corresponding to 
genes MYEF2, SPATA18, and RFC4) and the other was 
located in the gene body (C9orf41). All aDNAm’s were 
located in CpG Islands or shores and inversely correlated 
with gene expression (Figure 4B). 

Figure 1: Age-related DNA methylation. (A) Manhattan plot showing aDNAm’s identified in normal breast tissues (n = 121). The 
significance −log10 (P-value) of the associations of DNA methylation with aging by chromosomes is shown. Each dot indicates each CpG. 
Red and blue dots reporesent Bonferroni corrected P-value < 0.05 and > 0.05, respectively. The top 30 aDNAm’s are indicated with an 
arrow and gene name. If there were no corresponding gene to aDNAm’s, a target ID (Illumina array) is shown. A box shows multiple 
aDNAm’s corresponding to one gene. (B) Comparison of the proportion of expected (line) and observed (box) aDNAm’s by chromosome. 
An expected % was calculated based on a total 437,653 CpGs analyzed on the array and the observed % was calculated among 1,214 
aDNAm’s at Bonferroni corrected P < 0.05. Chromosomes in red and blue are those substantialy (20%) higher or lower than expected, 
respectively. Dot plots of beta-values for top 3 aDNAm’s for gain (C) and loss (D) of methylation based on the p-value. Each point 
represents the beta-value for an individual (n = 121). Three age groups are colored for < 35 (blue) , 35–49 (red) , and > = 50 (green) for 
visualization. The raw and bonferroni corrected P-value for the association of DNA methylation with age are shown.
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TCGA-BRCA dataset: aDNAm’s in breast 
adjacent normal and tumor tissues 

The aDNAm’s identified for the healthy women 
were queried in the TCGA-BRCA data. The characteristics 
of TCGA samples were provided in Supplementary 
Table 4. The mean methylation levels across all CpG 
loci differed little between breast tissue from healthy 

women (the present study) and adjacent “normal” and 
tumor tissue in the TCGA dataset in both pooled and 
paired samples (Figure 5A). The mean aDNAm level 
in the breast tissues from the women without a history 
of cancer was 39% lower than for the TCGA adjacent 
normal tissues (n = 95) (P = 1.18 × 10−26) and 53% lower 
than for the TCGA tumor tissues (n = 698) (P < 1.89 × 
10−37) (Figure 5A). An unsupervised clustering for the 

Figure 2: Box plots of proportion of aDNAm’s. Box plots showed the expected (line) and observed (box) aDNAm’s by functional 
genomic location (A) CpGIslands/shores/shelf/opensea (B) and enhancer (C) Pink and blue boxes represent gain and loss of methylation, 
respectively. A proportion was tested (Chi-Squre) for a difference across regions between gain and loss of methylation (P-value in the box) 
and for a difference of gain/loss methylation compared to the expected aDNAm’s (P- value on the topt of box plot) .
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1214 aDNAm’s consistently showed higher methylation 
of aDNAm’s among TCGA tumor compared to adjacent 
normal tissues, and to the breast tissues of women without 
a history of cancer (Supplementary Figure 1A). 

The mean methylation of the 1,214 aDNAm’s was 
similar by tumor subtype for Luminal A (mean beta 0.29), 
Luminal B (mean beta 0.31), and HER2 breast cancers 
(mean beta 0.28), but was statistically different for Basal 
(mean beta 0.23) (Figure 5B, Supplementary Figure 
1B). The mean methylation of the 1,214 aDNAm’s was 
significantly higher for tumors that were ER+, PR+, or 
HER2+ compared to ER-, PR-, or HER2- at P = 1.60 × 
10−21, P = 4.82 × 10−15, or P = 9.95 × 10−3, respectively 
(Figure 5C–5E, Supplementary Figure 1C–1E).

At the locus level in the TCGA dataset, among 
the 1,214 aDNAm’s, 49.3% of the 1,214 aDNAm’s (n = 
599) were associated with age in both adjacent normal 

and tumor tissues at FDR q < 0.05 (Figure 6A). These 
replicated aDNAm’s in both tissues were significantly 
enriched for CpG Islands compared to the ones that 
were not replicated (only observed in the breast tissues 
from the women without cancer) (70% vs. 44%; P < 
0.05) (Figure 6A). The genes corresponding to these 
replicated aDNAm’s were predicted to be involved in 
cellular function and maintenance as the primary cellular 
functional role (Figure 6A). Also, 35% (n = 419) or 
11% (n = 133) were significantly associated with age in 
only adjacent normal or only tumor tissues, respectively 
(Spearman correlations with FDR q < 0.05). The direction 
of change with age was the same for all loci. 

We further examined if the 732 aDNAm’s in TCGA 
tumor tissues were differentially methylated by hormone 
receptor status. Of these aDNAm’s, 565 (77%), 492 
(67%), and 102 (14%) were significantly differentially 

Figure 3: The most important molecular and cellular functions of the 1,214 aDNAm’s, beta-estradiol or/and ESR1 
responsive, and breast cancer related genes identified by IPA. (A) IPA categorized genes corresponding to aDNAm’s by molecular 
and cellular function. The number above a box plot indicates the number of aDNAm’s in a functional group.  The horizontal line represents 
threshold p-value of 0.05 (Fishers’ exact test). (B) Lists of beta-estradiol or/and ESR1 responsive genes corresponding to aDNAm’s are 
shown. (C) Among genes corresponding to aDNAm’s, 86 breast cancer related genes are shown by spatial location of molecules. Genes 
confirmed to be associated with age are colored. Orange colored genes was confirmed to be associated with age in both breast adjacent 
normal and tumor tissues from TCGA independent datasets. Light blue or pink colored genes were associated with age in either adjacent 
normal or tumor, respectively. Gray colored genes were not validated.   
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methylated by ER, PR, and HER2 status, respectively, 
at FDR q < 0.05 (Figure 6B). The majority of them (92–
97%) were significantly more methylated (7–23% higher) 
in positive compared to negative hormone receptor tumors 
(Figure 6B). 

The replicated aDNAm’s in the TCGA dataset and 
differentially methylated aDNAm’s by hormone receptor 
status are provided in Supplementary Table 5.  

DISCUSSION

Age is a significant and established risk factor for 
breast cancer [1, 2]. Gene methylation in breast cancer also 

changes with aging [5–7], but the extent of these changes 
in normal breast tissues and the direct relevance to breast 
cancer development is unknown. Studying aDNAm’s in 
normal breast tissues from women without a history of 
cancer or evidence of benign breast disease should provide 
insight for what occurs naturally in the breast over time, 
and potentially contribute to breast cancer development. 
In this study, 1,214 aDNAm’s were identified, all 
autosomal, most showing increased methylation with age, 
and usually found in CpG Islands and non-enhancers. 
Two aDNAm's co-localized within vulnerable regions 
for somatic mutations in breast cancer. In addition to a 
significant inverse correlation between gene expression of 

Figure 4: DNMT3A protein expression patterns by immunohistochemistry in histologically normal breast tissues (A) 
and correlations between age-related DNA methylation and gene expression (B). (A) Low expression (upper) and high 
expression (lower) are shown in 10X, 20X, and 40X magnification. (B) Spearman coefficient (r) and P-values are presented. The x- and 
y- axis indicate the beta-value and intensity of corresponding transcript, respectively. Gene names and functional location of aDNAm’s are 
shown.
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C19orf48 and its methylation level, we found another four 
genes to be borderline statistical significant correlations 
(C9orf41, MYEF2, SPATA18, and RFC4). High expression 
of DNMT3A protein was significantly associated with 
increasing age and two aDNAm’s (corresponding to KRR1 
and DHRS12). A majority of the genes corresponding to 
aDNAm’s were associated with cancer including breast 
cancer; the genes were highly enriched for ESR1 or beta-
estradiol responsive genes. Using the independent TCGA-
BRCA dataset, we found that aDNAm’s identified in 
breast tissues of women without a history of breast cancer 
were highly methylated in breast tumors compared to both 
adjacent normal tissues and to the normal breast tissues. 
Methylation of the aDNAm’s was lower for basal tumors 
compared to other subtypes.

Global gene methylation on repetitive elements 
has been shown to be inversely correlated with aging [8, 
10]. In contrast, it also is known that DNA methylation 
at specific loci is positively correlated with age [19]. We 
found a positive correlation for methylation with age for 
97% of the CpGs identified; 60% of these were in CpG 

Islands as compared to only 32% expected by chance. In 
line with these findings, other studies have shown regional 
hypermethylation of CpG Islands in a variety of other 
organs [7, 11, 13, 20–22]. There also is some consistency 
in these findings for aDNAm’s reported in blood for a 
population-based longitudinal study of healthy individuals 
(n = 400) for 31% of the detected 162 aDNAm in blood 
[20]. However, in the only prior study of normal breast 
tissues that we are aware of, there was low agreement of 
results, (8% [16/199 aDNAm’s]), perhaps due to their 
using a different assay platform or small study size (n = 
23 and n = 15 in two separate analyses) [7]. 

We found alterations in DNA methylation related 
to age for 803 unique genes, most corresponding to 
coding genes known to be involved in cancer (e.g., 
TP73, CDKN1A and ESR1). aDNAm’s involved ESR1 
and beta-estradiol responsive genes. ESR1 is one of the 
well-established master transcriptional regulators in the 
breast [23] and is epigenetically silenced in breast cancer 
[24]. Some aDNAm’s were identified in genes for non-
coding RNAs (ncRNAs) that may affect regulation of 

Figure 5: Differences of aDNAm’s by tissue types and breast cancer types. (A) Mean methylation level for all 437,653 CpGs 
analyzed and mean 1,214 aDNAm’s by different tissue types. Comparison was performed between breast normal tissues from healthy 
women and TCGA adjacent normal and tumor. Separately, comparison for only paired adjacent normal and tumor tissues from TCGA 
is also shown. Comparison of mean 1,214 aDNAm’s by breast cancer types (B) or hormone receptor status (C–E) among TCGA tumor 
tissues. The differences between tissue types or cancer types were tested using Mann-Whitney rank tests. 
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gene expression [25, 26] and involved in breast cancer 
[27, 28]. It has previously been reported that ncRNAs may 
be associated with aging [29]., 8 aDNAm’s were located 
in the promoters of precursor-miRNAs (pre-miRNAs), 
indicating a possible regulatory role of the aDNAm’s 
in miRNA expression. These include mir-15b/16–2 that 
targets the BCL2 oncogene [30–32]; mir-7-3, a let-7 family 
member that regulates the RAS oncogene [33]; mir-148a, 
known to induce apoptosis by targeting IGF-1R and IRS1 
in breast cancer cells [34]; mir-426 known to promote cell 
proliferation in breast cancer [35]; and, mir-935 known 
to be differentially expressed in hormone-responsive 
breast cancer cells [36]. A role for two of the miRNAs 
(mir-596 and mir-1253) is unclear for breast cancer, but 

hypermethylation of these have been found in endometrial 
cancer cell lines [37]. 

None of the 1,214 aDNAm’s identified in the 
present study mapped to the X-chromosome, and this 
was also found, except for one in the 1,685 aDNAm’s 
identified in TCGA tumor tissues (Bonferroni corrected 
P < 0.05; data not shown). This paucity of aDNAm’s on 
the X chromosome is surprising considering that DNA 
methylation plays a key role in X chromosome inactivation 
[38]. However, a role in cancer seems less likely and is 
consistent with the small number of mutations on the X 
chromosome compared to autosomes [39]. Similarly, a 
recent study showed a significantly higher stability of X 
chromosome transcripts than for autosomal transcripts in 

Figure 6: aDNAm’s in TCGA datasets. (A) A pie chart by exploding sections for replicated (Y) or non-replicated (N) aDNAm’s 
in TCGA adjacent normal and/or tumor tissues. A proportion of genomic features (functional promoters, CpGIslands, enhancers) and top 
molecular and cellular functions by IPA for each section are shown. (B) Differences for methylation levels of 732 aDNAm’s replicated in 
TCGA tumor tissues by hormone receptor status (positive and negative). The differences were tested using Mann-Whitney rank tests and 
Benjamini and Hochberg False Discovery Rate (FDR) q < 0.05 was considered significant. In pie charts, higher and lower methylation of 
differentially methylated aDNAm’s in positive compared to negative hormone receptor status are shown as red and blue section, respectively. 
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various human cell lines, both male and female, and in 
mice [40]. Taken together, the X chromosome may be both 
genetically and epigenetically more stable than autosomes, 
even over aging, in both normal and tumor breast. 

The mechanisms for changes in DNA methylation 
with aging are poorly understood. The de novo DNA 
methyltransferases play a key role in early development, 
are down-regulated in adult somatic tissues, and 
conversely are over-expressed in breast cancer and other 
tumors [41, 42]. In this study, expression of DNMT3A 
protein in the breast tissue was correlated with age and its 
expression was significantly correlated with two aDNAm’s 
including KRR1 and DHRS12, indicating a possible 
mediation of DNMT3A in DNA methylation of these two 
CpGs during aging particularly for those aDNAm’s. A 
recent review suggested that de novo methylation related 
to age is involves DNA methyltransferases, consistent with 
the findings at least for these two CpGs herein [10]. 

In our study, we found only a few aDNAm’s 
associated with gene expression in normal breast tissue. 
Although we could not validate the direct relationship 
of DNA methylation and gene expression for most of 
the aDNAm’s genes, we found correlates to some of the 
aDNAm’s herein; gene expression was decreased for 5 
aDNAm genes (C9orf41, C19orf48, MYEF2, SPATA18, 
and RFC4). Understanding how differences in aDNAm’ 
related to their gene expression has been challenging.  
This is because gene expression is regulated in many ways 
in addition to DNA methylation  [43], and so associations 
are plausibly weak. For example, there are important 
roles for CpG Islands, promoters, and enhancers [44], 
and ncRNAs [45]. A recent study of normal breast tissues 
showed aDNAm’s enriched for regions of chromatin 
remodeling and transcriptional control [14], suggesting 
its possible contribution to gene expression. In our study, 
the most statistically significant correlation was found 
for C19orf48, which encodes a minor histocompatibility 
antigen. Although its functional role is unknown, the 
promoter methylation site of C19orf48 (cg01410314) 
correlated with its gene expression in the current study is 
marked by the enhancer-related histone mark H3K27Ac 
based on the UCSC Genome Browser (data not shown), 
indicating a possible contribution of DNA methylation on 
its gene expression. SPATA18 is suggested to be a novel 
transcriptional target of P53 and is down-regulated in 
breast cancer compared to normal breast tissues, indicating 
a novel tumor suppressor gene [46]. RFC4 is involved 
in DNA replication and chromosomal stability, and its 
upregulation was found in the poor prognostic group of 
breast cancer [47]. Given that the aDNAm’s in SPATA18 
and RFC4 are located in CpG Islands, some of the 
aDNAm’s identified in this study may contribute to gene 
regulation. Although a limited number of aDNAm’s was 
found, another functional significance of the a subset of 
aDNAm’s identified  that  overlapped with mutation-prone 
sites in human cancer, mostly located in CpG Islands, 

shores, or shelves, indicating a possible involvement of 
these aDNAm’s in somatic mutations in cancers. 

This study has several strengths. It provides a 
comprehensive analysis of aDNAm’s in breast tissues 
from healthy women with no previous history of breast 
cancer. Prior studies mostly focus on blood and other 
tissues, and there has been limited study in the breast [20–
22].  It is unknown how aDNAm in blood and other tissues 
reflect aDNAm’s in the breast.  Also, the study of breast 
tissues from women without cancer identifies aDNAm’s 
that may be playing a role in breast carcinogenesis, 
when they are found to also occur in breast tumors, as 
demonstrated herein. Another strength is the assessment of 
aDNAm’s biological effects on gene expression. Further 
the understanding of the association of altered DNA 
methylation with the expression of the DNMT3A protein 
adds to our understanding of these processes. 

This study also has limitations. We studied breast 
normal tissues from women who had undergone reduction 
mammoplasty; these women necessarily have larger 
breasts than other women and have greater BMIs, possibly 
limiting the generalizability of these findings. However, 
this limitation was tempered by multivariable adjustment 
analysis for BMI. Further, the concordance between the 
findings in the healthy women and those in the TCGA data 
set provides some indication that the findings are more 
generalizable. Another limitation is that the cross-sectional 
study design provides evidence of association but not 
causality, and it is not know which of these women, if 
any, would develop breast cancer later in life. While a 
longitudinal examination of changes in methylation with 
aging would be ideal, it would be difficult to collect human 
breast tissues on multiple occasions for such a study. Also, 
although adipose tissue was dissected from epithelia tissue 
at the time of specimen collection, blunt dissection does 
not perfectly segregate the epithelia from adipose tissue 
components, so potential confounding due to cellular 
proportions may have entered into our determinations 
of aDNAm. Given the rising this concern about DNA 
methylation differences by cellular proportions, we 
assessed breast tissue heterogeneity on a subset of samples 
(93/121) as described in our previous study [48]. Although 
this assessment may not directly address the heterogeneity 
issue due to different biological materials used (slides for 
heterogeneity and tissues for DNA methylation), we found 
that 88% of aDNAm’s (999/1214) were not associated 
with the heterogeneity index (unadjusted P > 0.05) (Data 
not shown). This provides evidence that heterogeneity had 
little influence on the majority of aDNAm’s associated 
with age. Moreover, we were limited to prove biological 
mechanisms of aDNAm’s although we found an evidence 
of estrogen influences on aDNAm’s. Although cell-to-
cell signaling and interactions, cell death and survival, 
cell morphology, cellular growth and proliferation, and 
gene expression functions were enriched in IPA analyses, 
it is possible that these analyses are biased toward genes 
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with higher numbers of probes (average aDNAm’s = 29, 
average non-aDNAm’s = 18); however, we are uncertain if 
this biases the IPA analyses toward any particular function 
or regulator. Separately, we utilized an array-based method 
to identify aDNAm’s. Although HumanMethylation450 
BeadChips provide quantitative methylation levels at a 
single-base resolution, the coverage of total CpGs is low 
(approximately 2%). Also this array does not allow the 
detection of allele-specific changes in DNA methylation. 
Thus, new methods such as next-generation sequencing 
will further provide large-scale methylation data without 
loss of information in the entire genome. Although we 
found the lower mean methylation of aDNAm’s identified 
in breast tissues of women without a history of breast 
cancer than those for TCGA tissues, it is possible that this 
reflects differences in collection and technical protocols, 
rather than a true biological difference. 

This study is the first comprehensive report of 
changes in DNA methylation with age in normal breast 
tissues of women without a history of cancer. We found 
altered methylation at 1,214 aDNAm's, almost all of which 
were increased methylation. The alterations were present 
only on autosomes. The affected genes included those 
known to be important in breast cancer, such as ESR1 or 
beta-estradiol responsive genes. The results are consistent 
with the hypothesis that the relationship of aging to breast 
cancer may be explained at least in part by age-related 
changes in DNA methylation and gene expression in 
normal tissues before clinical cancer develops. Given that 
age is one of the strongest risk factors for breast cancer, 
understanding the mechanism of that association provides 
critical insights. Further understanding of the underlying 
mechanisms for age-related effects on DNA methylation 
warrants further study.

MATERIALS AND METHODS 

Study samples

A subset of samples was from our previous study 
and detailed methods of this study have been described 
elsewhere [48–51]. Briefly, women (n = 121) who 
underwent reduction mammoplasty at Georgetown 
University Medical Center (Washington, DC), the 
University of Maryland (College Park, MD), the 
Washington Hospital Center (Washington, DC) and the 
Center for Plastic Surgery (Buffalo, NY) provided written 
informed consent, an epidemiologic questionnaire, blood 
and their residual breast tissues.  Institutional Review 
Boards was received at each institution. Breast tissues 
were grossly blunt-dissected to separate epithelial tissues 
from adipose, snap frozen in liquid nitrogen, and stored 
at -80 °C until use. A part of the sample was immersed 
in RNA later (Ambion, Inc., Austin, Texas). Women 
with evidence of premalignant benign breast disease 
were excluded. Demographic, lifestyle, reproductive, 

and family medical history data were assessed by an 
interviewer-administered questionnaire. 

Genome-wide DNA methylation analysis and 
quality checks

Genomic DNA was extracted from dissected 
frozen fresh breast tissue using a MasterPure 
DNA purification kit (Epicenter, Madison, WI). 
Following bisulfite treatment of DNA using the EZ 
DNA Methylation kit (Zymo Research, Irvine, CA), 
genome-wide DNA methylation was analyzed using 
HumanMethylation450 BeadChips (Illumina, San 
Diego, CA) (HM450), according to the manufacturer’s 
instructions. In order to minimize the impact of 
batch effects, samples were randomized by age and 
ancestry [52]. Illumina .idat file were imported into 
Partek Genomics Suite™ 6.6 (Partek Inc., St. Louis, 
MO) and normalized by Subset-quantile Within Array 
Normalization (SWAN) [53]. GRCh37/hg19 (Human 
Genome version 19) was used as a reference genome. 
Any probes with the following criteria were filtered 
out before further statistical analysis: detection P > 
0.05 (n = 6,576), probes in Y chromosome (n = 416), 
and cross-reactive probes (n = 41,248) [54, 55]. An 
ANOVA model was used to remove the batch effect, 
with processing data adjusted to remove these effects. 
19 out of 121 samples (about 16%) were duplicated as 
internal quality controls (QCs) while processing the 
samples. The correlation coefficient for duplicate signal 
intensities in the arrays was 99% (data not shown). 
Previously, we have shown high concordance between 
HM450 and gene methylation by pyrosequencing in 
a subset of samples used in this study [50, 51]. The 
HM450 data were deposited to under NCBI GEO 
GSE101961. 

Human transcriptome array

Total RNA was extracted from frozen breast tissue 
stored in RNAlater (Ambion) using 1.5 mm Triple-Pure 
Zirconium Beads (Benchmark Scientific, Edison, NJ) and 
RNeasy Plus Mini Kit (Qiagen, Valencia, CA). To profile 
gene expression, the GeneChip® Human Transcriptome 
Array 2.0 (Affymetrix Inc, Santa Clara, CA) was used. 
The data available were limited to 104 out of 121 samples 
because of the RNA quality. The raw data (CEL files) 
were imported into the Affymetrix Expression Console® 
Software (version 1.3.1) for log2 transformation and 
quantile normalization. Batch effect was removed as 
described above. Ten percent of samples were duplicated 
for quality control while processing the samples. The 
correlation coefficient for duplicate signal intensities in 
the arrays was 99% (data not shown).  The Affymetrix 
gene expression data were deposited to under NCBI GEO 
GSE102088.
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Immunohistochemistry (IHC) for DNMT3A

IHC staining of DNA Methyltransferase 3 Alpha 
(DNMT3A) was done on formalin-fixed paraffin-embedded 
(FFPE) tissues (n = 91) using antibodies purchased from 
Novusbio (NBP-1–85961). Heat induced epitope retrieval was 
performed by immersing FFPE samples at 98°C (20 minutes) 
in citrate buffer (10 mM; pH 6.0) with Tween (0.05%). IHC 
was performed using the VectaStain Kit from Vector Labs 
according to manufacturer’s instructions. Slides were exposed 
to biotin-conjugated secondary antibodies, and counterstained 
with hematoxylin (Fisher, Harris Modified Hematoxylin), 
blued in 1% ammonium hydroxide, dehydrated, and mounted 
with AcryMount. Consecutive sections with the primary 
antibody omitted were used as negative controls. Nuclear 
DNMT3A staining within epithelial cells was scored by the 
pathologist (BVSK) using the modified Allred method (scaled 
0–6). The score combined an estimated proportion score on a 
scale of 0 to 3 (0: negative, 1: less than 10%, 2: 10–50%, and 
3: greater than 50%) with an average intensity score of 0 to 
3 (0: negative, 1: weak, 2: moderate, and 3: intense). 17.5% 
of data (16/91) was duplicated and agreed on all intensity 
(16/16) and distribution scores except for a distribution score 
from one sample (15/16). 

The cancer genome atlas data (TCGA)

Level 1 data from TCGA-Breast Invasive Carcinoma 
(BRCA) database were downloaded as .idat files via https://
tcga-data.nci.nih.gov/tcga/. The data were normalized using 
SWAN [53]. There were data for 698 women with breast cancer 
who were either European American or African American; 88 
of those also had data from paired adjacent normal tissues. An 
ANOVA model was used to remove the batch effects.

Statistical analyses

For initial identification of aDNAm’s, a Bonferroni 
threshold of 0.05 was used to identify the most promising 
signatures. For all downstream analyses, Benjamini and 
Hochberg False Discovery Rate (FDR) = 0.05 was used as 
the threshold. If not stated otherwise, a raw P < 0.05 was 
considered statistically significant. 

Locus-by-locus analysis to identify aDNAm’s 

For modeling purposes, M-values were derived 
from Beta-values by logit-transformation. To identify 
aDNAm’s, analysis of covariance (ANCOVA) was used 
for age as a continuous variable with adjustment by 
race as a categorical variable (European American vs. 
African American), and body mass index (BMI; kg/m2) 
as a continuous variable, variables that were significantly 
correlated with methylation [50]. A Bonferroni-corrected 
P < 0.05 (corresponding to raw P < 1.14 × 10−7) was 
considered statistically significant. 

Genomic features of aDNAm’s

aDNAm’s were classified by genomic 
location based on the Illumina annotation file 
(HumanMethylation450_15017482_v1-2): CpG Islands, 
2 kb regions upstream and downstream of the CpG Islands 
(shores), 2 kb regions upstream and downstream of the 
shores (shelves), functional promoters [within 1500 base 
pairs (bps) of a transcription start site (TSS) (TSS1500); 
within 200 bps of a TSS (TSS200); 5’ untranslated regions 
(5’UTR); first exon (1stExon)] and other regions [body, 
3’UTR, or a stretch of DNA region located between 
genes (intergenic )]. To investigate potential sites prone to 
mutation due to DNA methylation of aDNAm’s, we used 
the Catalogue of Somatic Mutations in Cancer database 
(COSMIC) (http://cancer.sanger.ac.uk) and searched 
genomic locations where aDNAm’s are located in order 
to identify the overlap of aDNAm’s with sites prone to 
mutation in human cancer.

Comparisons of distribution of aDNAm’s across 
the genomic location   

The distribution of aDNAm’s across genomic 
location (CpG Island, functional location, and enhancer) 
was compared to the distribution of total CpGs analyzed (n 
= 437,653). The enhancers are derived from the Illumina 
annotation [56] based on enhancer elements determined 
by the Encyclopedia of DNA Elements (ENCODE). 
A chi-square raw P < 0.05 was considered statistically 
significant. 

Correlation between methylation of aDNAm’s 
and gene expression 

Probes from HM450 and Affymetrix were matched 
for gene names (perfectly matching). The CpGs located up 
to 1500 bps upstream of the gene, gene body, and 3’UTR 
were included in the analysis. The aDNAm (M-value) 
was correlated with expression of a corresponding gene 
(mean of log2 transformed intensities if there was more 
than one probe) by Spearman correlation. FDR q < 0.05 
(corresponding to raw P < 8.66 × 10−6) were considered 
significant. 

Correlation of DNMT3A expression with age or 
aDNAm’s 

A logistic regression model was used because of 
the skewed distribution of DNMT3A expression (data 
not shown). Median values were used to dichotomize 
age (37 years) and aDNAm’s. DNMT3A by IHC was 
dichotomized using the median Allred score as the cut-
point: ≤ 5 = lower expression (n = 43) and 6 = higher 
expression (n = 66). Logistic regression models were used 
to estimate odds ratios (OR) and 95% confidence intervals 
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(CI) for associations of DNMT3A protein expression 
with age at a raw P < 0.05 or with methylation levels of 
aDNAm’s at FDR q < 0.05 (corresponding to raw P < 4.22 
× 10−5).

aDNAm’s in the TCGA dataset 

Mann-Whitney rank tests were performed to 
compare mean methylation levels between groups (normal, 
pooled adjacent normal, pooled tumor, paired normal, 
and paired tumor tissues) and between different breast 
cancer types. A raw P < 0.05 was considered statistically 
significant. To assess aDNAm’s identified from normal 
breast tissues in TCGA samples, M-values of 1,214 CpGs 
were first filtered from TCGA datasets and correlated with 
age using the Spearman correlation. Spearman correlation 
FDR q < 0.05 were considered statistically significant. 

Ingenuity pathway analysis (IPA)

The unique gene list corresponding to aDNAm’s 
was created and used for IPA. The imported genes were 
classified by IPA (Ingenuity® Systems, www.ingenuity.com) 
using the biological functions to be presented as being used 
for annotation, ranked by score. The score [score = -log10(p-
value)] computed by IPA is a measure of the probability 
of finding identified genes in a set of a list of biological 
functions stored in the IPA knowledge base (IPKB). 
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