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ABSTRACT
Significant limitations exist in our ability to predict breast cancer risk at the 

individual level. Circulating microRNAs (C-miRNAs) have emerged as measurable 
biomarkers (liquid biopsies) for cancer detection. We evaluated the ability of 
C-miRNAs to identify women most likely to develop breast cancer by profiling miRNA 
from serum obtained long before diagnosis. 24 breast cancer cases and controls 
(matched for risk and age) were identified from women enrolled in the High-Risk 
Breast Program at the UVM Cancer Center. Isolated RNA from serum was profiled for 
over 2500 human miRNAs. The miRNA expression data were input into a stepwise 
linear regression model to discover a multivariable miRNA signature that predicts 
long-term risk of breast cancer. 25 candidate miRNAs were identified that individually 
classified cases and controls based on statistical methodologies. A refined 6-miRNA 
risk-signature was discovered following regression modeling that distinguishes cases 
and controls (AUC0.896, CI 0.804-0.988) in this cohort. A functional relationship 
between miRNAs that cluster together when cases are contrasted against controls was 
suggested and confirmed by pathway analyses. The discovered 6 miRNA risk-signature 
can discriminate high-risk women who ultimately develop breast cancer from those 
who remain cancer-free, improving current risk assessment models. Future studies 
will focus on functional analysis of the miRNAs in this signature and testing in larger 
cohorts. We propose that the combined signature is highly significant for predicting 
cancer risk, and worthy of further screening in larger, independent clinical cohorts. 

INTRODUCTION

Several models are available for estimation of breast 
cancer risk; the most widely used include the Gail [1], 
Claus [2], and International Breast Cancer Intervention 
Study (IBIS) [3] models. The Gail model uses clinical 
factors, biopsy history and limited family history and has 

been validated [1, 4]. The Claus model uses only family 
history [5], while the IBIS model incorporates a greater 
number of clinical factors and a more detailed family 
history [5, 6]. Each model has significant limitations and 
has not been found to be informative at the individual level 
[6]. Clearly, more precise predictors of risk are needed.

MicroRNAs (miRNAs) have emerged as promising 
biomarkers as they are stable in circulation and found in 
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most body fluids [7, 8]. Circulating miRNAs (C-miRNAs) 
are released from almost all cells in many forms: in 
microvesicles [9], exosomes [10], bound to protein or lipid 
particles [11, 12], or unbound [13]. As such, C-miRNAs 
act as intercellular signaling molecules [9] and may 
function to establish local environments for initiation and 
progression of cancer. A single miRNA can simultaneously 
target hundreds of genes, acting as a master regulator of 
biological signaling pathways with established roles in 
controlling normal development and tissue homeostasis 
[14]. MicroRNAs have also been shown to have important 
regulatory functions on processes impacting proliferation, 
differentiation, and apoptosis—all of which are important 
for cancer development and progression [15, 16]. Thus, 
miRNAs may be an important and more precise biomarker 
of breast cancer risk.

Significant differences in miRNAs have been found 
between cancer patients and healthy controls [17-20], 
suggesting potential clinical utility for cancer detection 
or monitoring of disease activity [21-24]. In breast cancer 
patients, serum miRNA levels correlate with expression 
in primary breast tumors [22, 23]. It is hypothesized that 
C-miRNAs dysregulated in cancer patients arise from 
tumor tissue, although the cells of origin are unknown 
and differential levels may be due to host cells attempting 
to inhibit tumor growth. Nonetheless, C-miRNAs may 
provide accessible and quantitative indicators of regulatory 
mechanisms that predispose individuals to cancer and may 
be surrogates for cancer risk assessment.

We postulate that there are measurable differences 
in C-miRNAs within serum obtained from women at high 
risk for breast cancer who eventually develop tumors, 
and those who are at high risk, but remain cancer-free. To 
assess this, we analyzed global miRNA levels from serum 
obtained from women at high risk for breast cancer years 
prior to cancer development. Here we present our patient 
classification algorithm and a preliminary risk signature 
of 6 miRNAs that, when combined, discriminate cases 
from controls with high accuracy and precision. Although 

studies have provided short term risk assessment (i.e. early 
detection) no studies have yet evaluated the potential of 
liquid biopsy to predict breast cancer development years 
before cancer identification [25-28].

RESULTS

Clinical characteristics

Twenty-four of the HRBP participants who were 
diagnosed with breast cancer met criteria to be included as 
cases. Most (66.7%) were at increased risk due to strong 
family history. The majority developed breast cancers that 
were less than 2 cm (87.5%) and lymph node negative 
(86.4%). Table 1 outlines the characteristics of breast 
cancers in this study cohort. Among cases, the median 
time between serum collection and breast cancer diagnosis 
was 3.2 years (range 0.6-8.7 years: Figure 1). Nearly 80% 
(19/24) of these women were diagnosed more than 15 
months after serum collection. The 24 controls have been 
followed for a median of 10.3 years (range 4.0 -13.2 years) 
since serum collection, and remain cancer-free.

MicroRNA analysis

The levels of 2578 mature human miRNAs 
(miRBase v20) were interrogated in banked serum samples 
from the study cohort of 48 women. We developed 
a standardized method for serum miRNA expression 
analysis encompassing all steps from RNA isolation 
through generation of background normalized data (Figure 
2A). As confirmation of this method, two different serum 
aliquots collected at the same time from the same woman 
were processed independently by different individuals and 
a 1:1 correlation obtained post normalization as opposed 
to disparate raw data (Supplementary Figure 1).

Candidate miRNAs were selected for further 

Figure 1: Schematic of study design and serum collection timeframe. Forty-eight patients were selected from a database of 605 
women at increased risk for developing breast cancer based on clinical factors: 24 women developed cancer at least six months after blood 
was drawn (cases) and 24 age and risk matched women who remain free of breast cancer (controls).
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Table 1: Subject characteristics

*Matching factor. N0: No cancer in axillary lymph nodes. N1: Cancer spread to 1-3 axillary nodes. N2: Cancer spread to 
4-9 axillary nodes. Tumors classified as hormone-receptor negative if < 10% cells were positive. **All areas of cancer 
found in these subjects’ lymph nodes were micrometastases.
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development of a risk signature using two distinct 
techniques. Area under the ROC curves (AUC), a 
measure of the classification accuracy, and associated 95% 
confidence intervals were generated for each of the 2578 
interrogated miRNAs (Supplementary Table 1). Twenty 
miRNAs with the highest individual AUC, ranging from 
0.632 to 0.766, were selected (Figure 2B, 2D). An analysis 
of variance (ANOVA) p-value was also calculated for each 
miRNA between cases and controls (Supplementary Table 
2). Nineteen miRNAs were identified with an ANOVA 
p-value < 0.05 (Figure 2C, 2E). Combined, 25 candidate 
miRNAs comprise the AUC and ANOVA sets with 14 in 
common, 6 unique to the AUC set, and 5 unique to the 
ANOVA set. Principal component analysis using the 
expression of these 2 miRNA sets shows segregation 
of cases from controls (compare red and black circles 
in Figure 2B, 2C). In general, cases cluster to the upper 
left quadrant while controls trend to the lower right. Ten 
cases that are clearly separated in the top left of Figure 
2B are the same in the top left of Figure 2C. Note that the 
levels of many candidate miRNAs are reduced in serum of 
women that ultimately developed breast cancer (compare 
top control heat maps to bottom case heat maps in Figure 
2D, 2E), suggesting a role for these miRNAs in breast 
cancer risk. 

Model development

The identified 25 candidate miRNAs (Figure 2D, 
2E) were used to develop a risk score. A bidirectional 
stepwise regression Cox proportional hazards (CoxPH) 
model was utilized to identify those miRNAs that, when 
combined, best distinguished cases from controls. We 
utilized computational methods to account for the limited 
size of our patient database. Specifically, the 48 patients 
were randomly divided into a training set of 32 samples 
and a validation set of 16 samples and 1000 individual 
models generated (Figure 3A). For each miRNA set 
(AUC or ANOVA sets), a CoxPH model was built using 
only the expression levels of miRNAs from each set in 
the randomly selected patient training set (n=32). The 
model was then tested on the remaining patient validation 
set (n=16) and evaluated by the AUC. This process was 
repeated for 1000 iterations (Figure 3A). It is important 
to note that nearly 70 billion potential combinations 
exist in selecting training and validation sets. Candidate 
signature miRNAs were model-selected based on AIC and 
refined by 2 criteria: 1) presence in over 500 models and; 
2) presence in over 50% of the models with an AUC > 
0.8 in the validation patient set. Nine out of 25 miRNAs 
passed these thresholds with each miRNA set containing 
6 miRNAs (Figure 3B). Three miRNAs (hsa-miR-1184, 

Table 2: Descriptive statistics of each miRNA within iterative models
Coefficient p-value # of models (n = 1000) # of patients detected in (n = 48)

Modeled miRNAs from Top 20 AUC miRNAs

hsa-miR-3124-5p -1.062 5.3E-05 817 23

hsa-miR-1184 -0.32 0.01044 557 47

hsa-miR-4423-3p -0.33 0.00946 619 44

hsa-miR-4529-3p 0.621 0.00029 674 39

hsa-miR-7855-5p -0.626 2.4E-05 663 41

hsa-miR-4446-3p 0.359 0.01243 622 17

6-miRNA signature AUC (95% CI) = 0.896 (0.804 – 0.988)

Modeled miRNAs from 19 ANOVA p < 0.05 miRNAs

hsa-miR-1184 -0.274 0.00998 575 47

hsa-miR-766-3p -1.305 0.00021 779 11

hsa-miR-4423-3p -0.393 0.00174 793 44

hsa-miR-4727-3p 0.601 0.02527 672 8

hsa-miR-208a-5p 0.229 0.07624 617 4

5-miRNA signature AUC (95% CI) = 0.870 (0.771 – 0.969)
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Figure 2: The expression of 25 candidate C-miRNAs separate women who develop cancer from those who remain 
cancer free. Expression of all 2578 mature miRNAs within miRBase v20 were assayed in circulation. A: A standardized workflow was 
developed and optimized to reduce sample-to-sample variability that includes precise miRNA isolation, profiling, and normalization (see 
methods). We identified 2 sets of candidate miRNAs totaling 25 in combination. AUC: 20 miRNAs with the highest individual AUC (range 
0.632-0.766). ANOVA: 19 miRNAs significantly different between cases and controls with an ANOVA p < 0.05. B, C: Principal component 
analysis was performed using normalized expression levels of those miRNAs within each set; top 20 AUC miRNAs or 19 miRNAs with 
and ANOVA p < 0.05 between cases and controls. In both instances, women with an eventual breast cancer diagnosis cluster together in 
the top left quadrant of the PCA graphs. Black circles represent cancer-free controls. Red circles represent eventual breast cancer cases. D, 
E: Heat maps show log2 expression of candidate miRNAs in cancer-free controls and future breast cancer cases. MicroRNAs are ordered 
based on hierarchical clustering (UPGMA, Euclidian distance). Each column within the stacked heat maps are matched case/control. Blue 
is background (0) and red is high miRNA log2 expression.



Oncotarget112175www.impactjournals.com/oncotarget

Figure 3: Identification of miRNAs predictive of future breast cancer diagnosis. In order to develop a miRNA risk signature 
and score we generated a multivariable proportional hazards model based on candidate miRNA expression. Both AUC and ANOVA 
sets were examined. A: Schematic of iterative model generation using randomly selected training sets of 32 samples and corresponding 
validation sets of 16 samples. B: A total of 9 combined miRNAs were identified as signature miRNA (AUC: 6 of 20 miRNAs and ANOVA: 
6 of 19 miRNAs) being present in greater than 50% of the models and did not change when the validation set AUC was required to be 
greater than 0.8. Cox proportional hazards (CoxPH) models were built using the expression of each 6-miRNA set across all 48 samples. C, 
D: The predictive ability of each 6-miRNA set in B was assessed by ROC curve and AUC based on calculated risk score. Hsa-miR-7855-5p 
was computationally excluded from the final ANOVA miRNA set model. 95% confidence intervals (CI) are indicated by gray area around 
each curve. Sensitivity is the true positive rate and 1-specificity is the false positive rate. E-H: Graphical representation of risk scores for 
each of the 48 samples based on a CoxPH model generated from the 6-miRNA AUC set (E, G) or 5-miRNA ANOVA set (F, H). Dotted 
line is the threshold used to distinguish cases from controls. Squares represent eventual breast cancer cases and circles represent cancer-free 
controls (G, H). p < 0.0001 between cases and controls.
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hsa-miR-4423-3p, and hsa-miR-7855-5p) were common 
to both the AUC and ANOVA sets.

Final models were generated separately for the top 
model-selected miRNAs, 6 for AUC set and 6 for ANOVA 
set (Figure 3B), utilizing expression levels across all 48 
patients. Each set of 6 miRNAs in Figure 3B was input 
into our algorithm and ROC curves generated. While all 
6 miRNAs in the AUC set were used to generate a risk 
score, hsa-miR-7855-5p was computationally excluded 
in the ANOVA set, based on AIC model selection, as the 
addition of this miRNA did not improve the model in 
ability to classify patient outcome. The miRNA-modeled 
risk scores performed well at classifying cases, with AUC 
and 95% confidence intervals of 0.896 (0.804-0.988) 
and 0.870 (0.771-0.970) (Figure 3C, 3D). The models 
generated the following risk score formulas:

Formula 1: AUC-selected miRNA-modeled risk 
score

Risk score = (-1.062 x hsa-miR-3124-5p) + (-0.32 
x hsa-miR-1184) + (-0.33 x hsa-miR-4423-3p) + (0.621 x 
hsa-miR-4529-3p) + (-0.626 x hsa-miR-7855-5p) + (0.359 
x hsa-miR-4446-3p)

Formula 2: ANOVA-selected miRNA-modeled 
risk score

Risk score = (-0.274 x hsa-miR-1184) + (-1.305 x 
hsa-miR-766-3p) + (-0.393 x hsa-miR-4423-3p) + (0.601 
x hsa-miR-4727-3p) + (0.229 x hsa-miR-208a-5p)

These formula-generated risk scores were applied 
to miRNA levels from each case and control for 
discriminatory power. Figure 3E through H demonstrate 
that the risk scores clearly distinguishes cases from 
controls as illustrated by the model-calculated threshold 
(Figure 3E-3H, dotted line). This threshold can be used to 
identify women who are at significant risk for developing 
breast cancer. Associated model statistics are reported in 
Table 2.

We further evaluated the expression of all model-
identified miRNAs used for risk score calculation, a 
combined 9 individual miRNAs, in all 48 patient samples 
(Figure 4A-4I). Two-thirds of these miRNAs, hsa-miR-
3124-5p (Figure 4A), hsa-miR-1184 (Figure 4B), hsa-
miR-4423-3p (Figure 4C), hsa-miR-4529-3p (Figure 4D), 
hsa-miR-7855 (Figure 4E), and hsa-miR-766-3p (Figure 
4G), tended to have lower expression levels in cases, 
compared with controls. Conversely, hsa-miR-4446-3p 
(Figure 4F), hsa-miR-4727-3p (Figure 4H), and hsa-miR-
208a-5p (Figure 4I) were detected at elevated levels in 
cases, compared with controls. Of note, the 3 miRNAs 
unique to the ANOVA set (hsa-miR-766-3p, hsa-miR-
4727-3p, and hsa-miR-208a-5p) were detected in less 
than 25% of patients (Table 2, Figure 4G-4I). Thus, we 
eliminated these miRNAs from our final risk signature, as 
they are not ideal risk markers to transition to the clinic.

Biological Pathway Analysis

Biological pathway analysis was performed for 
genes targeted by miRNAs identified in the risk signature 
to elucidate potential mechanistic roles in breast cancer 
development. We focused our analyses on the 6 miRNAs 
frequently detected in serum of at-risk women that were 
also identified from the AUC-selected miRNA set (Figure 
3B, 3C, 3E, 3G and Figure 4A-4F). The interaction 
networks of hsa-miR-3124-5p, hsa-miR-1184, hsa-miR-
4423-3p, hsa-miR-4529-3p, hsa-miR-7855-5p, and hsa-
miR-4446-3p were identified via Ingenuity Pathway 
Analysis (IPA, www.ingenuity.com). No targets exist 
within IPA for hsa-miR-7855-5p. Thus, it was excluded 
from pathway analysis. We used the comparison analysis 
feature in IPA to discover biological pathways regulated 
by the remaining 5 miRNAs in combination. Regulation 
of the Epithelial-Mesenchymal Transition Pathway, VEGF 
Signaling, and Molecular Mechanisms of Cancer were 
within the top 5 Ingenuity Canonical Pathways indicating 
enrichment in genes targeted by risk signature miRNA in 
cancer-related biological processes. (Figure 4J). Further, 
all of the top 5 enriched Diseases and Biological Functions 
are directly tied to cancers (Figure 4K). The difference in 
these risk-associated miRNAs and predicted deregulated 
pathways may predispose women to develop breast 
cancer, providing both novel biomarkers as well as insight 
into avenues for breast cancer-prevention.

DISCUSSION

Using samples obtained from women years prior 
to being diagnosed with breast cancer and an iterative 
strategy for modeling, we have discovered a 6-miRNA 
signature of breast cancer risk. This 6-miRNA signature 
distinguishes cases from controls in a cohort of clinically 
similar high-risk women. Additionally, the miRNAs taken 
together were more informative then any single miRNA. 
Some of the miRNAs in this signature are involved in 
many cancer-related pathways. To our knowledge this is 
the first signature of breast cancer risk using circulating 
miRNAs and may represent an important “liquid biopsy” 
for identification of women at greatest risk for developing 
breast cancer. Additionally, the functions of the miRNAs 
in our signature may identify novel targets for prevention 
strategies. 

The 6-miRNA signature of miR-3124-5p, miR-
1184, miR-4423-3p, miR-4529-3p, miR-7855-5p, and 
miR-4446-3p performs better than current models with 
an AUC of 0.896 (CI 0.804-0.988) (see Figure 3). In 
published studies the Gail model has been found to have 
modest performance with an AUC of 0.55-0.62 [29-31], 
while the Claus model appears to perform somewhat better 
with an AUC of 0.71 [5]. The IBIS model is thought to 
be a more generalizable model, given that family history, 
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Figure 4: Biological implications of risk signature miRNAs. A-I: Box and whisker plots of normalized log2 microarray expression 
for 9 candidate miRNAs identified through an iterative multivariable CoxPH model. Each open circle represents an individual patient. 
A-F: 6 AUC set miRNAs ordered from high to low individual AUC. B, C, G-I: 5 ANOVA set miRNAs ordered from low to high p-value. 
G-I: The 3 miRNAs unique to the ANOVA set are only detected in a small percentage of samples and were not included in downstream 
pathway analysis. J, K: Targets of the 6 AUC set miRNAs were identified in Ingenuity Pathway Analysis (IPA, www.ingenuity.com) and 
core analyses run. No genes were present in the interaction network for hsa-miR-7855-5p. The top 5 enriched IPA canonical pathways (J) 
and diseases and biological functions (K) were identified through comparison analysis of these miRNA interaction networks. Colors in the 
heat maps are based on the -log(p-value) of enriched pathway over genomic background where a value > 1.3 corresponds to p < 0.05. n = 
24 controls and n = 24 cases. * p < 0.05 ** p < 0.01 for both paired (matched case/control) and unpaired t-tests.
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biopsy history and other factors are included. Published 
studies demonstrate AUCs between 0.54-0.76 for this 
model [5, 6]. A number of efforts have been made to 
improve the current models or develop new models 
with individualized factors such as breast density or 
single nucleotide polymorphisms (SNPs). These newer 
or refined models have shown small improvement, but 
accuracy remains (AUC < 0.75) [32-35]. Given the high 
performance of this 6-miRNA signature, it would appear 
to have significant clinical applicability for risk prediction.

The classification ability of each miRNA in the 
signature was lower (AUC ranging from 0.632 to 0.766, 
Supplementary Table 1) than that of the 6-miRNA 
signature together (AUC=0.896). The majority of 
published studies investigating use of miRNAs in breast 
cancer have focused on the discriminatory value of single 
miRNAs [24]. However, recent studies have recognized 
that a signature of several markers such as miRNAs will 
be less vulnerable to biological differences and therefore 
more valuable for clinical use. The use of miRNA 
signatures for cancer risk prediction has shown promise 
for colon, lung and prostate cancer [36-38].

To our knowledge, our findings represent the 
first miRNA signature associated with breast cancer 
risk, although several studies have identified miRNAs 
associated with early detection of breast cancer [25-28]. 
Taslim et al. identified a group of miRNAs from breast 
tissue and validated the predictive value of a 20-miRNA 
signature in serum obtained <18 months prior to diagnosis 
[27]. Godfrey et al. also identified a different set of 
miRNAs associated with a breast cancer diagnosis in 
women <18 months prior to diagnosis [25]. Interestingly, 
the two studies derived their case-cohort study from the 
same population and it would appear they utilized the 
same cases and controls but identified different miRNAs 
associated with risk, which may suggest methodological 
issues. Chang and colleagues identified 5 miRNAs 
differentially expressed between cases and controls a 
mean of 1 year prior to diagnosis [28]. However, in the 
validation set (with a mean time from serum collection to 
diagnosis of 78 months) significance was not achieved; 
suggesting these miRNAs may be more appropriate for 
early detection. Muti and colleagues identified 2 miRNAs 
that may be associated with longer term risk among 
postmenopausal women [26]. Both Chang and Muti used 
whole blood, which is not recommended for biomarker 
analysis given that miRNAs may be released from 
multiple cell types within whole blood [24].

Among the 6 signature miRNAs detected in more 
than 25% of high-risk women in the present study, 
only miR-4446-3p is upregulated while the other 5 are 
downregulated in cases as compared to controls. The 
miRNA with the highest individual AUC in our signature, 
miR-3124-5p, has been associated with triple negative 
breast cancer [39], as well as other cancers [40, 41]. 
Published studies demonstrate that miR-1184 (expressed 

at the highest levels in our high-risk cohort), is located 
on the X chromosome but has not been studied in breast 
cancer. Circulating levels of miR-1184 are reported to 
be increased in patients with prostate cancer [42], but 
were decreased in breast cancer cases in our cohort. 
MicroRNA-4423-3p has a role in regulating epithelial 
cell differentiation [43], is reduced in lung tumors [43], 
and downregulated in rheumatic heart disease [44]. At 
present, no records for miR-4529-3p exist in PubMed, 
with our study providing novel cancer association. No 
functional studies of miR-7855-5p have been reported. 
However, this miRNA resides in an intron of spectrin; a 
gene associated with platelets and inflammation [45]. The 
upregulation of miR-4446-3p in both breast cancer cells 
and cancer-associated fibroblasts results in loss of tumor 
suppressor gene expression [46]. Of the three miRNAs 
present in less than 25% of high-risk women, miR-766-
3p is down-regulated, while miR-4727-3p, and miR-208-
5p are highly up-regulated. While these 3 miRNAs may 
function in cancer initiation, they are not ideal biomarkers 
for clinical screening due to limited detection and low 
expression values. Future studies will characterize the role 
of the identified signature miRNAs on promoting breast 
cancer development.

Strengths

While we acknowledge that our miRNA signature 
must be tested in a larger, independent cohort, our study 
has several strengths. We have used archived serum from 
women who developed cancer a median of 3.2 years after 
serum was obtained (66.7% (16/24 cases) developed 
cancer more than 2 years after serum collection). The 
median follow-up of women in our database is 8.7 years 
and the control group has been followed for longer (a 
mean of 11.2 years), suggesting that these controls are 
truly cancer-free. For this analysis, we used the most 
comprehensive miRNA microarray available (miRBase 
v20 – 2578 human miRNAs). Prior studies regarding early 
detection and risk have largely screened miRNAs known 
to be associated with breast cancer [20] and/or identified in 
breast tissue [27]. Use of a more comprehensive miRNA 
panel provides an unbiased approach, allowing us to 
identify previously uncharacterized miRNAs and miRNAs 
more likely associated with breast cancer risk, potentially 
representing an interaction between host and tumor 
factors. In fact, there is little overlap of the miRNAs in the 
6-miRNA signature with other miRNAs associated with 
early detection, prognosis or treatment [47]. It is possible 
that what drives breast cancer risk may not be the same 
as what drives cancer development. Given that all cells 
have the potential to be malignant, the development and 
propagation of cancer needs to take into account host and 
stromal factors as well as other cells responding to tumor 
initiation [48].
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Limitations

There are limitations of our study which must 
be acknowledged. Our study is small and validation 
in a larger, more diverse dataset is critical. We have 
secured access to samples from 3 large randomized 
chemoprevention trials (MAP.3, NSABP-P1 and 
NSABP-P2) and will be testing our findings in the 
placebo arms of these trials. The AUC that we have 
identified is quite high and we anticipate that testing in 
a validation cohort will result in some loss of accuracy. 
Elimination of the 3 miRNAs that were poorly expressed 
(likely due to the small size of our sample) is a potential 
limitation of our model and this will be addressed in future 
validation studies by using a larger number of cases and 
controls and screening for all 25 candidate miRNAs (see 
Figures 2D-2E and 4G-4I). The use of a 2578 miRNA 
panel (Affymetrix GeneChip miRNA v4) as opposed to 
a panel of miRNAs chosen for association with breast 
cancer could be considered a limitation as this represents 
a non-targeted approach. However, miRNAs previously 
identified with association in breast cancer (i.e., lower 
numbered miRNAs) are included in the Affymetrix v4 
panel. Additionally, as outlined above, the use of this panel 
represents a less biased approach allowing us to identify 
a novel miRNA signature which incorporates yet to be 
described factors associated with breast cancer risk. 

MATERIALS AND METHODS

Patient and sample identification 

The High-Risk Breast Program (HRBP) at the 
University of Vermont Cancer Center is a prospective 
cohort of women at increased risk for developing breast 
cancer due to one or more of the following risk factors: 
a strong family history, benign breast disease, prior 
irradiation for Hodgkin’s disease, a known pathogenic 
mutation in a breast cancer-causing gene, and/or a 
modeled lifetime breast cancer risk of over 20% at time 
of enrollment. All participants are recruited from the 
high-risk breast clinic where they receive screening 
recommendations according to individual risk and clinical 
guidelines. Enrollees provide written informed consent 
to be included in the HRBP database and re-contacted 
every 4 years thereafter for follow-up. At baseline and 
subsequent follow-up visits, blood samples are obtained 
and data collected via questionnaires and medical records 
to update reproductive and family histories, breast imaging 
results, lifestyle and health behaviors. Medical records and 
pathology reports are reviewed at each visit to ascertain 
incident breast cancers in the cohort. Serum is obtained 
from coagulated whole blood samples by centrifugation at 
1811 g for 10 minutes. Serum aliquots are stored at -80°C 

within 1 hour of blood draw. Since 2003, 605 women have 
been enrolled in the HRBP and followed for a median 
of 8.7 years (range 0.06 – 13.7 years) and enrollment is 
ongoing. To date, forty-four women have been diagnosed 
with breast cancer, for an age-adjusted invasive breast 
cancer incidence of 367/100,000 women years (compared 
to the age-adjusted rate in the US of 125/100,000).

For the current study, cases and controls were 
identified from the above cohort. All HRBP participants 
who were diagnosed with invasive breast cancer more than 
6 months after enrollment were selected as cases, with the 
following exceptions: we excluded women who developed 
either non-invasive (Stage 0) or metastatic (Stage IV) 
breast cancer, had a pathogenic mutation in a cancer-
causing gene, were diagnosed with another cancer prior 
to their diagnosis of breast cancer, or for whom serum 
was not available. Controls were randomly selected from 
HRBP participants who were cancer free and matched on 
both age at serum sampling (+/- 3.5 years) and qualifying 
risk factor for HRBP enrollment (i.e. strong family history 
or benign breast disease).

Abstracted clinical information 

Data were abstracted from subjects’ electronic 
medical records to complete information needed for risk 
model calculation (i.e., reproductive factors), to calculate 
the Charlson Comorbidity Index [49], and to update time-
varying factors (e.g. genetic testing results). Breast density 
was abstracted from the mammogram report closest to the 
blood draw (+/- 4 years). 

RNA isolation

Total RNA was isolated from patient serum using a 
standardized protocol [50]. Serum from 3-6 women were 
processed in batches. RNA was isolated from a 200μL 
serum aliquot using the miRNeasy Serum Plasma kit with 
ce-miR-39 spike-in (QIAGEN), QIAcube (QIAGEN) 
automation, and eluted with 14μL of nuclease-free water. 
Multiple serum aliquots from the same patient were 
processed simultaneously, RNA pooled, and stored in 
small aliquots to isolate sufficient RNA for downstream 
applications.

Global circulating miRNA screen

Exactly 8μL of isolated RNA was prepared for 
Affymetrix GeneChip miRNA v4 microarrays (Thermo 
Fisher Scientific) following manufacturer’s recommended 
protocol except for an increased hybridization time of 42 
hours to increase signal-to-noise ratios. The data have 
been deposited into GEO datasets (GSE98181).
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Microarray probeset summarization and 
normalization

Raw *.CEL data files were processed individually 
using the apt-probeset-summarize function within the 
Affymetrix Power Tools v1.18.0 (APT) software package 
(Thermo Fisher Scientific). Simplified Expression Analysis 
(SEA) algorithm was used to summarize probesets and 
the Detectable Above BackGround (DABG) algorithm 
was used to assign p-values to probeset intensities. All 
annotation and library files for the miRNA v4 GeneChips 
were downloaded via the NetAffx Analysis Center (www.
netaffx.com - Thermo Fisher Scientific). The command 
line code used is: apt-probeset-summarize -c miRNA-4_0.
clf -p miRNA-4_0-st-v1.pgf -b miRNA-4_0-st-v1.bgp 
--qc-probesets miRNA-4_0-st-v1.qcc -a pm-gcbg,sea -a 
pm-gcbg,dabg

Following probeset summarization, the average 
of 95 anti-genomic probesets was subtracted from each 
RNA expression probeset in R v3.x [51]. Any value less 
than 0, below microarray background, was set to 0. For 
present/absent calls, all probesets with a DABG p > 0.05 
were set to 0. These background normalized values were 
log2 transformed. The R script for this normalization is 
included as a supplement.

Receiver operator characteristic (ROC) curves

ROC curves and associated area under the curve 
(AUC) and 95% confidence interval (CI) values were 
generated for each tested parameter (clinical characteristic, 
individual miRNA expression, combined miRNA model 
score) using the pROC v1.8 R/CRAN package [52]. The 
complete 48-patient study cohort was used to generate 
ROC curves.

Building a Cox proportional hazards model

The normalized log2 expression values for all 2578 
mature miRNAs as well as clinical classification as case or 
control for each patient were imported into R. Univariate 
Cox proportional hazards (CoxPH) models for each 
miRNA were generated starting with an otherwise blank 
model and the p-value calculated using the coxph function 
of the survival v2.39-5 R/CRAN package [53, 54]. Prior 
to multivariable model generation, data were restricted to: 
1) the top 20 miRNAs based on highest individual AUC; 
2) 19 miRNAs with expression that differed significantly 
between cases and controls (ANOVA, p<0.05). The 
stepAIC function in the MASS 7.3-45 R/CRAN package 
[55] was used for stepwise regression in both forward and 
backward directions to identify those miRNAs which, 
in combination, best distinguished cases from controls. 
Risk scores (log hazard ratio) were calculated using 

miRNA expression levels and corresponding regression 
coefficients from multivariable models.

1000 model iterations using randomly selected 
training and validation datasets

The 48 patient samples were randomly divided into 
a 1000 different training sets of 32 and validation sets of 
16. For each training set, a CoxPH model was built as 
described, signature miRNAs identified, and risk scores 
and AUCs calculated. Using these signature miRNAs, risk 
scores and AUCs were calculated for the validation set.

Final model generation

MicroRNAs identified in at least 500 models with 
a validation set AUC > 0.8 in greater than 50% of the 
models were selected and used to generate a new CoxPH 
model with associated risk scores. All 48 patient samples 
were used in final model generation.

Biological pathway analysis

Interaction networks for each miRNA were 
identified in Ingenuity Pathway Analysis (IPA, www.
ingenuity.com) and core analyses run using default 
parameters. A comparison analysis combining each 
individual miRNA target analysis was run. The top 
5 Ingenuity Canonical Pathways and Diseases and 
Biological Functions were identified based on maximum 
values of the negative logarithms of p-values.

Statistics, graphical representation, and figure 
preparation

Statistics and graphing were performed in Prism 6 
(GraphPad), R v3.x, or Spotfire v2 (Tibco). Density plots 
were generated using the sm.density.compare function 
of the sm v2.2-5.4 R/CRAN package [56]. All R scripts 
used are included as a supplement. Heatmap values and 
principal component analyses were generated in Spotfire 
v2 (Tibco). All data were imported into Adobe Illustrator 
CC for final figure creation. 

CONCLUSIONS

We have identified a 6-miRNA signature which can 
discriminate between high-risk women who do and do 
not develop breast cancer over a median follow-up of 8.7 
years. The accuracy of this signature is greater than that 
of any published risk models. Given the accessibility and 
stability of circulating miRNAs, they have the potential 
to significantly improve breast cancer risk prediction by 
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identifying women at greatest risk who can be offered 
aggressive screening, prevention and clinical trials. 
Future studies by our group will focus on testing in larger, 
independent cohorts from completed clinical trials and 
functional analysis of the miRNAs which make up this 
signature.
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