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ABSTRACT

A germline mutation in cancer predisposing genes is known to increase the risk 
of more than one tumor type. In order to find loci associated with many types of 
cancer, a genome-wide association study (GWAS) was conducted, and 3,555 Swedish 
cancer cases and 15,581 controls were analyzed for 226,883 SNPs. The study used 
haplotype analysis instead of single SNP analysis in order to find putative founder 
effects. Haplotype association studies identified seven risk loci associated with 
cancer risk, on chromosomes 1, 7, 11, 14, 16, 17 and 21. Four of the haplotypes, on 
chromosomes 7, 14, 16 and 17, were confirmed in Swedish familial cancer cases. It 
was possible to perform exome sequencing in one patient for each of those four loci. 
No clear disease-causing exonic mutation was found in any of the four loci. Some of 
the candidate loci hold several cancer genes, suggesting that the risk associated with 
one locus could involve more than one gene associated with cancer risk. In summary, 
this study identified seven novel candidate loci associated with cancer risk. It was 
also suggested that cancer risk at one locus could depend on multiple contributing 
risk mutations/genes.

INTRODUCTION

Although environmental factors explain most of 
cancer cases, inherited risk factors contribute to a various 
degree in development of different cancers [1]. Cancer 
syndromes are rare and typically involve families with 
early onset of disease. Most known cancer syndromes 
were first found to be associated with an increased risk 
of one tumor type such as breast cancer (BRCA1 and 
BRCA2) or colorectal cancer (APC and the DNA mismatch 
repair genes) [2–6]. The BRCA1 and BRCA2 genes were 
first reported as breast cancer predisposing genes [2, 
3]. However, it was soon clear that ovarian cancer and 
pancreatic cancer were also associated with the syndromes 
[7, 8]. Lynch Syndrome was first defined as a syndrome 
of hereditary non-polyposis colorectal cancer [5, 6]. It is 
today known to involve a broad spectrum of tumors [9]. 
In general, cancer syndromes confer an increased risk of 
not just one tumor type but rather constitute an inherited 
predisposition to many different types of cancer.

Recently, different approaches have been used 
to find new cancer syndromes. The Utah Population 
Database, including the record of cancer data for 
190,000 individuals diagnosed with cancer in Utah from 
1958, proved that many cancer sites showed a heritable 
contribution, which was associated with other cancer 
sites [10]. The Swedish Family-Cancer Database (FCD), 
first created in the 1990s, contains more than one million 
cancers. Studies using this database, reported that lung 
cancer had a significant association with 13 other cancer 
types and most of them were smoking related, such as 
bladder-, esophagus-, liver-, cervical- and kidney cancer 
[11]. Using the network of case and control studies from 
Italy and Switzerland, it was reported that several potential 
cancer syndromes appear among close relatives in an early 
age [12]. Based on the Icelandic Cancer Society (ICR) 
database, it was found that genetic factors are involved 
in several cancers and also play an important role in the 
familial clustering of cancer [13]. Stomach and prostate 
cancers were involved in most pairs of the tested cancer 
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sites [13]. This is consistent with our finding in a recent 
study of colorectal cancer families [14].

The global analysis of genome-wide association 
studies (GWAS) have primarily focused on single diseases 
[15–17]. However, combining large-scale GWA meta-
analysis, new loci have been found to be associated with 
an increased risk of hormone-related cancers such as 
breast-, ovarian- and prostate cancer [18]. We have already 
shown that familial colorectal cancer is associated with 
higher risk for other cancers and thus these families seem 
to segregate genetic risk factors for many different cancers 
[14]. To define a new cancer risk alleles predisposing to a 
variety of cancer types, we conducted a GWAS in 3,555 
cancer cases and 15,581 controls. Sweden has a fairly 
homogenous population and Swedish founder mutations 
are known in disease genes. Thus, we hypothesized that 
novel loci with a founder mutation could be possible 
to detect using a Swedish GWAS. The definition for a 
founder mutation is that it occurs on the same specific 
haplotype in a population and thus we used haplotype 
analysis rather than single SNP analysis for more power 
to detect a founder effect.

RESULTS

Haplotypes describe the linear relationship of a 
series of loci along the chromosome strand and in PLINK 
defined by a certain number of single SNP markers. Two 
haplotype analyses on sliding windows of 10 and 25 SNPs 
using 3,555 cancer cases and 15,581 healthy controls were 
conducted. The statistical analysis suggested seven loci 
associated with cancer risk and with a p-value <1.1×10−7 
(Figure 1). Four risk haplotypes were found using window 
10, on chromosomes 1, 11, 14, and 17 while three risk 
haplotypes were found using window 25, on chromosomes 
7, 16 and 21 (Figure 1).

Further analysis was performed around each of these 
seven haplotypes to find out which exact haplotype at each 
locus had the best p-value. For the loci on chromosomes 7, 
11, 16 and 17 the first identified haplotypes were the most 
statistically significant, while for the loci on chromosomes 
1, 14 and 21, a slightly shorter or longer haplotype were 
even more statistically significant (Table 1).

All risk haplotypes had odds ratio (ORs) of 1.3-
1.9, except the locus on chromosome 21, which had an 
OR of 0.4, thus the minor allele was associated with a 
decreased cancer risk. The 6 risk haplotypes were searched 
for among 104 familial cancer patients (from 58 breast 
cancer families and 46 colorectal cancer (CRC) families). 
Seven families had family members with the haplotypes 
on chromosomes 7, 14, 16 and 17 (Figure 2). Family 242 
(Co-666) and family 397 (Co-1123) had the suggested 
haplotype on chromosome 7, family 87 (Co-1179) and 
family 1275 (Al-77) the haplotype on chromosome 14, 
family 134 (Co-276) the haplotype on chromosome 16, 
and family 288 (Co-1141) and family 2606 (Al-161) 

the haplotype on chromosome 17. Several other family 
members could have the haplotypes but were not fully 
informative for all markers (Supplementary Table 1). 
Some of the patients had more than one complete or 
incomplete haplotype.

Exome sequencing data were available for one 
patient with a full haplotype for the loci on chromosome 
7, 14, 16 and 17 (Co-666 from family 242, Co-1179 from 
family 87, Co-460 from family 134 and Co-1141 from 
family 288). All non-exonic and synonymous variants, 
and those with a Minor Allele Frequency (MAF) >20% in 
1000Genomes (1000G) or ExAC Non-Finnish European 
(NFE) were excluded.

For the locus on chromosome 7, three variants in the 
PRSS1 gene, were found in the sample with the complete 
haplotype (Co-666). The first one, rs145867820 was also 
found in one other sample (Co-1053) with incomplete 
haplotype for this region. It was considered pathogenic 
by seven of nine bioinformatics functional tools. The 
frequency of the minor SNP allele (T) in ExAC and 1000G 
was 0.007 and 0.03, respectively, and in our 294 unrelated 
familial cases 0.05. This SNP was tested using TaqMan 
assay in 378 unrelated familial cancer cases and 379 
controls and the result did not suggest any risk associated 
to this SNP (OR<1, frequency in cases 2% and in controls 
3%). The second variant, rs200070487, was predicted to 
be pathogenic by all nine bioinformatics functional tools, 
the frequency of G allele was 0.01 in both ExAC and 
1000G. None of the three patients (Co-1053, Co-851 and 
Co-700) with incomplete haplotypes had it. The frequency 
of the G allele among 294 unrelated familial cases was 
0.20. It was not possible to generate a probe for this SNP 
for TaqMan assay. The third variant, rs200902389, was 
predicted pathogenic by one of the nine bioinformatics 
functional tools. Two patients from three other families 
with incomplete haplotypes also bore this variant (Co-700 
and Co-1053). The frequency of the A allele in ExAC was 
0.003 and in 1000G <0.01. The frequency of the A allele 
among 294 familial cases was 0.12. The TaqMan assay 
for this SNP failed. Thus, it could not be ruled out that 
rs200070487, or even rs200902389, could be associated 
with an increased risk.

The patient (Co-1179) with the chromosome 14 
haplotype had no exonic variant. The patient (Co-460) 
with the chromosome 16 haplotype, had one variant 
in the PPL gene, which was considered too common 
(MAF=0.53) since the frequency of the risk haplotype 
was estimated to 1%. One patient with the chromosome 
17 haplotype (Co-1141) had one variant in the ZNF652 
gene, the frequency of which in ExAC was 0.00002, and 
thus it was considered too rare to explain a risk haplotype 
with a frequency of 4%.

Next, analyses were undertaken to find out what 
haplotypes and possible loci were missed by our approach 
using only window sizes 10 and 25. A sliding window 
analysis consists of different sets of contiguous loci at 
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various sliding positions [19]. The whole genome was 
searched with a sliding window strategy testing windows 
ranging from 1 to 25 markers. In total, nineteen additional 
loci showed a p-value less than 10-6 in different window 
sizes, and one haplotype on chromosome 13 even reached 
6.45×10-8(window size 21, rs912593-rs9599474, OR=2) 
(Supplementary Table 2). None of these loci were 
considered statistically significant due to multiple testing.

Using the sliding window information within the 
seven suggested loci, including all windows with OR >1 
and p <0.05, the analysis suggested that four of the risk 
loci could be attributed by more than one risk variant 
within the haplotype, such as for the loci on chromosomes 
7, 16, 17 and 21, while the haplotypes on chromosomes 1, 
11, and 14 suggested only one risk variant (Supplementary 
Figures 1-4).

DISCUSSION

Our genome-wide haplotype association study 
using Swedish Twin Registry for 3,555 cancer cases and 
15,581 healthy controls suggested seven loci associated 

with cancer risk (Table 1). All were rare (allele frequency 
1-2%), and minor alleles of six of them were associated 
with increased cancer risks, while one was associated with 
a lower risk of cancer.

Comparing the six cancer risk haplotypes with 
our familial breast and colorectal cancer patients, seven 
families showed well-matched haplotypes for four of those 
risk loci, on chromosomes 7, 14, 16 and 17 (Figure 2 and 
Supplementary Table 1). By studying exome sequencing 
data from family members, we searched genes for those 
four haplotype regions. Although no clear disease-causing 
mutation was found, the data still supported the loci as risk 
susceptibility regions since at least four of the haplotypes 
were present in known cancer families. The causal variants 
may be located within regulatory regions. In fact, most risk 
loci identified from earlier GWASes have risk-associated 
SNPs far from genes, which were still considered relevant 
and potentially targeting adjacent genes or genetic 
elements such as RNAs or enhancer regions [15–18].

There are many genes located in the candidate 
regions on chromosome 7, such as PRSS1, EPHB6, 
TRPV6, TRPV5 and PIP. The genes PRSS1, TRPV5 and 

Figure 1: Seven novel cancer risk loci/haplotypes. Chr, chromosome, H, haplotype.
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PIP have so far been implicated in a few cancer types 
(pancreatic-, non-small cell lung- and breast cancer), 
while EphB6 and TRPV6 have been studied in relation 
to numerous cancer types. In this study, we found three 
missense variants in the PRSS1 gene. One did not show 
any significant difference in allele frequency between 
cases and controls in subsequent validation, whereas 
the other two could not be ruled out, and need to be 
tested in further studies for conclusive results. EphB6 
overexpression together with APC gene mutations was 
suggested to promote the development of colorectal 
tumors [20]. A germline missense mutation in EphB6 
has been suggested to possibly predispose to familial 
CRC [21]. The same gene has been suggested to harbor 
driver mutations in melanoma [22], and the Eph family 
receptors have been implicated in tumor progression and 
clinical outcome in several malignancies including tongue 
squamous cell-, ovarian-, gastric-, breast-, non-small cell 
lung cancer, melanoma and neuroblastoma [23–29]. The 
EphB6 has also been studied in thyroid-, and prostate 
cancer [30, 31]. Up-regulation of the TRPV6 Ca2+ channel 
in prostate cancer cells was suggested to promote cell 
proliferation rate, and to increase survival and apoptosis 
resistance in prostate cancer cells [32]. TRPV6 was highly 
expressed in estrogen receptor-negative breast cancer 
cells, regulating their proliferation, suggesting that TRPV6 
can be a potential therapeutic target in these cancers [33]. 
Studies in candidate cancer genes including EPHB6/
TRPV6 found two SNPs in EPHB6/TRPV6 marginally 
associated with survival in CRC [34]. The TRPV6 gene 
has also been suggested to influence prognosis in cervical- 
and esophagus squamous cell cancer, as well as in non-
small cell lung cancer [35–37]. Sliding window analysis 
suggested that more than one gene in this risk haplotype 
could contribute to the increased risk. (Supplementary 
Figure 1).

The TMX1 gene, located in the risk region on 
chromosome 14, has been reported to be widely expressed 
in normal human tissues, and has been suggested to act as 

a tumor suppressor [38]. For this locus, the sliding window 
analysis suggested one contributing risk locus, involving 
the TMX1 gene (Supplementary Figure 2).

The risk region on chromosome 16 contains 
candidate genes such as PPL and GLYR1. Primarily the 
PPL gene has been suggested to play a role in many 
cancers. The gene has an important role in skin tumor-
protection [39]. PPL has also been reported to be relevant 
in prognosis in urothelial carcinoma of the urinary 
bladder-, colorectal -, esophageal-, endometrial cancer and 
triple-negative breast cancer [40–44]. Somatic mutations 
in the GLYR1 have been suggested to drive tumorigenesis 
in microsatellite unstable tumors [45]. For this risk 
haplotype, sliding window analysis suggested at least two 
possible risk loci on the haplotype, involving the PPL and 
other genes (Supplementary Figure 3).

The region on chromosome 17 harbors two strong 
candidate cancer genes, ZNF652, and PHB. ZNF652 
is a known prostate cancer candidate gene. The protein 
expression in androgen receptor positive prostate cancer 
cells is associated with prostate cancer outcome and 
relapse [46]. It has also been suggested that ZNF652 
plays a role in the development of breast cancer [47] 
and vulvar squamous cell carcinoma [48]. PHB is 
evolutionarily conserved and plays an important role in 
human cellular senescence and tumor suppression [49]. 
A single nucleotide polymorphism has been suggested to 
increase the risk of breast cancer [50–52]. It has also been 
suggested to be implicated in prognosis in colorectal-, 
and bladder cancer [53, 54]. The PHB has also been 
suggested as a potential biomarker for gastric cancer and 
to be involved in prostate-, and papillary thyroid cancer 
[55–57]. For this candidate haplotype, the sliding window 
analysis suggested three, non-overlapping, possible risk 
loci contributing to the increased risk (Supplementary 
Figure 4).

The locus on chromosome 1 holds the gene CNIH3, 
not known to be involved in any type of cancer, and the 
locus on chromosome 11 harbors the non-coding RNA 

Table 1: Haplotype frequency and odds ratio for the seven loci

Chr WS HFA HFC OR P Value BWS HFA HFC OR P Value

1 10 0.012 0.007 1.67 8.49E-07 7 0.014 0.008 1.68 6.29E-07

7 25 0.010 0.005 1.9 3.03E-07 25 0.01 0.005 1.90 3.03E-07

11 10 0.021 0.013 1.61 6.13E-07 10 0.021 0.013 1.61 6.13E-07

14 10 0.029 0.020 1.45 4.52E-07 8 0.021 0.013 1.56 2.25E-07

16 25 0.011 0.006 1.83 3.01E-07 25 0.011 0.006 1.83 3.01E-07

17 10 0.041 0.030 1.35 7.27E-07 10 0.041 0.030 1.35 7.27E-07

21 25 0.013 0.030 0.41 4.73E-07 31 0.013 0.031 0.41 3.04E-07

Chr, chromosome; HFA, haplotype frequency in affected; HFC, haplotype frequency in controls; OR, odds ratio; WS, 
window size; BWS, best window size.
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gene RP11-266A24.1. The chromosome 21 locus involves 
potentially interesting genes for cancer development/
protection. KCNE2 encodes a voltage-gated potassium 
channel ancillary subunit and is highly expressed in 
gastric parietal cells, and was suggested to suppress the 
proliferation of gastric cancer [58]. The RCAN1 gene was 
up-regulated in cancer cells, resulting in inhibition of the 
cell motility, and RCAN1 knockdown was suggested to 
promote thyroid cancer tumor growth [59].

This study design used only two window-sizes, 
10 and 25, to explore possible novel cancer risk loci in a 
Swedish population. Analysis with window size ranging 
from 1 to 25 could demonstrate that another nineteen 
haplotypes could be of interest. Importantly, these analyses 
suggested that for some haplotypes (loci), the genetic risk 
could result from mutations related to more than one gene. 
Thus, it is possible that some of the candidate haplotypes 
hold mutations in two or even more of the candidate genes 
discussed above. If we had searched all windows up to 25 

for the first study, only one would have been statistically 
significant because of multiple testing.

In conclusion, the strategy of haplotype analysis 
was facilitated by the fact that Sweden has a relatively 
homogenous population and identified seven novel 
candidate risk loci, with specific Swedish haplotypes 
to be associated with an increased risk of cancer. The 
result showed ORs higher than most previous GWASes, 
performed in mostly single cancer types, and using 
single SNP-analysis. However, these genetic risk 
loci should be relevant in all populations. It was also 
suggested that one haplotype could consist of more than 
one contributing cancer risk allele, possibly involving 
multiple genes. This could also be one reason why these 
loci have higher ORs compared to what is seen in many 
other, single-SNP related, GWASes. Further studies will 
be necessary to confirm these loci and risk association, 
and to find out what tumor spectrum is associated with 
these loci.

Figure 2: Pedigrees. Pedigrees for the seven families, fulfilling one (of four) risk-haplotypes. For each family the case with the risk 
haplotype is indicated with sample-ID (★), and for all cases are shown diagnoses, Re, Rectal Cancer; Ga, Gastric Cancer; Br, Breast 
Cancer; Ca, Cancer; Co, Colon Cancer; Leu, Leukemia; Lym, Lymphoma, H/N, Head and Neck Cancer; Mel, Melanoma; Pr, Prostate 
Cancer.
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MATERIALS AND METHODS

Haplotype GWAS in 3,555 cancer cases and 
15,581 healthy controls

The GWAS was based on two datasets (TwinGene 
and PsychArray) from the population-based Swedish Twin 
Registry [60]. Phenotypic data on cancer were obtained 
through linking the twins to the Swedish Cancer Registry 
using the unique person identification number available 
for all Swedish citizens. In this study, cases were cancer 
patients selected from twin pairs where at least one twin 
was affected by any type of cancer, and controls were 
selected from twin pairs where none was affected. Only 
one twin from each twin pair was included in the analysis.

Familial cancer cases

Patients from families undergoing genetic 
counseling in the department of Clinical Genetics, 
Karolinska University Hospital have been recruited for 
genetic studies to find predisposing genes. Families with 
mutations in known cancer genes were excluded. Familial 
cancer cases were defined as coming from families where 
at least two first or second-degree relatives were affected 
with colorectal- or breast cancer. To be able to study 
haplotypes in familial cancer patients, a sample from at 
least on child or parent to each patient had been obtained.

Samples used in Taqman experiment

TaqMan experiment test candidate variants used 378 
familial cases described above and 379 controls from the 
Swedish Colorectal Cancer Low-Risk Study [14], which 
recruited consecutive colorectal cancer cases and their 
spouses as controls.

Genotyping and quality control (QC) of twins

Genome DNA was extracted from peripheral 
blood samples for both the cases and the controls using 
standard procedures. In the TwinGene study, DNA from 
9,836 individual subjects was genotyped with Illumina 
OmniExpress bead chip; whereas in PsychArray, 18,560 
twins were genotyped using the Illumina Infinium 
PsychArray-24 BeadChip. Both studies include all 
available dizygotic twins and one twin in each pair of 
monozygotic twins.

For the quality control (QC) of the TwinGene study, 
variants were excluded from analysis if call rate was 
<=0.97, minor allele frequency was <1% or if the variant 
deviated significantly from Hardy-Weinberg equilibrium 
(p <=1×10−7). Samples were removed in case of genotyping 
success rate <97%, gender discrepancy between reported 
and X-chromosome heterozygosity-predicted, abnormal 
heterozygosity (>3 standard deviations from mean) or 
detection of cryptic relatedness. In total, 9617 individuals 

and 644556 SNPs remained after the QC. And in the 
PsychArray study, variants were excluded from analysis 
if call rate was <0.98, cross-batch discordance >10%, 
more than one discordant genotype within monozygotic 
twin pairs, deviated significantly from Hardy-Weinberg 
equilibrium (p <1×10−7), significantly associated with 
more than one genotyping batch (at p <5×10−8), the variant 
calling was poor (Y-chromosomal or mitochondrial) or the 
allele frequency differed by >10% (absolute difference) 
from that of 1000 Genomes European samples and mean 
GenCall scores are <0.5. Samples were excluded in case 
of genotyping success rate <98%, gender discrepancy 
between reported and X-chromosome heterozygosity-
predicted, abnormal heterozygosity (autosomal inbreeding 
coefficient F outside ±0.2), possible sample contamination 
(relatedness with other samples >6 standard deviations 
from mean in a random set of 1000 samples) or evidence 
of non-European ancestry (>6 standard deviations from 
the mean values of the first two principal components in 
1000 Genomes European population). 17,898 individuals  
and 561,187 markers passed the QC.

Quality control of the merged data set

To be used in this association study on cancer 
risk, the TwinGene study (2,457 cancer cases and 4,441 
controls) were merged with the PsychArray study 
(1,099 cancer cases and 11,239 controls) and analyzed 
for the 237,799 markers existing in both datasets using 
PLINK [61]. In the analysis, 59 markers were removed 
due to inconsistent strand coding. Therefore, a total of 
19,236 individuals (3,556 cases and 15,680 controls) 
and 237,740 markers were included in the analysis. 
Next, heterozygous haploid genotypes were excluded 
as well as samples with gender inconsistency and same 
position variants. In the next stage, 237,740 SNPs and 
19,236 individuals (3,556 cases and 15,680 controls) 
were merged and SNPs with <98% call rate, <5% 
minor allele frequency (MAF), and those inconsistent 
with Hardy–Weinberg equilibrium in controls, were 
removed. In the final stage, 226,883 SNPs and 19,236 
individuals (3,556 cases and 15,680 controls) remained 
and a multidimensional scaling (MDS) analysis was 
conducted on all the remaining markers for the purpose 
of population stratification and to identifying ethnic 
outliers. These outliers were excluded from the dataset 
while the remaining were plotted in an MDS plot 
(Supplementary Figure 5). In the end, 226,883 SNPs and 
19,136 individuals (3,555 cases and 15,581 controls) 
remained for further downstream analyses.

Genotyping of familial samples for testing of 
haplotypes

Genomic DNA was extracted from peripheral 
blood using standard procedures. Genotyping of a total of 
587 individuals, familial CRC cases and their relatives, 
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was performed by the Illumina Infinium assay using the 
Illumina HumanOmniExpress-12v1_H BeadChip. The 
results on 730,525 SNPs, were analyzed using the software 
GenomeStudio 2011.1 from Illumina Inc. Average sample 
call rate per SNP with sample call rate >0 was >99% 
and the overall reproducibility >99.99%. Arrays were 
processed according to manufactures’ protocol at the 
SNP&SEQ Technology Platform at Uppsala University 
and is available on request (www.genotyping.se).

Exome sequencing

Genome DNA extracted from peripheral blood was 
quantified using the Qubit Flurometer (Life Technologies). 
Sequencing libraries were prepared according to the 
TruSeq DNA Sample Preparation Kit EUC 15005180 or 
EUC 15026489 (Illumina). 1-1.5 μg of genomic DNA 
was fragmented using a Covaris sonicator (Covaris, 
Inc.). Thirty-seven of the DNA samples were fragmented 
according to the Covaris 400bp protocol and sixty-one 
samples were fragmented according to the SureSelect 
Protocol. After the fragmentation, all samples were 
subjected to end-repair, A-tailing, and adaptor ligation 
of Illumina Multiplexing PE adaptors. An additional 
gel-based size selection step was performed for the 37 
samples. The adapter-ligated fragments were subsequently 
enriched by PCR followed by purification using Agencourt 
AMPure Beads (Beckman Coulter). Exome capture 
was performed by pre-pooling equimolar amounts and 
performing enrichment in 5- or 6-plex reactions according 
to the TruSeq Exome Enrichment Kit Protocol (EUC 
15013230). The library size was checked on a Bioanalyzer 
High Sensitivity DNA chip (Agilent Technologies) while 
concentration was calculated by quantitative PCR. Pooled 
DNA libraries were clustered on a cBot instrument 
(Illumina) using the TruSeq PE Cluster Kit v3. Paired-end 
sequencing was performed for 100 cycles using a HiSeq 
2000 instrument (Illumina) with TruSeq SBS Chemistry 
v3, according to the manufacturer’s protocol. Base calling 
was performed with RTA (1.12.4.2 or 1.13.48) and the 
resulting BCL files were filtered, de-multiplexed, and 
converted to FASTQ format using CASAVA 1.7 or 1.8 
(Illumina). Data were analyzed using the bcbb package 
(https://github.com/chapmanb/bcbb). After sequencing, 
the reads were aligned to the reference genome hg19 
(GRCh37) using BWA, sorted and PCR duplicates were 
removed with Picard. The calculation of mapping and 
enrichment statistics were done with Picard and GATK. 
Variants were called using GATK and followed by a best 
practice procedure implemented at the Broad Institute [62].

Mutation annotation

The output mutations in variant call format (vcf) 
were annotated using ANNOVAR [63], which generated 
an Excel-compatible file with gene annotation, amino 

acid change annotation, dbSNP identifiers [64], and 1000 
Genomes Project allele frequencies [65].

Functional prediction

Pathogenicity of variants was predicted by nine 
bioinformatics functional tools which were: SIFT, 
Polyphen2_HDIV (Polymorphism Phenotyping v2), 
Polyphen2_HVAR, LRT, Mutation Taster, Mutation 
Assessor, FATHMM (Functional Analysis through Hidden 
Markov Models), RadialSVM, LR (Likelihood Ratio test).

TaqMan assay

A total of 378 cancer cases and 379 controls 
were genotyped using TaqMan genotyping Assay 
(Applied Biosystems, Foster City, CA, USA). Primer of 
rs145867820’s context sequence[VIC/FAM]:CACCATGC
CTGCCCTGCCCATCAGC[C/T]GCATCCAGGTGAGA 
CTGGGAGAGCA. Primer of rs200902389’s context  
sequence [VIC/FAM]: CCCTGTGGTCTGCAATGGACA 
GCTCCAAGGA[G/A]TTGTCTCCTGGGGTGATGGCT 
GTGCCCAGA.

Statistical analysis

A logistic regression model was employed to 
examine the association between one single SNP or a 
haplotype and cancer risk. Corresponding OR, standard 
errors, 95% confidence intervals and P values were 
calculated accordingly using PLINK v1.07 [61]. An MDS 
plot showing P values sorted by chromosomal position was 
generated to provide a visual illustration of top association 
findings across the genome. Bonferroni-adjusted P value 
criteria for genome-wide statistical significance of SNP 
was p < 1.1×10−7.
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