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ABSTRACT

Although many outstanding achievements in the management of cervical cancer 
(CxCa) have obtained, it still imposes a major burden which has prompted scientists to 
discover and validate new CxCa biomarkers to improve the diagnostic and prognostic 
assessment of CxCa. In this study, eight different gene expression data sets containing 
202 cancer, 115 cervical intraepithelial neoplasia (CIN), and 105 normal samples were 
utilized for an integrative systems biology assessment in a multi-stage carcinogenesis 
manner. Deep learning-based diagnostic models were established based on the 
genetic panels of intrinsic genes of cervical carcinogenesis as well as on the unbiased 
variable selection approach. Survival analysis was also conducted to explore the 
potential biomarker candidates for prognostic assessment. Our results showed that 
cell cycle, RNA transport, mRNA surveillance, and one carbon pool by folate were the 
key regulatory mechanisms involved in the initiation, progression, and metastasis of 
CxCa. Various genetic panels combined with machine learning algorithms successfully 
differentiated CxCa from CIN and normalcy in cross-study normalized data sets. In 
particular, the 168-gene deep learning model for the differentiation of cancer from 
normalcy achieved an externally validated accuracy of 97.96% (99.01% sensitivity 
and 95.65% specificity). Survival analysis revealed that ZNF281 and EPHB6 were the 
two most promising prognostic genetic markers for CxCa among others. Our findings 
open new opportunities to enhance current understanding of the characteristics of 
CxCa pathobiology. In addition, the combination of transcriptomics-based signatures 
and deep learning classification may become an important approach to improve CxCa 
diagnosis and management in clinical practice.

INTRODUCTION

Cervical cancer (CxCa) is currently the fourth most 
commonly diagnosed form of cancer and one of the leading 
causes of cancer-related mortality in women around the 

world [1, 2]. Human papillomavirus (HPV) has been 
involved in the initiation and progression of approximately 
99% of cervical tumors, in which HPV 16 and HPV 18 
contribute approximately 70% [3–5]. In recent decades, 
thanks to vaccination and screening tests, CxCa-associated 
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death rate has declined significantly. However, the great 
burden of CxCa still remains a critical issue, especially 
in developing countries [6]. Current treatment strategies 
have certain limitations and induce a wide range of side 
effects on CxCa patients [7, 8]. Moreover, patients with 
cervical precancerous lesions have a five-year survival 
rate of nearly 100% [9], encouraging scientists to focus on 
studying the early-stage of CxCa carcinogenesis.

For a long time, microscopic biopsy image analysis 
has been the backbone of screening and diagnostic processes 
of CxCa [10]. However, this technique may not be a reliable 
measure since it is based on subjective observations. 
Although novel biomarkers have been increasingly studied 
to complement the limitations of standard cytological 
evaluations, the lack of suitable biomarkers for monitoring 
cancer progression of cervical dysplasia has remained 
a challenging issue and usually results in the use of 
improper treatments [11, 12]. These challenges may stem 
partially from the lack of profound understanding of the 
mechanisms of cancer initiation and progression [13]. In 
addition, the regulations of many CxCa driver genes remain 
comparatively unknown. Clinically accurate biomarkers 
or gene expression signatures as well as more systematic 
approaches, such as supervised learning meta-analysis based 
frameworks, are still needed. Eventually, it is important to 
place more effort on discovering and validating potential 
biomarker candidates, individuals or panels, to improve 
diagnostic and prognostic assessment.

Meta-analysis and cross-study normalization are two 
fundamental approaches to integrating data from different 
microarray data sets. Meta-analysis combines data at the 
“late stage”, while cross-study normalization combines 
data at the “early stage” [14]. Cross-study transformation 
and normalization merges data from multiple microarray 
studies of a common organism and phenotype, removes 
non-biological differences, also known as batch effects, and 
then increases the sample size and retains high prediction 
accuracy of the machine learning-based class assignment 
analysis [15]. In addition to cross-study normalization, 
meta-analysis provides a flexible and powerful approach by 
integrating different microarray data sets and platforms to 
increase the statistical power, reliability, and generalizability 
of the results. Therefore, the meta-analysis of genome-
wide gene expression to identify corresponding molecular 
mechanisms of cervical carcinogenesis has the potential 
to improve the prediction of risk, diagnostic decision, 
prognostic evaluation, and treatment. This method also 
generates a reasonably complete picture of differentially 
expressed genes and pathways involved in cancer [16].

In the current study, we integrated available 
Affymetrix-based microarray data of CxCa patients and 
conducted a comprehensive meta-analysis on differentially 
expressed genes, pathway enrichment analysis, and 
network analysis. Genetic panels that were associated 
with the initiation and progression of CxCa and their 
impacts on CxCa diagnosis were proposed and examined. 
The diagnostic analysis was conducted using a state-of-

the-art feed forward deep learning technique. The impact 
of individual genes on the survival of CxCa patients was 
further examined using survival analysis of available data 
sources. Finally, novel candidates were introduced for 
further investigations of CxCa pathobiology.

RESULTS

Gene expression microarray data set 
identification and selection

The overall search workflow, data processing, and 
data analysis of this study are presented in Figure 1. 
After searching in Gene Expression Omnibus (GEO) 
and ArrayExpress, we retrieved 640 and 264 records, 
respectively. We then removed 182 duplicate records 
between these two databases and obtained a final total 
of 722 records for screening. Seven hundred fourteen 
records were excluded because they met one or more 
predefined exclusion criteria. It is worth noting that 
GSE39001 and 29570 were excluded because they 
overlapped with GSE52903. We assessed full-text articles 
of the remaining eight data sets to evaluate the eligibility 
of each data set. As a result, GSE75132 was excluded 
from further investigation because the study combined 
CIN 3 and cancer samples into one group (CIN 3+). We 
also conducted a manual search of the reference lists of 
included data sets, and GSE42764 was found to qualify 
our inclusion criteria. Therefore, we finally assessed eight 
data sets to carry out the meta-analysis.

Among the eight data sets, we classified and 
arranged the samples into three main groups: Cancer 
versus Normalcy, CIN versus Normalcy, and Cancer 
versus CIN, which contained eight data sets, three data 
sets, and two data sets, respectively. Cancer versus 
Normalcy implied the “overall” alteration in genome-
wide gene expression, and we observed multistep 
carcinogenesis mainly by adding CIN versus Normalcy 
and Cancer versus CIN groups. Cancer versus Normalcy 
was the group containing the largest number of samples, 
93 normal and 202 cancer samples, followed by CIN 
versus Normalcy group, containing 46 normal samples 
and 115 CIN samples. The number of samples of Cancer 
versus CIN group was smaller than that of the two above 
groups, containing 83 CIN and 49 cancer samples, 
respectively. The characteristics of the included data sets 
are shown in Table 1. Finally, the gene expression of the 
high-grade squamous intraepithelial lesion (HSIL) versus 
low-grade squamous intraepithelial lesion (LSIL) in CIN 
group was also investigated.

Meta-analysis on differentially expressed genes 
in cervical cancer

We identified 5,679 significantly differentially 
expressed genes (DE genes) in the meta-analysis across 
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eight data sets from Cancer versus Normalcy group. 
Among the DE genes, 2,877 genes were upregulated 
(125 genes having the combined effect size > 2) and 
2,802 genes were downregulated (46 genes having the 
combined effect size < -2) in terms of cancer patients 
versus normal controls. CDKN2A (3.81), DTL (3.35), 
MCM2 (3.34), ECT2 (3.10), RFC4 (3.03), CDC7 
(2.99), MELK (2.97), PRC1 (2.96), TOPBP1 (2.93), 
and STIL (2.92) were the 10 genes that had the highest 
combined effect sizes. On the other hand, CRNN 
(-3.05), ENDOU (-3.03), UPK1A (-3.01), EDN3 (-2.79), 
SLC27A6 (-3.08), CRISP3 (-2.78), ALOX12 (-2.76), 
AR (-2.73), HOPX (-2.73), and MAL (-2.61) were the 
10 genes that had the lowest combined effect sizes. The 
total number of significantly DE genes of CIN versus 
Normalcy and Cancer versus CIN groups were 1,989 
(1,153 upregulated, two genes with combined effect size 
> 2 and 836 downregulated, one gene with combined 
effect size < -2) and 1,986 (994 upregulated, no gene 
with combined effect size > 2 and 992 downregulated, 
two genes with combined effect size < -2), respectively. 
The list of those DE genes is provided in Supplementary 
File 1.

Since a network-based analysis approach can 
be applied for discovering biomarker candidates and 
potential therapeutic targets [17], we conducted a 
network-based meta-analysis to identify the most 
potential hub genes that may be considered as important 
genes in CxCa pathobiology. According to the analysis, 
HDAC1 was considered as the most potential hub 
gene for Cancer versus Normalcy group. Its degree of 
centrality (DC) and betweenness centrality (BC) were 
209 and 582,340.1, respectively. The other distinguished 
genes of the network included EP300 (DC = 184, BC 
= 748,497.9), CDK2 (DC = 170, BC = 374,919.2), and 
MAGOH (DC = 168, BC = 533,497.6). The prominent 

hub genes in CIN versus Normalcy group included 
HDAC1 (DC = 209, BC = 570,436.2) and MAGOH (DC 
= 168, BC = 503,691.5), among others. Finally, CREBBP 
(DC = 190, BC = 512,840.8) and CDK2 (DC = 170, BC 
= 409,517.7) were recorded as the most potential hub 
genes in Cancer versus CIN group, whereas HDAC1 was 
a relatively low connected gene in this group (DC = 18, 
BC = 30,041.4). The size of the network, and DC and BC 
values of other genes in the network analysis can be found 
in Supplementary File 2.

Pathway enrichment analysis for detecting 
biologically meaningful processes of CxCa 
carcinogenesis

To further identify the biologically meaningful 
pathways that were involved in CxCa from the DE genes, 
we performed pathway enrichment analysis. The analysis 
was performed for upregulated and downregulated 
DE genes separately for each comparison group. The 
significantly enriched pathways were considered if 
they met the qualification criteria of P-value < 0.05 and 
false discovery rate (FDR) < 0.2. In the upregulated 
gene groups, Cancer versus Normalcy group exhibited 
21 significantly enriched pathways. The CIN versus 
Normalcy group consisted of 10 significantly enriched 
pathways, while only four enriched pathways were 
found in Cancer versus CIN group. Interestingly, cell 
cycle appeared to be the common and most significantly 
enriched pathway in all comparison groups. Notably, the 
cell cycle genes of the three different comparison groups 
were not completely overlapping. This result may come 
from the heterogeneity in different stages of the disease. 
In addition, RNA transport and mRNA surveillance 
pathways were two others common significant pathways 
among the three groups. Although one carbon pool 

Figure 1: Overview of the study flow. (a) Flow diagram for data set selection. (b) The workflow of data processing and analysis.
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by folate, pyrimidine metabolism, and p53 signaling 
pathways were only significant in Cancer versus 
Normalcy and CIN versus Normalcy comparison groups, 
these dominant pathways may also be important in CxCa 
carcinogenesis. Finally, when considering the aberrantly 
expressed genes in CIN 2 & CIN 3 (HSIL) relative to 
CIN 1 (LSIL) using available data from GSE27678 
and GSE63514, we discovered the upregulation of cell 
cycle genes (CDC6, CDC7, CDK4, CDC20, CDKN2C, 
MCM6, MCM5, MCM3, MCM2, PRKDC, BUB3, 
and PCNA) and one carbon pool by folate-related 
genes (TYMS, SHMT2, and DHFR). This observation, 
once again, emphasized the important roles of the cell 
cycle and one carbon metabolism in CxCa initiation 
and progression. It is important to note that there 
were many genes that are known to be associated with 
cancer, as shown in the “pathways in cancer” enriched 
pathway. In the same pattern, we investigated enriched 
pathways from downregulated genes in the three groups. 
We obtained 15 enriched pathways in Cancer versus 
Normalcy group, including several well-known pathways, 
such as the calcium signaling pathway, Wnt signaling 
pathway, Hedgehog signaling pathway, and linoleic acid 
metabolism, as well as gap junction and focal adhesion 
pathways. Surprisingly, our results indicated a poor 
number of enriched pathways in CIN versus Normalcy 
and Cancer versus CIN groups. Furthermore, the Wnt 
signaling pathway and Hedgehog signaling pathway 

seem enriched in CIN versus Normalcy and Cancer 
versus CIN groups although its FDR was greater than 
0.2. The mammalian circadian rhythm pathway was 
the only pathway significantly enriched in CIN versus 
Normalcy group while the amoebiasis pathway was the 
unique pathway in Cancer versus CIN group. Table 2 
and Supplementary File 3a and 3b show major enriched 
pathways and their corresponding genes in corresponding 
comparison groups.

Functional analysis of individual genes that are 
consistently up- and downregulated

The total number of significantly upregulated 
genes from the meta-analysis of Cancer versus Normalcy 
group was 2,877, that of CIN versus Normalcy group 
was 1,153, and that of Cancer versus CIN group was 
994. Using the filter provided by InteractiVenn [18], we 
obtained 248 overlapping DE genes, which were always 
upregulated in more aggressive subgroups (i.e., Cancer 
subgroup in Cancer versus Normalcy group, CIN in CIN 
versus Normalcy group, and Cancer in Cancer versus CIN 
group). The total number of significantly downregulated 
genes of Cancer versus Normalcy, CIN versus Normalcy, 
and Cancer versus CIN groups were 2,802, 836, and 992, 
respectively. Using the same approach, 122 overlapped 
genes were found to be always downregulated in more 
aggressive subgroups.

Table 1: Microarray data sets in the meta-analysis of CxCa

Comparison Author Data set Year Platform1 Country Participants

Cancer versus Normalcy Normalcy CIN(s) Cancer

Martinez IM et al. [69] GSE52903 2015 1.0 ST Mexico 17 - 55

den Boon JA et al. [70] GSE63514 2015 U133 Plus 2.0 USA 24 - 28

Polyzos A et al. [71] GSE63678 2015 U133A 2.0 Greece 5 - 5

Yan R et al. GSE42764 2014 U133 Plus 2.0 Canada 2 - 12

Karagavriilidou K et al.2[72] GSE27678 2013 U133 Plus 2.0 UK 3 - 28

Murty VV et al. [73] GSE9750 2008 U133A USA 24 - 33

Zhai Y et al. [74] GSE7803 2007 U133A USA 10 - 21

Pyeon D et al. [28] GSE6791 2007 U133 Plus 2.0 USA 8 - 20

CIN3 versus Normalcy

den Boon JA et al. GSE63514 2015 U133 Plus 2.0 USA 24 76 -

Karagavriilidou K et al.2 GSE27678 2013 U133A UK 12 32 -

Zhai Y et al. GSE7803 2007 U133A USA 10 7 -

Cancer versus CIN

den Boon JA et al. GSE63514 2015 U133 Plus 2.0 USA - 76 28

Zhai Y et al. GSE7803 2007 U133A USA - 7 21

1 All included data sets belong to Affymetrix platform.
2 GSE27678 contains two different platform (U133 Plus 2.0 and U133A).
3 Cervical intraepithelial neoplasia or cervical dysplasia.
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Table 2: Some representative up- and downregulated pathways in the differential gene expression meta-analysis

Pathway Number of gene Gene symbols P-value FDR

Upregulated pathway

Cancer versus 
Normal Cell cycle 36

CDC6, MCM5, MCM3, ORC2, 
CDC7, RBL1, YWHAH, CCNB1, 
CDK4, SMAD2, CCNE1, PCNA, 
CDKN2C, E2F3, EP300, MCM6, 
MCM2, STAG2, CDK2, CCNA2, 

CCNB2, MAD2L1, RAD21, CDC23, 
ORC5, CDC25A, CDC20, CDC25C, 

SMC1A, TFDP2, PTTG1, E2F1, 
SMC3, BUB3, HDAC1, HDAC2

1.43E-13 3.10E-11

RNA transport 26

NXT2, NUP107, NUP155, EIF2S3, 
NXT1, EIF2S1, NUPL2, NUP133, 
NUP153, UPF1, EIF2B2, NUP205, 
PAIP1, GEMIN2, NUP93, SUMO4, 

MAGOHB, NUP43, UPF2, MAGOH, 
EIF2S2, NCBP1, NUP160, NUP58, 

XPO1, EIF2B1

8.69E-7 9.43E-5

mRNA 
surveillance 

pathway
18

PABPN1, NXT2, NXT1, UPF1, 
PPP2R3A, PELO, NUDT21, 

MAGOHB, PPP2R5E, CPSF7, UPF2, 
SMG5, MAGOH, CSTF2, NCBP1, 

CPSF6, GSPT1, SMG1

1.81E-5 1.31E-3

CIN versus 
Normal Cell cycle 31

CDC6, MCM5, MCM3, CDC7, 
CCNB1, HDAC2, CDK4, CCNE1, 
CDKN2C, E2F3, MCM6, MCM2, 

CCNA2, CCNB2, MAD2L1, RAD21, 
ORC5, CDC25A, CDC20, PRKDC, 
CDC25C, SMC1A, PTTG1, SMC3, 

BUB3, HDAC1, RBL1, PCNA, 
STAG1, CDC23, TFDP2

1.21E-20 2.62E-18

One carbon pool 
by folate 6 TYMS, SHMT2, MTR, GART, 

MTHFD2, DHFR 1.61E-5 1.75E-3

RNA transport 14

NXT2, NUP107, NUP155, NUPL2, 
NUP133, PAIP1, MAGOHB, NUP43, 

UPF2, MAGOH, EIF2S2, NCBP1, 
NUP160, XPO1

3.02E-5 2.18E-3

Cancer versus 
CIN Cell cycle 14

MCM3, ORC2, CREBBP, E2F3, 
CDK2, MAD2L1, RAD21, PRKDC, 
E2F1, BUB3, ABL1, RBL1, CDC23, 

WEE1

8.60E-7 1.87E-4

mRNA 
surveillance 

pathway
9

MAGOHB, PPP2R5E, CPSF7, UPF2, 
NCBP1, CPSF6, GSPT1, PPP2R2D, 

SMG1
1.10E-4 1.20E-2

Pathways in 
cancer 16

CREBBP, E2F3, CBL, CDK2, 
TCF7L1, FZD7, MAP2K1, ITGB1, 

CXCL8, WNT11, E2F1, CRKL, 
ABL1, STK4, ETS1, PIAS2

2.16E-3 1.42E-1

(Continued )
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To reduce “false positive” candidates and obtain 
a more reliable list of up- and downregulated candidate 
genes, we performed an additional validation for the 
above overlapping DE genes and DE genes from the meta-
analysis of two independent data sets. In this validation, 
we utilized the DE genes in the comparison between 10 
CxCa cell lines (N = 21) and normal tissue from two data 
sets (GSE29216 and GSE9750) in which the DE genes 
were identified using the same statistical approach. Finally, 
113 upregulated genes were confirmed to be consistently 
upregulated (Figure 2a). Similarly, 55 consistently 
downregulated genes were also observed (Figure 2b). 
Those genes may be considered the intrinsic genetic 
characteristics for determining cervical carcinogenesis, 
and the panel can be seen in Table 3.

The protein-protein network of consistently 
upregulated genes as well as known and predicted 
interactions between the nodes curated by STRING 
are shown in Figure 2c (113 nodes and 401 edges). 
There was a strong connection of known and predicted 
interactions arising from most proteins in the network. 
In addition, the top 10 enriched GO biological processes 
and the first enriched KEGG pathway were closely 
associated with cell cycle. Enriched GO terms were 
mitotic cell cycle (GO:0000278), nuclear division 
(GO:0000280), and DNA repair (GO0006281), among 
others. Ten cell cycle related proteins annotated in 
KEGG were CDC25B, DBF4, E2F3, ORC6, MCM3, 
BUB1, RAD21, MAD2L1, CDC23, and BUB3. 

This observation further emphasized the importance 
of the cell cycle in CxCa carcinogenesis. Another 
enriched KEGG pathway was progesterone-mediated 
oocyte maturation. The protein-protein network of 
consistently downregulated genes was simpler than 
that of upregulated genes (54 nodes and 14 edges). 
HPGD, CRYL1, ECHDC2, ACAA1, ALDH2, and 
FHIT were strongly connected, and these proteins are 
associated with metabolic processes (Figure 2d). Small 
molecule metabolic process (GO:0044281), cellular 
lipid metabolic process (GO:0044255), single-organism 
biosynthetic process (GO:0044711), and single-
organism cellular process (GO:0044763) were enriched, 
which demonstrated that there might be a decrease of 
some metabolic processes, especially lipid metabolism, 
in CxCa initiation and progression.

Text mining analysis for the interpretation of the 
selected genetic panel

To determine whether our obtained candidates 
were frequently reported together by previous cancer-
related studies, we utilized 113 upregulated genes and 
55 downregulated genes as inputs for the CCancer text 
mining database. For upregulated genes, our input list 
was significantly enriched in previous cancer-related 
studies, illustrated by the fact that many genes on the list 
were reported to be significantly associated with several 
cancers, including CxCa (P-value < 0.05). Twenty 

Pathway Number of gene Gene symbols P-value FDR

Down-regulated pathway

Cancer versus 
Normal Phototransduction 8 RCVRN, GUCA1B, GNAT1, GNAT2, 

GUCY2D, RHO, CALML3, ARRB1 2.37E-4 3.18E-2

Focal adhesion 26

PIK3R2, HGF, VTN, CCND1, 
PDGFRA, CCND2, VWF, PDGFRB, 

MAPK3, KDR, SHC2, COL5A3, 
ITGB5, VEGFD, ILK, PARVA, 

CAV1, CAV3, ACTN2, JUN, SHC3, 
ITGA8, PDGFD, RELN, LAMA2, 

ITGA7

2.93E-4 3.18E-2

Calcium signaling 
pathway 23

BDKRB1, PDGFRA, HTR2B, 
PDGFRB, HTR5A, TACR3, TACR1, 

ADRB2, CALML3, ATP2B2, 
GNAL, CACNA1H, CCKBR, 

ERBB4, ADCY2, TNNC2, GNA14, 
EDNRB, HTR2A, ADRA1D, GRPR, 

ADRA1A, ITPR2

6.62E-4 4.79E-2

CIN versus 
Normal

Circadian rhythm - 
mammal 4 CLOCK, PER1, NPAS2, CNSK1E 6.31E-4 1.37E-1

Cancer versus 
CIN Amoebiasis 7 HSPB1, GNA15, SERPINB3, IL1R2, 

GNAL, SERPINB4, RELA 4.45E-5 9.66E-3
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genes were reported in two previous investigations on 
CxCa. Their corresponding functions were extracted, 
and known functions in CxCa were reviewed (Table 
4). BUB1, DBF4, DKC1, LSG1, NUP155, POLR2H, 
and ZNF473 are novel targets for further studies since 
their roles in CxCa initiation and progression are 
unknown. On the other hand, we did not achieve any 
significantly downregulated genes that were associated 
with CxCa. In terms of other tumors, the text mining 
results indicated that our provided upregulated genes 

were also correlated with, but not limited to, breast, 
skin, colorectal, thyroid, ovarian cancer, lymphoma, 
myeloid leukemia, neuroblastoma, and retinoblastoma. 
Contrarily, our downregulated genes were associated 
with melanoma and “wound healing in the elderly”. 
The detailed information of text mining results and 
the matched genes for each condition can be found in 
Supplementary File 4. These results may provide better 
insights into the essential molecular mechanisms of not 
only CxCa but also multi-cancer interactions.

Figure 2: Genetic panel of 168 consistently dysregulated genes. (a) Overlapping genes in the consistently upregulated group. (b) 
Overlapping genes in the consistently downregulated group. (c) Protein-protein network of 113 consistently upregulated genes. (d) Protein-
protein network of 55 consistently downregulated genes. Red, green, blue, purple, yellow, light blue, and black lines indicate the presence 
of fusion, neighborhood, co-occurrence, experimental, text mining, database, and co-expression evidence, respectively.
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Table 3: The genetic panel for deep learning classification adapted from consistently upregulated and downregulated 
genes

Number of 
gene

Gene symbols

Upregulated 
genes 113

FOXM1, RFC4, ORC6, NCAPG2, KIF23, TRIP13, CENPN, KIF14, TYMS, AARS, DONSON, E2F3, RNPS1, BRIX1, 
TMEM194A, MELK, MCM3, MOCOS, BUB1, ECT2, CDC25B, DEPDC1, FBXO5, POLR2H, RAD1, CDK1, 

RAD54L, BUB3, SUPV3L1, DBF4, NETO2, CENPI, SLC7A6, CMC2, MEST, BLM, ZNF281, ACOT9, MAD2L1, 
DDX11, PDIA5, ELAVL1, NUP155, RUVBL1, WARS, SS18L1, MTHFD2, LRRC8D, MSH6, IMMT, LHX2, RAD21, 
EIF2S2, MDC1, NUP85, C5orf22, CDC23, UCK2, PTDSS1, UBA2, ZNF473, BRCA1, TMEM22, ADAR, NUP160, 

ACP1, WBP11, DIEXF, C9orf91, NVL, PTPLAD1, C3orf37, WASF1, HPRT1, ACTL6A, PPAT, DKC1, POGK, 
MTFR1, ELF4, HAUS6, TEX10, USP18, PRKCI, TNPO1, ARL6IP1, KIAA1598, NFATC2IP, KIAA0947, PARP12, 
NUCKS1, PARPBP, TAF5, CRKL, GOLT1B, CEP152, SLC25A17, HSP90AA1, HERC5, NSL1, FN3KRP, IFI30, 

LSG1, PALB2, MTMR4, PSMA6, SFMBT1, TTC13, DAP3, TRIM45, OSBPL11, COG2, NOL11

Downregulated 
genes 55

SYNGR1, CFD, C9orf125, TTC39A, BBOX1, CXCR2, CRYL1, HPGD, HEBP2, MAL, FHIT, EDN3, NDST2, ABR, 
UPK1A, SOSTDC1, ITPR2, CAB39L, ALOX12, FUT6, TP53AIP1, CD24, MREG, FGFR2, PLD2, EPHB6, ACAA1, 

CWH43, CA12, ZNF91, IL17RC, TBX3, RAPGEF3, PACRG, ECHDC2, ZC4H2, ASAP3, EPS8L1, ZNF426, ALDH2, 
C5orf4, MAPK10, SLC24A3, GYS2, PPP1R3C, PADI1, DEFB4A, RGS12, ENDOD1, GULP1, TMEM8B, PGAP3, 

TRIM13, CLN8, PLBD1

Class prediction using deep learning and other 
machine learning algorithms

The consistently upregulated and downregulated 
genes in the meta-analysis of the three comparison groups 
(Cancer versus Normalcy, CIN versus Normalcy, and 
Cancer versus CIN) were selected as a genetic panel 
for unsupervised data exploration and deep learning 
classification analysis. Principal component analysis 
(PCA) revealed significantly overlapping areas of CIN 
versus Normalcy and Cancer versus CIN groups, which 
suggested that those classes were largely convergent and 
difficult to be correctly classified. On the other hand, the 
separation tendency between Cancer and Normalcy was 
relatively clear, implying a preferable classification. The 
PCA plots of Cancer versus Normalcy, Cancer versus CIN, 
and CIN versus Normalcy groups are shown in Figure 3a, 
Figure 3b, and Figure 3c, respectively.

In Cancer versus Normalcy group, the random 
search for hyperparameters revealed that an optimal model 
had five hidden layers, l1 regularization of 1.71E-4, and l2 
regularization of 1.75E-4 (5, 1.71E-4, 1.75E-4). Similarly, 
the optimal models of Cancer versus CIN and CIN versus 
Normalcy were determined to be (5, 6.27E-4, 3.78E-4) 
and (2, 7.17E-4, 7.75E-4), respectively. Receiver operating 
characteristic (ROC) curves of the diagnostic ability of 
the three above two-class classifications are illustrated in 
Figure 4. The results indicated that deep learning models 
could distinctly differentiate the benign from malignant 
conditions. However, it can be argued that the use of the 
168-gene signature for classification may show over-
optimistic results since the signature was extracted by the 
meta-analysis using partly overlapping data sets. Hence, 
to search for a generalized and data-driven classification 
signature, we first performed the variable important 
measurement using the area under the curve permutation 
random forest variable importance measurement (AUC-
RF VIM) on the training sets, selected the top 30 genes 

with the highest importance scores, and then built 
three new deep learning models. Supplementary File 5 
contains the list of selected genes for the classification 
experiments, and they are markedly different among the 
three comparison groups. As expected, the new models 
achieved results comparable with the models derived from 
the 168-gene signature, and these classification models 
accurately discriminated the Cancer from CIN, Cancer 
from Normalcy, and CIN from Normalcy groups. The 
accuracy, sensitivity, and specificity of training sets with 
10-fold cross-validation (combined holdout predictions, 
calculated from the confusion matrix) and test sets can be 
found in Table 5.

Finally, for a quick assessment of the class 
prediction of the ensemble model that combined four 
other powerful classifiers (random forest, support 
vector machine, prediction analysis for microarrays, 
and k-nearest neighbor algorithms), we performed the 
classification analyses for the three comparison groups 
(Cancer versus Normalcy, Cancer versus CIN, and 
CIN versus Normalcy) with whole transcriptome data. 
Regarding Cancer versus Normalcy group, we possessed a 
model from 40 frequently selected genes for distinguishing 
cancer patients from normal people (sensitivity = 88.2% 
and specificity = 95%), with an average accuracy of 
92.8%. For discriminating Cancer from CIN patients, 
we achieved a model from 68 frequently selected genes 
(sensitivity = 85.5% and specificity = 71.4%), with an 
average accuracy of 80.3%. Finally, the differentiation 
between CIN and Normalcy group was practical since 
the prediction model from 54 frequently selected genes 
achieved a sensitivity = 73.9%, specificity = 84.3%, and 
average accuracy = 81.4%. Supplementary File 6 contains 
the list of selected genes, PCA of gene expression data, 
and heatmap visualization of top-ranked genes and their 
corresponding z-scores. Collectively, our results noted that 
the classification between the benign and the malignant 
conditions using small subsets of genes were practical.
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Table 4: Reported genes in the two previous literatures on CxCa and their related functions

Article Gene code Full name
Effect sizes

Function related to cervical cancerCancer-
Normalcy

CIN-
Normalcy

Cancer-
CIN

BRCA1
BRCA1, 

DNA repair 
associated

2.04 1.42 0.66

Hypermethylation of the BRCA1 promoter was observed in 
advanced stage invasive cervical cancer patients [76].

Another study reported that BRCA1 promoter methylation 
may be related to worse prognosis since patients carrying 

this mutation failed to respond to the treatment [77].

BUB1

BUB1 mitotic 
checkpoint 

serine/
threonine 

kinase

1.71 0.81 0.78 BUB1 has not been described to be associated with cervical 
cancer.

CDK1
Cyclin 

dependent 
kinase 1

2.42 1.52 0.65

Cyclin B1, a regulatory subunit of CDK1 and a crucial 
protein for the transition from G2 phase to mitosis of the 

cell cycle, is found to be overexpressed in invasive cervical 
cancer cells [78].

The Human Papillomavirus E6 oncoprotein abolishes cell 
cycle checkpoints, inducing polyploidy, an early step in the 
carcinogenesis of cervical cancer. And the upregulation of 

CDK1 was observed in this process [79].

DBF4 DBF4 zinc 
finger 1.99 1.34 0.91 DBF4 has not been described to be associated with cervical 

cancer.

ECT2 Epithelial cell 
transforming 2 3.10 1.46 1.40 The high expression of ECT2 in the region 3q may be 

implicated in cervical oncogenesis [80].

Identification of 
a proliferation 
gene cluster 
associated with 
HPV E6/|E7 
expression 
level and viral 
DNA load in 
invasive cervical 
carcinoma [75]

FBXO5 F-box protein 5 1.89 1.35 0.75
A study suggested that the differential regulation of miR-

654-3p on FBXO5 may enforce cell cycle progression and 
cause genomic instability in CIN III stage [81].

FOXM1 Forkhead box 
M1 2.78 1.25 1.19

High levels of FOXM1 expression were observed in 
cervical cancer. Its overexpression was correlated with 

tumor aggressiveness and the presence of cell proliferation 
indicator Ki67 [82, 83].

The overexpression of FOXM1 was associated with the 
progression and agression of cervical squamous cell 

carcinomas by enhancing cell proliferation [82], promoting 
malignant cell migration and invasion [84].

KIF14 Kinesin family 
member 14 2.91 1.18 1.05

A study reported the high levels of KIF14 expression in 
cervical carcinoma cell line C-33A [85].

KIF14 overexpression was also correlated with poor 
prognosis, tumor aggressiveness, lymph node metastasis and 

resistance to paclitaxel treatment [86].

KIF23 Kinesin family 
member 23 2.38 1.39 0.83 A research showed an increase of KIF23 levels in 

preinvasive CIN 1 and invasive cervical cancer [87].

MAD2L1
MAD2 mitotic 
arrest deficient-

like 1 (yeast)
1.82 1.11 0.56

A study suggested that the significant overexpression of 
MAD2L1 in HSILs and SCCs may be involved in the 

cervical carcinogenesis [88].

MELK

Maternal 
embryonic 

leucine zipper 
kinase

2.97 1.32 1.26
The high MELK expression was associated with poor 
prognosis and advanced tumor stage (CIN3/CIS and 

invasive cancer) [89].

NETO2 Neuropilin and 
tolloid like 2 1.77 1.08 0.68 A research showed that the NETO2 mRNA level was 

increased in 50% of cervical cancer samples [90].

(Continued )
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Article Gene code Full name
Effect sizes

Function related to cervical cancerCancer-
Normalcy

CIN-
Normalcy

Cancer-
CIN

DKC1
Dyskerin 

pseudouridine 
synthase 1

1.63 0.66 0.60 DKC1 has not been described to be associated with cervical 
cancer.

LSG1*

Large 60S 
subunit nuclear 
export GTPase 

1

1.62 0.66 1.11 LSG1 has not been described to be associated with cervical 
cancer.

NUP155 Nucleoporin 
155 1.77 0.93 0.90 NUP155 has not been described to be associated with 

cervical cancer.

POLR2H
RNA 

polymerase II 
subunit H

1.98 1.36 1.28 POLR2H has not been described to be associated with 
cervical cancer.

Gene dosage 
alterations 
revealed 
by cDNA 
microarray 
analysis in 
cervical cancer: 
Identification 
of candidate 
amplified and 
overexpressed 
genes [91]

PRKCI Protein kinase 
C iota 1.75 0.85 0.95 PRKCI overexpression was frequently observed in cervical 

squamous cell carcinoma [92].

RAD1

RAD1 
checkpoint 

DNA 
exonuclease

1.34 1.26 0.54
A research suggested that the mutation in pathways 
containing RAD1 may predispose to cervical cancer 

transition [93].

RFC4*
Replication 

factor C 
subunit 4

3.03 1.55 1.23

The upregulation of RFC4 was observed in cervical cancer 
[91].

A study found that RFC4 may be used as a predictor of 
cancer relapse and survival rate in patients with cervical 

carcinoma [94].

ZNF473* Zinc finger 
protein 473 1.28 0.90 0.62 ZNF473 has not been described to be associated with 

cervical cancer.

* The gene of which its expression pattern is associated with the prognosis in TCGA cohort (P-value < 0.05).

Prognostic assessment of the consistently up- and 
downregulated genes

From the list of 113 consistently upregulated and 
55 consistently downregulated genes, we performed a 
survival analysis to find individual genes that may be 
associated with the prognosis of CxCa patients. The 
prognostic assessment was conducted using TCGA 
cohort. It turned out that the higher gene expression 
of six genes, ZNF281, DIEXF, POGK, TNPO1, 
GOLT1B, and COG2, among consistently upregulated 
genes and the lower gene expression of three genes, 
SYNGR1, FGFR2, and EPHB6, among consistently 
downregulated genes, were associated with poor patient 
prognosis (Figure 5). These mentioned genes may be 
considered to be associated with the advanced stage 
of CxCa, as well as potential biomarker candidates to 

improve the prognostic assessment. In addition, Cox 
regression analysis revealed that ZNF281 was the only 
candidate gene that appeared to be related to poor CxCa 
prognosis (Cox coefficient = 0.53, adjusted P-value < 
0.1). Collectively, ZNF281 may be a key regulator of 
CxCa initiation and progression. It also exhibits a good 
potential for both diagnostic and prognostic assessment 
and as a therapeutic target. Therefore, we further 
assessed the protein expression level of ZNF281 using 
tissue microarray samples of an independent cohort of 
CxCa patients and normal controls. As shown in Figure 
6, the protein expression level of ZNF is significantly 
higher in CxCa samples than that of normal samples 
(two-tailed P-value < 0.0001). On the other hand, 
EPHB6 gene expression level may become the potential 
candidate for good CxCa prognosis (Cox coefficient = 
-0.45, adjusted P-value < 0.1).
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DISCUSSION

One of the main purposes of this study was to 
investigate the relevant biological processes specifically 
related to the initiation, invasion, and progression of 
CxCa with better confidence compared to individual 
studies through an integrative systems biology approach. 
Therefore, we first performed a random effect model-
based meta-analysis to detect DE genes with a higher 
robust level. Functional analysis of the DE genes of 
each comparison group revealed that there were many 
significantly enriched pathways when a normal cell 
becomes cancerous. Interestingly, cell cycle, mRNA 
surveillance, and RNA transport pathways were always 
significantly enriched in the more malignant stages 
of CxCa carcinogenesis (from Normalcy to CIN and 
from CIN to Cancer). These results suggest that these 
pathways perturbations are strongly correlated with CxCa 
initiation and progression. Notably, cell cycle has a known 
central role in cancer carcinogenesis and metastasis [19, 
20]. Cell cycle-related genes, including CDKN2A and 
MCM2, are overexpressed in HPV (+) CxCa. p16INK4a (a 
product protein of CDKN2A) overexpression has been 
known to be associated with high grade precancerous 
and CxCa lesions and used as a potential biomarker for 

identifying low-grade lesions associated with high risk 
carcinomagenesis [21, 22]. However, a recent meta-
analysis showed that the overexpression of p16INK4a was 
associated with better prognosis of CxCa patients [23]. 
Other studies demonstrated that HPV infection alters the 
cell cycle and promotes cervical oncogenesis [24–27]. It 
is also worth mentioning that cell cycle-associated genes 
are significantly upregulated more in HPV (+) CxCa 
than in HPV (-) CxCa [28]. The upregulation of a cell 
cycle subnetwork with highly frequent alterations of its 
regulatory genes in CxCa has also been described [27]. 
Additionally, lncRNA Hox transcript antisense intergenic 
RNA (HOTAIR) promotes metastasis by increasing 
cell proliferation, migration, and the invasion of cancer 
cells, and the CxCa patients with high levels of HOTAIR 
often have a poorer prognosis. The pathway analysis of 
the DE genes (with logarithm fold change > 2) using 
GEO2R of GSE67522 revealed that the cell cycle is 
also significantly enriched by the contribution of CDC6, 
RBX1, SKP1, CCNE1, CDK2, CUL1, and MYC. Using 
network-based meta-analysis, we identified HDAC1 of the 
cell cycle pathway as the prominent hub gene in Cancer 
versus Normalcy and CIN versus Normalcy groups, while 
CREBBP was the prominent hub gene, among others, in 
Cancer versus CIN group. HDAC1 was reported to be 

Figure 3: PCA visualization of the comparison groups. (a) PCA plot of Cancer versus Normalcy. (b) PCA plot of CIN versus 
Normalcy. (c) PCA plot of Cancer versus CIN.

Figure 4: ROC curve for the illustration of the diagnostic ability of the panel. (a) Cancer versus Normalcy, (b) Cancer versus 
CIN, and (c) CIN versus Normalcy.
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more upregulated in cervical dysplasia and carcinoma 
than in normal cells [29]. The overexpression of HDAC1 
was also associated with cell proliferation in breast cancer, 
cancer stem cells, and prostate cancer [30–33]. Mutation 
of CREBBP was described in relapsed acute lymphoblastic 
leukemia [34]. However, our analysis revealed that the 
gene expression levels of HDAC and CREBBP were not 
correlated with the prognosis of CxCa patients in TCGA 
cohort.

Recently, the association between cell cycle and 
metabolism in the survival mechanism of cancer cells has 
been demonstrated [35]. Moreover, the one carbon pool by 
folate pathway, which was upregulated in Cancer versus 
Normalcy and CIN versus Normalcy groups in our study, 
has been noted as a predominant pathway in cancer cell 

survival and progression for many years [36]. TYMS, 
SHMT2, and DHFR genes of one carbon metabolism 
are proven to contribute to genome instability and cancer 
development [37]. MTHFD2, another gene associated 
with one carbon metabolism, is considered to be an 
important player for various types of cancer and correlated 
with mitochondrial folate metabolism [38]. Moreover, the 
important roles of MTHFD2 in cell proliferation, DNA 
synthesis control, and cell migration in cancer have been 
confirmed [39, 40]. Thus, the connection between cell 
cycle and one carbon metabolism in CxCa is an attractive 
target for prospective studies. RNA transport and mRNA 
surveillance are the two other major pathways of CxCa 
pathobiology in our study. The association between these 
pathways and viral genome replication in HPV (+) CxCa 

Table 5: Sensitivity and Specificity of deep learning classifier of three comparison groups

Group Parameters 10-fold cross-validation Test set

168-gene signature

Cancer versus Normalcy

Accuracy (%) 97.97 97.96

Sensitivity (%) 97.03 99.01

Specificity (%) 100.00 95.65

Cancer versus CIN

Accuracy (%) 84.04 84.21

Sensitivity (%) 71.43 85.71

Specificity (%) 91.53 83.33

CIN versus Normalcy

Accuracy (%) 90.35 91.49

Sensitivity (%) 91.36 91.18

Specificity (%) 87.88 92.31

AUC-RF VIM-based signatures

Cancer versus Normalcy

Accuracy (%) 97.30 97.28

Sensitivity (%) 98.02 99.01

Specificity (%) 95.74 93.48

Cancer versus CIN

Accuracy (%) 92.55 86.84

Sensitivity (%) 91.43 85.71

Specificity (%) 93.22 87.50

CIN versus Normalcy

Accuracy (%) 89.47 82.98

Sensitivity (%) 90.12 88.24

Specificity (%) 87.88 69.23
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has been documented [41, 42]. The viral oncogenes and 
their proteins expressions (E5, E6, and E7, for example) 
increase the cell proliferation, inhibit apoptosis resulting 
from DNA damage, and enhance malignant transformation 
[43]. However, the fundamental regulatory mechanisms of 
RNA transport and mRNA surveillance associated genes 
remain to be explored.

Although the use of high-throughput gene expression 
profiling for disease diagnosis is promising, the clinical 
and translational potential of this approach has been 
limited due to the failure of cross-study validation [44]. 
Nevertheless, we extended the capacity of gene expression 
profiling on CxCa and CIN diagnosis by combining 
independent data sets using the Empirical Bayes cross-
study normalization method and conducting deep learning 
classifications on the relatively large sample size of 
transcriptome data of CxCa, CIN, and normal samples. 
The results demonstrate that the patients with CxCa can be 
accurately diagnosed by genetic classification panels using 
deep learning techniques and by the ensemble supervised 

learning tools. Noticeably, the benign and the malignant 
conditions are differentiated just by a small subset of gene 
expression information. This differentiation may help 
improve the utility of the transcriptome-based diagnosis 
in clinical practice. In addition, gene expression patterns 
from tumors may be used for better patient management, 
as is the case, for example, in breast cancer. Further studies 
are guaranteed to improve the classification performance 
by either increasing the sample size, and not limiting the 
study to Affymetrix-based microarray data, or improving 
the predictive power of the supervised learning models.

In the prognostic assessment, ZNF281, DIEXF, 
POGK, TNPO1, GOLT1B, COG2, SYNGR1, FGFR2, and 
EPHB6 are found to be associated with the prognosis of 
CxCa patients. Notably, those genes are consistently up- 
and downregulated in a multi-stage manner; thus, they can 
be considered to be associated with tumor development 
and aggression. Nevertheless, the precise roles of these 
genes in regulating CxCa remain unknown. DIEXF is 
known as an alternative polyadenylation-indicator gene in 

Figure 5: Kaplan-Meier plots of nine selected genes. (a) ZNF281, (b) DIEXF, (c) POGK, (d) TNPO1, (e) GOLT1B, (f) COG2, 
(g) EPHB6, (h) FGFR2, and (i) SYNGR1.
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non-small cell lung cancer, and its expression is correlated 
with cell proliferation [45]. A study indicated the presence 
of a TNPO1–IKBKB (IKK-beta) fusion in prostate cancer 
but not in benign tissue [46]. The shortening of 3′ UTRs 
of SYNGR1 was associated with poorer prognosis in 
triple-negative breast cancer [47]. FGFR2 was involved 
in increased risk of breast cancer [48]. To the best of our 
knowledge, the roles of POGK, GOLT1B, and COG2 in 
carcinogenesis have not been identified.

Among the candidates, the dysregulation of ZNF281 
at the protein level in CxCa was confirmed in our study. 

Zinc finger proteins play a central role in diverse biological 
processes, including monitoring gene expression. The 
regulation mechanisms of those proteins in cancer 
progression vary among different types of cancer or even 
in the same cancer at different stages [49]. ZNF281, a zinc 
finger transcription factor, belongs to the C2H2-type zinc 
finger motif, a subfamily of zinc finger proteins. Although 
the known functions of ZNF281 in cancer biology have 
been limited, recent studies have provided new insights into 
the function of ZNF281 in EMT and its association with the 
WNT signaling pathway [50, 51]. ZNF281 can serve as an 

Figure 6: Protein expression level of ZNF281 in cancer samples. (a) The representative staining scores (0-3) of ZNF281 in cancer 
tissues. (b) The staining score of ZNF281 is significantly higher in CxCa than in normal controls.****, P-value < 0.0001.
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EMT-inducting transcription factor (EMT-TF), along with 
SNAIL, SLUG, TWIST1/2, and ZEB1/2, which induces 
EMT transcriptional changes. Furthermore, the expression 
of ZNF281 is directed by SNAIL, an EMT inducer, and in 
turn, required for the transcription of SNAIL. In addition, 
ZNF281 itself regulates a number of EMT-related effector 
genes [52]. The abovementioned evidence combined with 
our findings suggest that ZNF281 may be considered as a 
new prognostic and therapeutic target for the management 
of CxCa. However, the precise role of ZNF281 in CxCa 
initiation and progression remains to be elucidated.

Our study has several limitations. Firstly, the distinct 
gene expression biosignatures of cervical adenocarcinoma 
(five samples) and cervical adenosquamous carcinoma (one 
sample) were unable to be explored. Secondly, we did not 
examine the effects of HPV to CxCa carcinogenesis, but 
instead, focused on the general process in the multi-stage 
manner. Finally, the combination of CIN1, CIN2, and CIN3 
on behalf of cervical precancerous lesions may introduce 
biases since they are associated with different subtypes of 
HPV (CIN1 and CIN2 mainly with intermediate risk HPV 
genotypes while CIN 3 mainly with HPV16).

Better strategies for diagnosis and prognostic 
assessment of CxCa can be achieved by improving our 
understanding of the formation and development of the 
disease. Although the mechanisms of CxCa carcinogenesis, 
especially HPV integration-driven cervical carcinogenesis 
have been studied, the alterations of genes in the 
dysregulated processes and their effects have not been 
intensively scrutinized. In the current study, we conducted 
a comprehensive analysis and suggest new evidence on 
the mechanisms of cervical oncogenesis and metastasis. 
Our findings also indicated that the overexpression of 
cell cycle, one carbon pool by folate, RNA transport, and 
mRNA surveillance pathways play critical roles in the 
multi-stage development of CxCa. Genetic panels and a 
deep learning classification approach, which can be used 
to improve the diagnosis of CxCa, were proposed. We also 
introduced ZNF281 as a novel biomarker for the prognostic 
assessment of CxCa and a new potential therapeutic target. 
Other promising genes that may be significantly important 
to CxCa progression were also identified. In conclusion, 
the current study provides opportunities to improve current 
understanding of CxCa pathogenesis and hopefully helps 
improve CxCa patient outcome.

MATERIALS AND METHODS

Study design, search strategy, and selection 
criteria of the meta-analysis

A systematic search of Gene Expression Omnibus 
(GEO) and ArrayExpress was performed using the 
following query structure: “(“cervical” OR “cervix”) 
AND (“cancer” OR “cancers” OR “cancerous” OR 
“neoplasm” OR “neoplasms” OR “neoplastic” OR 

“tumor” OR “tumors” OR “tumour” OR “tumours” OR 
“tumorous” OR “tumourous”)”. Our results covered 
all available data sets published up to December 2016. 
Identified data sets were evaluated for eligibility by at 
least two authors. Disagreements among reviewers were 
resolved by consensus with other reviewers. A data set 
was included if it contained Affymetrix-based microarray 
data and the study design met the following criteria: the 
data set provided clear definitions of analyzed samples; 
the data set contained at least one comparison among 
Cancer versus Normalcy, Cancer versus CIN, or CIN 
versus Normalcy groups. We excluded data sets for the 
following reasons: no relevant item found; the study was 
carried out from a cohort without a control group; the 
results contained overlapping data in other data set(s); 
and the studied subject was not human. Only the largest 
data set was included among overlapping data sets. We 
also manually searched the reference lists of the original 
studies of included data sets to find other relevant data 
sets.

Data pre-processing, gene expression meta-
analysis, and pathway enrichment analysis

In this study, data preprocessing, gene expression 
analysis and meta-analysis, and functional analysis were 
conducted by the published protocol of NetworkAnalyst 
with minor modifications in data set production and data 
normalization processes [17]. To normalize gene expression 
data of included data sets, we applied a robust multi-array 
analysis method using the Bioconductor Affy package [53, 
54]. In addition, Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) online software was used to 
convert the gene labels to Entrez IDs for unsupported probe 
platforms from NetworkAnalyst prior to the analysis [55]. 
A random effects model was utilized for the meta-analysis. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotation was applied for pathway enrichment analysis 
to detect corresponding biologically enriched pathways. 
Potential hub genes in network analysis were detected by 
betweenness centrality (BC) and degree centrality (DC) 
of the first-order network. Protein-protein networks of 
the consistently up- or downregulated genes were derived 
from the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database version 10.5 [56]. 
In the protein-protein networks, known interactions from 
curated databases and experiments were presented along 
with predicted interactions (minimum required interaction 
score = 0.4). Functional enrichments were detected using 
KEGG and Gene Ontology (GO) biological process where 
applicable (false discovery rate < 0.05).

Text mining for gene list interpretation

CCancer web-based software was applied to 
examine whether our reported gene list was significantly 
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enriched in terms of the intersection with previously 
reported gene lists for other biological processes [57]. 
This approach is based on the hypothesis that significant 
similarities among gene/protein lists may indicate 
potentially be a good indicator of similarity in molecular 
mechanisms among corresponding biological processes.

Data exploration and visualization

Principal component analysis (PCA) is an 
orthogonal transformation analysis that aims to reduce 
the dimension of the data but at the same time minimizes 
information loss. In this study, we applied PCA to examine 
the tendency of separation among samples that belong to 
different groups. A heatmap was also used to visualize the 
data of selected features. The analysis and visualization 
were performed using FactoMineR, factoextra 1.0.4.999, 
and MetaboAnalyst 3.0 [58–60]. A Venn diagram was 
produced using InteractiVenn [18].

Variable importance measurement and class 
assignment analysis

The heterogeneity of the data sets from different 
platforms was adjusted using the Combat method to 
integrate different data sets covering the same biological 
condition into one unique data set [61]. The corresponding 
data sets were later split into training and test sets using 
the caret package version 6.0-76 [62]. For Cancer versus 
Normalcy group, the splitting ratio was 50:50 while the 
splitting ratio for Cancer versus CIN and CIN versus 
Normalcy groups was 70:30. Variable importance 
measurements of the training sets were conducted using 
the area under the curve permutation random forest 
variable importance measurement (AUC-RF VIM) of 
party package version 1.2-3 [63]. The top 30 genes of 
each data set were introduced to the deep learning-based 
classification independently with the 168-gene panel.

The deep learning analyses were executed using 
H2O package version 3.10.3.6 in R environment version 
3.3.3 [64]. For training the predictive models, the adaptive 
learning rate method for stochastic gradient descent 
optimization was used as a default. We carried out the 
random hyperparameter search for the number of hidden 
layers, l1 regularization, and l2 regularization. The number 
of layers was set from two to five, and each layer contained 
200 neurons. The l1 regularization and l2 regularization 
searches were conducted using the sequence function 
containing the values from 0.00 to 1.00E-3 by 1.00E-6. The 
search criteria strategy was set as “Random Discrete” for 
searching all the combinations of the number of layers, l1 
regularization, and l2 regularization. Other parameters were 
set empirically or by the default settings. The number of 
epochs was adjusted at 100. The Rectifier linear activation 
function was applied for a fast and accurate training 
process. Additional regularization methods, including 

dropout (hidden dropout ratios = 0.5) and early stopping 
(logloss stopping metric, stopping tolerance = 0.01, and 
stopping round = 5) were employed. The training sets were 
used for hyperparameter tuning processes via 10-fold cross-
validation. The performances of the fine-tuned models 
with the optimal hyperparameters were then measured 
on the test sets. The cut-off of the classification was the 
corresponding value that optimize F1-score at default.

Ensemble class assignment analyses on the 
corresponding data sets of the whole transcriptome 
information were conducted using ArrayMining online 
software [65]. In brief, the data set was introduced to 
the Class Assignment Module with the settings of the 
ensemble method for feature selection. The ensemble 
method is a combination of three different univariate 
filters (Pearson correlation filter, signal-to-noise-ratio 
filter, and F-score filter) to make the ensemble feature 
ranking. An ensemble prediction method that combines 
random forest, support vector machine, prediction analysis 
for microarrays, and k-nearest neighbor algorithms were 
applied. This combination is supposed to provide a more 
robust classification analysis. For model evaluation, 
we performed 10-fold cross-validation. The maximum 
feature subset size was set at the default (30 features). The 
performance of the prediction models was appraised using 
accuracy, sensitivity, and specificity.

Prognostic analysis

We investigated the prognostic ability of selected 
genes using Cancer Genome Atlas (TCGA) data set. 
mRNA-based Cox regression analysis of a cohort of 
264 TCGA patients were extracted using Oncolnc [66]. 
Cox regression factors on survival were set at default: 
“coxph(Surv(times, died) ~ gene + grade1 + grade2 + 
grade3 + grade4 + age)”. In addition, we exploited the 
Kaplan-Meier method with log-rank test for comparing 
survival curves in two groups with the divided option of 
upper 50 percent mRNA expression and lower 50 percent 
mRNA expression patients. A log-rank P-value less than 
0.05 (Kaplan-Meier) and adjusted P-value less than 0.1 
(Cox regression) were considered to be the statistically 
significant thresholds.

Tissue microarray (TMA) staining and analyses

Human cervical tissue microarray slides (CR6161) 
were purchased from the US Biomax Inc. (Rockville, 
MD, USA). Rabbit anti-ZNF281 (1:30, Atlas Antibodies, 
HPA051228) antibody was used for the experiment. 
Immunohistochemistry (IHC) was performed for human 
normal tissues and cervical cancer tissues using the protocol 
previously described with minor modifications [67]. Images 
were obtained from Aperio Scanscope digital slide scanners 
and analyzed by the vendor’s software (Leica, Wetzlar, 
Germany). The staining score was given as 0, 1, 2, and 3 for 
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the tissues with stainless cells, <10% stained cells, 10-50% 
stained cells, and > 50% stained cells, respectively. Tissue 
loss cores were excluded from the analysis. Only squamous 
cell carcinoma, adjacent normal, and normal tissues were 
considered in the final statistical analysis (256 cancer and 
26 normal tissues). A Mann-Whitney U test was conducted 
to compare differences between the normal group and 
CxCa group using GraphPad Prism 6 (San Diego, CA). 
IHC scoring visualization was performed using lattice 
package version 0.20-35 in R environment version 3.3.3 
[68]. The significance level was set at 0.05.
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