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ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy that is 
often resistant to therapy. Nowadays, chemotherapy is still one of the main methods 
for the treatment of ESCC. However, the multidrug resistance (MDR)-mediated 
chemotherapy resistance is one of the leading causes of death. Exploring agents 
able to reverse MDR, which thereby increase the sensitivity with clinical first-line 
chemotherapy drugs, could significantly improve cancer treatment. Cepharanthine 
hydrochloride (CEH) has the ability to reverse the MDR in ESCC and the mechanism 
involved have not been reported. The aim of the study was to investigate the potential 
of CEH to sensitize chemotherapeutic drugs in ESCC and explore the underlying 
mechanisms by in vitro and in vivo studies. Our data demonstrated that CEH 
significantly inhibited ESCC cell proliferation in a dose-dependent manner, induced 
G2/M phase cell cycle arrest and apoptosis, and increased the sensitivity of cell lines 
resistant to cisplatin (cDDP). Mechanistically, CEH inhibited ESCC cell growth and 
induced apoptosis through activation of c-Jun, thereby inhibiting the expression of 
P-gp, and enhancing p21 expression via activation of the p53 signaling pathway.
In this study, we observed that growth of xenograft tumors derived from ESCC cell
lines in nude mice was also significantly inhibited by combination therapy. To our
knowledge, we demonstrate for the first time that CEH is a potentially effective MDR
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reversal agent for ESCC, based on downregulation of the mRNA expression of MDR1 
and P-gp. Together, these results reveal emphasize CEH putative role as a resistance 
reversal agent for ESCC.

INTRODUCTION

Esophageal cancer (EC) is the fourth most common 
cancer in China, with a total of 477,900 new cases and 
375,000 deaths projected to occur in 2015 [1]. Esophageal 
squamous cell carcinoma (ESCC) is one of the main 
histological types of EC in China with diverse cancer risk 
profiles [2]. ESCC accounts for over 90% of esophageal 
cancer cases and 5-year survival rates over the past 30 years 
is less than 20% [3-5]. At present, the clinical approach to 
ESCC is surgical treatment combined with radiotherapy 
and chemotherapy [6]. The most common treatment 
regimen for ESCC is the combination of cisplatin (cDDP) 
and 5-Fluorouracil (5-Fu) [7]. However, the obtained 
chemotherapy results were often barely satisfactory, mainly 
due to multiple drug resistance (MDR) [8, 9].

Once tumor cells are resistant to a single antitumor 
agent, the phenomenon of MDR confers upon cells the 
ability against many structurally unrelated antitumor 
agents [10-12]. Hence, the ability of cancer cells to acquire 
MDR is a major challenge to successful chemotherapy in 
a wide variety of advanced malignancies. One known 
cause of MDR is the over-expression of the ATP-binding 
cassette (ABC) transporters on the membranes of cancer 
cells. ABC transporters mediate an energy-dependent 
efflux can significantly decreasing the probability of 
successful treatment [13]. P-glycoprotein (P-gp), a 
membrane-associated glycoprotein which affiliated with 
the ABC superfamily, strongly linked to the MDR to play 
a role in drug efflux to reduce the drugs therapeutic effect 
[14-16]. An effective method to reverse P-gp mediated 
MDR is through its inhibitors to reduce the efflux of 
chemotherapeutic agents for increasing the sensitivity 
of tumor cells to chemotherapeutic drugs, therefore, to 
find and develop chemosensitizers is vital for MDR [17-
20]. Although some compounds have been found as the 
candidate agents for MDR reversal, most of them exhibit 
pronounced toxic side effects resulting in their limited 
clinical application [21]. Compounds of natural sources 
have become the new trend in P-gp inhibitor discovery 
because they have less toxicity and higher effects [22].

Cepharanthine (CEP), a double-benzyl isoquinoline 
alkaloid monomer, which extracted from the plant Stephania 
cepharantha Hayata as an antitumor agent candidate for 
reversal of MDR [23-24]. Cepharanthine hydrochloride 
(CEH), a semi-synthetic derivative of CEP (Figure 1A), 
reverse MDR by inhibiting P-gp expression [25]. However, 
its antitumor effect and whether it can reverse MDR in ESCC 
remains largely unknown. In this paper, we investigated the 
effects of CEH combined with cDDP on the cell viability and 
apoptosis and explore the mechanisms on reversal of MDR 
potential for CEH in vitro and in vivo.

RESULTS

CEH increased the sensitivity of ESCC cells to 
cisplatin

First, we constructed a cisplatin-resistant cell line 
from the ESCC cell line Eca109, and named it Eca109/
CDDP (Patent No. CN201511007006.2). Then, the 
cellular morphology of Eca109 and Eca109/CDDP was 
studied, we found that the morphology of Eca109/CDDP 
was irregular and misaligned, whereas that of Eca109 
was fusiform and in alignment, and that the cell volume 
of Eca109/CDDP increased compared to that of Eca109 
(Figure 1B). In order to verify the resistance of Eca109/
CDDP cell lines, we performed the MTT assay after 
treated cisplatin for 48 hours, our data showed that the 
resistance index (RI) value of Eca109/CDDP was 11.21 ± 
0.50, and in absence of cisplatin, Eca109/CDDP resistance 
to cisplatin was not affected (Supplementary Figure 1A-
1C), this result demonstrated that Eca109/CDDP was a 
moderately resistant cell line. To evaluate the effect of 
CEH on cell viability in Eca109 and Eca109/CDDP, the 
MTT assay was performed 48 h after treatment. As shown 
in Figure 1C and Figure 1D, CEH significantly inhibited 
cell proliferation in a dose-dependent manner in ESCC 
cell lines, with IC50 values of 6.20 ± 0.17 μM in Eca109 
and 25.07 ± 0.28 μM in Eca109/CDDP. We also found 
that under the CEH and cDDP combined treatment, the 
sensitivity of ESCC cells to cDDP significantly increased 
(Figure 1E and 1F, Supplementary Figure 1D-1F). Our 
results are also shown the combination index (CI) of CEH 
and cDDP in Eca109 and Eca109/CDDP was below 1 
(Figure 1G and 1H), indicate that combination of cDDP 
and CEH showed synergistic effects.

Next, the MTT method was used to analyze the 
toxicity of CEH and cDDP in human normal somatic 
cells, i.e., human aortic vascular smooth muscle cells (HA-
VSMC). As shown in Supplementary Figure 1G and 1H, 
the IC50 of CEH to HA-VSMC was significantly higher 
than that of ESCC. The reduced toxicity of CEH to normal 
cells suggested that it could be used as a potential agent 
for reversing ESCC cisplatin resistance.

CEH induces cell cycle arrest and inhibition of 
cell proliferation in both Eca109 and Eca109/
CDDP cell lines

The inhibition of cell proliferation is associated with 
cell cycle, so we examined the effect of CEH combined 
with cDDP on the cell cycle progression in ESCC cells. As 
Figure 2A and 2B shown, compared with untreated control 
and the cDDP positive control, cell cycle was arrested at the 
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Figure 1: Inhibition of proliferation in esophageal cancer cell lines by cepharanthine hydrochloride (CEH). (A) 
Chemical structure of CEH used in the present study. (B) Morphological changes of Eca109 cells undergoing cisplatin induced drug-
resistance. (C and D) Effects of CEH on the growth of the esophageal squamous cell carcinoma cell lines, Eca109 and Eca109/CDDP. 
Cells were treated with various concentrations of CEH for 48 h and cell viability was measured by MTT assay. (E and F) The effects of 48 
h treatment with cisplatin (cDDP) and cDDP combined with various concentrations of CEH on the growth of Eca109 and Eca109/CDDP 
cells. The half maximal inhibitory concentration (IC50) was quantified. (G and H) The combination index (CI) of CEH and cDDP in Eca109 
and Eca109/CDDP was below 1. All data are presented as the mean ± SD of three independent experiments. **, P < 0.01; ***, P < 0.001 
compared to the control.
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G2/M phase when ESCC cells were treated with drugs for 
48 hours. With the increase in CEH concentration, the cycle 
arrest showed dose-dependent. To explore the mechanism of 
cell cycle arrest, we investigated the cell cycle-related protein 
including p53 and p21. As shown in Figure 2C and 2D, CEH 
combined cDDP treatment with the different concentrations 
caused p53 and p21 expression increasing ESCC cell lines. 
Moreover, compared with untreated controls and the cDDP-
treated cells, CEH and cDDP combined treatment inhibited 
cell proliferation in a dose-dependent manner in Eca109 and 
Eca109/CDDP (Figure 2E and 2F). These results illustrated 
that CEH, combined with cDDP, can induce ESCC cell cycle 
arrest and inhibit proliferation.

CEH combined with cDDP increased apoptosis 
in Eca109 and Eca109/CDDP

Next, we examined the effect of CEH and its 
combination therapy on ESCC cell which were treated with 
cDDP alone or combination with CEH for 48 h and stained 
with Annexin V and PI. As shown in Figure 3A and 3C, 
treatment of CEH dose-dependent increased cDDP-induced 
cell apoptosis in ESCC cells. Then, we investigated the 
effects of CEH on apoptosis-related proteins. the results 
showed that CEH significantly increased PARP cleavage, 
but suppressed anti-apoptotic Bcl-2 expression, consistent 
with the observed upregulation of p53. However, Bax 
expression was not altered. (Figure 3E and 3G).

It is widely known that activation of the cytochrome 
c (Cyto-c)/caspase-9 pathway is one of the main signals 
transduction mediating apoptosis. Cyto-c, a necessary 
cofactor for apoptotic protease activating factor 1 
(Apaf- 1) oligomerization and the subsequent activation 
of caspase-9 and -3 [26]. Therefore, we used western 
blot to detect the key protein of this signaling pathway. 
As shown in the Figure 3I and 3J, CEH combined with 
cDDP enhance the protein levels of the cleaved caspase-3 
and -9 in both Eca109 and Eca109/CDDP cell lines in 
a dose-dependent manner. Moreover, the combination 
therapy significantly upregulated Apaf-1 as well as Cyto-c 
expressions. Taken together, our results indicate that 
CEH combined with cDDP could induce mitochondrial 
mediated apoptosis and caspase activation in Eca-109 and 
Eca109/CDDP cells.

CEH dose-dependent reduction of P-gp mediated 
drug resistance in esophageal cancer cell and 
resistant cell line

It is well known that the expression of P-gp reduce 
intracellular drug concentration [27]. In order to verify the 
drug resistance mechanism of Eca109/CDDP, qRT-PCR 
and western blot analysis were used to quantify the MDR1 
mRNA and P-gp protein, respectively (Figure 4A-4E). 
Compared with its parental cell line Eca109, MDR1 gene 
expression was significantly higher in the resistant cell 

line Eca109/CDDP. When both cell lines were treated with 
cDDP, the MDR1 mRNA was significantly upregulated. 
These results suggested that the mechanism that confers 
cDDP-resistance to Eca109 cells involved upregulation 
of MDR1 expression, leading to increased drug pumping 
and reducing the intracellular drug accumulation. With the 
increase in CEH concentration, MDR1 expression levels 
were significantly reduced, and downregulation of P-gp 
also contributed to CEH-induced apoptosis (Figure 4B-
4E), indicating that CEH could be used as MDR-mediated 
ESCC cisplatin resistance reversal agent.

Many experiments evidences shown that JNK, a 
member of the MAPK family, was closely related to the 
occurrence of MDR [28-31]. To explore the mechanisms 
of anti-tumor and resistance reversal activity of CEH, we 
determined the effects of CEH on the activities of c-Jun/
JNK pathways. As shown in Figure 4F and 4G, CEH 
increase the expression and activation of c-Jun and JNK 
with a concentration dependent manner.

Mechanistically, CEH inhibited ESCC cell growth, 
induced apoptosis through repressing phosphorylation of 
c-Jun and reduced P-gp expression by the activation of 
c-Jun/JNK signaling cascades, which led to the reversal 
of P-gp-mediated cDDP resistance and promotion of 
mitochondrial-mediated apoptosis.

JNK inhibitor SP600125 and p53 inhibitor 
PFTα can partially reversed apoptosis and cell 
cycle arrest due to cDDP and CEH combined 
treatment in Eca109 and Eca109/CDDP cells

We have previously demonstrated that CEH up-
regulated the expression of P53 and JNK, Then, we used 
JNK inhibitor SP600125 or p53 inhibitor PFTα combined 
with CEH to determine the effects of CEH on the cDDP-
induced expression of P-gp in Eca109 and Eca109/CDDP 
cells. As shown in Figure 5A-5D, tretment of SP600125 
decreased CEH-induced cell apoptosis. Similarly, 
tretment of PFTα significantly decreased CEH-induced 
cell apoptosis (Figure 5E-5J). Furthermore, we found 
that the tretment of SP600125 sifnificantly reversed the 
P-gp expression inhibited by CEH (Figure 5K and 5L). In 
addition, treatment of PFTα significantly increased anti-
apoptotic Bcl-2 expression, but decreased PARP cleavage 
(Figure 5M and 5N). Together, these findings suggest 
that CEH increases cell apoptosis and decareses the 
expressions of MDR1 mRNA and P-gp might be mediated 
by the activation of JNK and p53 pathways.

CEH combined with cDDP inhibited ESCC 
xenograft tumor growth

Next we inspected the effect of CEH on the growth 
of xenograft ESCC tumors. The experimental setup, 
including ESCC cell inoculation and drug treatment, 
is shown in Figure 6A. In the control group xenograft 
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Figure 2: Induction of cell cycle arrest and inhibition of cell proliferation by cisplatin (cDDP) alone and combined with 
cepharanthine hydrochloride (CEH) in esophageal cancer cell lines. (A and B) Cell cycle analysis. Percentages of Eca109 and 
Eca109/CDDP cells in the G1, S, and G2/M phases are presented respectively. Effects of cDDP and combined with various concentrations 
of CEH medication on cell cycle distribution. Eca109 (A) and Eca109/CDDP (B) cells were treated with 0, 1, 5, 10 and 20 μM CEH 
combined with cDDP for 48 h, and cell cycle distribution was measured by flow cytometry after PI staining. (C and D) p21 and p53 protein 
levels were determined by western blot analyses. GAPDH was used as the loading control. (E and F) Cells were treated with 0, 1, 5, 10 
and 20 μM CEH combined with cDDP for 48 h; representative images of Eca109 (E) and Eca109/CDDP (F) clone formation are shown. 
***, P < 0.001 compared with the control.
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Figure 3: Induction of cell apoptosis by cepharanthine hydrochloride (CEH) in esophageal cancer cell lines. (A-D) 
Induction of apoptosis by cisplatin (cDDP) and cDDP combined with various concentrations of CEH in Eca109 (A, B) and Eca109/CDDP 
(C, D) cells evaluated by Annexin-V-FITC/PI staining. (E and F) Western blot analysis of Bcl-2 family proteins and PARP. Eca109 cells 
were treated with cDDP and combined with various concentrations of CEH medication for 48 h. GAPDH was used as the loading control. 
(G and H) Western blot analysis of Bcl-2 family proteins and PARP. Eca109/CDDP cells were treated with cDDP and cDDP combined 
with various concentrations of CEH medication for 48 h. GAPDH was used as the loading control. Data are representative of three separate 
experiments. (I and J) Expression of caspases-3, caspases-9, Apaf1, and cytochrome c released from mitochondria was detected by Western 
blot analysis after treatment of Eca109 cells (I) and Eca109/CDDP (J) cells with cDDP and cDDP combined with various concentrations 
of CEH for 48 h. GAPDH was used as the loading control. Data are representative of three independent experiments. **, P < 0.01; ***, P < 
0.001; versus control.
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tumors grew faster than the group which treated with 
CEH, the tumor volume was significantly higher than 
CEH-treated group (Figure 6C, 6E, and 6G). However, 
the group treated with CEH did not affect body weight of 
nude mice compared with the control group, these results 
demonstrate that CEH does not affect the health life of 
the mice (Figure 6B). Compared with CEH and cDDP 

monotherapy groups, the combined therapy with CEH 
and cDDP activated the c-Jun/JNK signaling pathway 
in tumor-bearing mice and inhibited expression of P-gp 
(Figure 6I-6P). Our data suggested that CEH activated 
c-Jun/JNK pathway in vivo, and combined with CEH can 
significantly inhibit tumor growth compared with cDDP 
group (Figure 6H). Taken together, these data indicated 

Figure 4: Cepharanthine hydrochloride (CEH) dose-dependent reduction of p-gp mediated drug resistance in 
esophageal cancer cell lines. (A) Relative expression of MDR1 mRNA was examined by qRT-PCR in Eca109 cells and Eca109/CDDP 
cells. Expression of the housekeeping gene GAPDH was used as reference. (B and C) Relative expression of MDR1 mRNA was examined 
by qRT-PCR in Eca109 cells and Eca109/CDDP cells in the presence or absence of CEH under cisplatin (cDDP) conditions. Expression 
of the housekeeping gene GAPDH was used as reference. (D and E) Western blotting detection of P-gp protein expression in Eca109 
and Eca109/CDDP cells treated with cDDP and cDDP combined with various concentrations of CEH for 48 h. GAPDH was used as the 
internal loading control. (F and G) Eca109 and Eca109/CDDP cells were treated for 48 h with cDDP and cDDP combined with various 
concentrations of CEH, western blotting detection of JNK, p-JNK, Jun and p-c-Jun proteins. GAPDH was used as an internal control. Data 
are presented as mean ± SD of three independent experiments. ***, P < 0.01 versus control.
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that CEH could also effectively increase the anti-tumor 
effect of cDDP in vivo.

This work clearly revealed that the combination 
therapy with cDDP and CEH had synergistic cytotoxic 
on ESCC, and the combination treatment stimulated 

apoptosis through downregulation of anti-apoptotic Bcl-2, 
upregulation of apoptotic Apaf-1, P21 and p53 expression, 
activation of the c-Jun/JNK signaling pathway, inhibition 
of P-gp expression, and reduction of the pumping of cDDP 
from ESCC cells to increase the accumulation of cDDP in 

Figure 5: JNK inhibitor SP600125 and p53 inhibitor PFTα can partially reverse the apoptosis and cycle arrest induced 
by combined cisplatin (cDDP) and cepharanthine hydrochloride (CEH) treatment in Eca109 and Eca109/CDDP cells. 
(A-D) Cells were treated with 5 μM CEH and 5 μM SP600125 alone or in combination, in addition to cDDP for 48 h; induction of apoptosis 
in Eca109 cells (A, B) and Eca109/CDDP (C, D) evaluated by Annexin-V-FITC/PI staining. (E-H) Cells were treated with 5 μM CEH and 
0.5 μM PFTα alone or in combination, in addition to cDDP for 48 h; induction of apoptosis in Eca109 (E, F) and Eca109/CDDP (G, H) 
cells evaluated by Annexin-V-FITC/PI staining. (I and J) Cells were treated with 5 μM CEH, 5 μM SP600125 (I) or 0.5 μM PFTα (J) alone 
or in combination, in addition to cDDP for 48 h; representative images of Eca109 (upper panel) and Eca109/CDDP (lower panel) clone 
formation are shown. (K-N) Western blotting detection of PARP, P-gp, phosphorylated JNK (p-JNK), phosphorylated c-Jun (p-c-Jun) and 
Bcl-2 protein expression in Eca109 (K, M) and Eca109/CDDP (L, N) cells treated with 5 μM CEH, 5 μM SP600125 or 0.5 μM PFTα alone 
or in combination, in addition to cDDP for 48 h. β-Actin was used as an internal control. Data represent the mean ± SD of at least three 
independent experiments. Data are presented as mean ± SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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tumor cells and increase tumor cells sensitivity to cDDP. 
Finally, CEH led to the reversal of MDR in ESCC via the 
activation of c-Jun/JNK signaling pathway (Figure 7), 
suggesting that CEH may be a novel drug for the treatment 
of clinical cancer chemotherapy in the future.

DISCUSSION

In China, from 2003 to 2007, esophageal cancer 
was ranked the sixth most important cause of new cancer 
cases and the fourth primary cause of cancer-related 
deaths [32]. Although the treatment strategy for ESCC 
has been made, the prognosis going is still very slow [33]. 
The NCCN guidelines recommend combinational drugs 
to treat ESCC, such as cDDP combined with Dox and 
5-Fu or 5-Fu alone. However, the most important problem 
related to ESCC therapy is the intrinsic resistance to 
chemotherapeutics [34]. As anticancer drugs are widely 
used, MDR is increasingly common with ESCC patients, 
which affects their treatment directly. Hence, profound 
discovery and understanding of its mode of action may 
lead to new therapy to overcome cisplatin-resistance and 
improve overall survival of patients with ESCC [35]. 
While research has made advances in the field of MDR, it 
remains a huge problem for clinical treatment [25] as more 
than 90% of all cancer deaths (more than 11 million by 
2020) are considered to be associated with MDR [36, 37].

The mechanism of resistance to chemotherapy is 
very complex, one of the main mechanisms is dependent 
on P-gp-mediated increase efflux of drugs [38]. P-gp 
belongs to the ABC superfamily transporter which 
is the main drug efflux transporters associated with 
chemotherapy failure in cancer [39-42]. Much attention 
has been paid to the molecular mechanisms regulating 
the expression of these transporters as a viable approach 
to identify novel drug targets in circumventing MDR 
clinically. In our study, we constructed an in vitro MDR 
model and named it Eca109 / CDDP which had 12-fold 
more resistant to cDDP than the parental Eca109 cell 
line did. In this cell line the MDR1 gene expression was 
significantly higher, therefore, we use it to study the role 
of CEH in MDR.

Small molecules extracted from Chinese herbal 
medicine were reported in literature to be able to reverse 
the MDR of malignant tumors [43-51]. CEP, a naturally 
active alkaloid compound, produces from Stephania 
cepharantha Hayata. Some reports have provided 
evidence that CEP has therapeutic potential for many 
diseases, and the side effects of CEP have rarely been 
reported [52-63]. In many biological activities of CEP, 
more attention has been paid to the increase of the 
sensitivity of tumor cells to chemotherapeutic drugs [64-
68]. These findings suggested the potential of CEP to 
be a novel adjunct to chemotherapy. This sensitization 
mechanism might be that CEP restore the sensitivity 
of tumor cells to chemotherapeutic drugs by affecting 

the function of the cell membrane and thus lead to the 
accumulation of drugs in cancer cells [69, 70].

CEH (Figure 1A), manufactured by salification 
from CEP, was used in this study. Although CEH has been 
used as an antitumor agent and MDR-reversing agent in 
different types of cancers and one of the its identified 
MDR mechanisms include inhibition of P-gp expression 
and function, what its antitumor effect is and whether the 
MDR can be reversed in ESCC remains largely unknown. 
Therefore, we examined the potential activity of CEH in 
anti-tumor and reversal of drug resistance in this study. 
We found that CEH did not affect proliferation of normal 
cells up to a concentration of 6.25 μM; the IC50 value 
was 19.52 μM. Furthermore, we analyzed the combination 
of CEH and CDDP in synergies (CI < 1) by CalcuSyn 
software [71, 72], finding that the combination of CEH 
and CDDP met the sensitized and attenuated principle. 
Han et al. reported that CEH had a direct cytotoxic effect 
on human chronic myeloid leukemia cell line K562 and 
K562/ADR, a Dox-resistant cell line with stable MDR 
phenotype induced by Dox [25]. Similarly, we found that 
CEH could inhibit the growth of esophageal squamous cell 
lines Eca109 and Eca109/CDDP, and the antineoplastic 
activity showed concentration dependence.

Recent evidence indicates that JNK and NF-κB often 
regulate of MDR1 expression [30, 73-74]. JNK regulates 
a series of cellular biological processes, including the 
expression of MDR1 gene, through c-Jun transmitted 
signals [30, 75]. Previous studies have reported that CEH 
on promote c-Jun expression and phosphorylation [76]. 
However, little was known how CEH reversal of MDR 
by regulating P-gp expression through the JNK/c-Jun 
signaling pathway, therefore, we focused JNK/c-Jun as 
a target to investigate the mechanism of CEH reversing 
MDR in ESCC cells.

To determine whether CEH reverse the expression 
of P-gp by activating JNK and reverse MDR in Eca109 
and Eca109/CDDP cell line, we use JNK specific inhibitor 
SP600125 [77] to inhibit the activation of JNK Our results 
showed that CEH-mediated upregulation of MDR1 mRNA 
and P-gp was significantly reduced when using inhibitors 
of JNK. It demonstrated that CEH reversed MDR by 
activating the JNK signaling pathway of which induced 
MDR1 mRNA and P-gp expression. Our results are 
consistent with previous reports by Sui et al. and Bark et 
al. [30, 78]. In addition, there are other signaling pathways 
involved in mediation of MDR1/P-gp in Eca109/CDDP 
cells. Therefore, we next investigated other signaling 
molecules implicated in the regulation of CEH-mediated 
reversal of MDR.

Inactivation of the p53 tumor suppressor gene 
occurs in over half of all human tumors, implying that 
loss of this gene represents a fundamentally important 
step in the pathogenesis of cancer [79]. p53 might cause 
cell cycle arrest through the transactivation of p21, and 
this pathway might inhibit cell growth and activate the 
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apoptotic pathway by cytochrome c release and caspase 
activation [80-82]. Our data demonstrated that CEH 
induced a dose-dependent upregulation of p53 and the 
downstream p21, explaining the mechanism by which 
CEH can caused cell cycle arrest, inhibited proliferation, 
and induced apoptosis. In addition, p53 may regulate the 

sensitivity of chemotherapeutic agents as a clinical study 
indicated that p53 mutation may contribute to MDR 
[83]. Overexpression of p53 increases chemo-sensitivity 
in drug-resistant cells by upregulating the expression of 
pro-apoptotic protein p21 and Bax in osteosarcoma [84]. 
Upregulation of p53 specifically downregulates P-gp 

Figure 6: Cepharanthine hydrochloride (CEH) combined with cisplatin (cDDP) inhibits esophageal squamous cell 
carcinoma xenograft tumor growth. (A) Time line of esophageal squamous cell carcinoma cell inoculation and drug treatment. (B) 
Time courses of animal weight. (C) Time courses of Eca109 cells xenograft tumor growth. (D) Bar graphs represent the mean weight of the 
Eca109 cells xenograft tumor after various treatments. (E) Time courses of Eca109/CDDP cells xenograft tumor growth were measured in 
each group at the indicated time point of various treatments. (F) Bar graphs represent the mean weight of the Eca109/CDDP xenograft tumor 
after various treatments. (G) Visual comparison of the dissected tumor tissues. Representative pictures of tumor growth in mice treated with 
vehicle control and the various treatments are shown. (H) Effects of CEH combined with cDDP on tumor inhibition rate of tumor mice. 
(I and M) Images are the representative H&E stained esophageal squamous cell carcinoma xenografts, originating from Eca109 cells (I) 
and Eca109/CDDP cells (M). (J and N). Expression of c-Jun in tumor tissues, originating from Eca109 cells (J) and Eca109/CDDP cells 
(N), was assessed by immunostaining, scale bars: 25 μm. (K and O) Expression of phosphorylated c-Jun in tumor tissues, originating from 
Eca109 cells (K) and Eca109/CDDP cells (O), was assessed by immunostaining, scale bars: 25 μm. (L and P) Expression of P-gp in tumor 
tissues, originating from Eca109 cells (L) and Eca109/CDDP cells (P), was assessed by immunofluorescence, scale bars: 25 μm. Data are 
presented as mean ± SD. **, P < 0.01; ***, P < 0.001. N = 5 in each group.
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expression [85]. Our findings implied a role of CEH in 
regulating p53 and determining drug resistance of ESCC. 
It is clearly demonstrated that one of the mechanisms of 
CEH downregulation of P-gp expression is upregulation 
of p53, and this may result in better inhibition of ESCC 
growth.

Apoptosis has been linked to the formation of 
hetero- and homo-dimers generated via Bcl-2-Bax 
interactions, and it has been reported that Bcl-2 lead to 
cell resistance to the cytotoxic effects of a number of 
anticancer agents including cDDP [86]. So, we examined 
the Bcl-2-Bax signaling pathway and confirmed that CEH 
combined with cDDP could significantly downregulate 
the expression of Bcl-2 in Eca109 and Eca109/CDDP 
but did not affect Bax. This result demonstrates that CEH 
reversed MDR in ESCC by modulating complex signal 
transduction.

In the ESCC xenograft models, we also discovered 
that CEH increased the sensitivity of cDDP in ESCC. CEH 
or cDDP alone could play a role in inhibiting the growth 
of esophageal cancer in vivo, however, the treatment of 

combined CEH and cDDP significantly enhanced the 
inhibition of growth compared to the cDDP monotherapy 
group. The anti-tumor effect was dependent on the 
concentration of CEH and 10 mg/kg CEH combined with 
cDDP had the strongest inhibitory effect on ESCC. Similar 
to the in vitro results, CEH reversed cDDP resistance in 
ESCC via activation of c-Jun/JNK signaling pathway 
in vivo.

In summary, our study demonstrated that CEH could 
effectively reverse the MDR-mediated cisplatin resistance 
of ESCC cells in vitro and vivo, and was able to induce 
significant apoptosis in human ESCC cell lines Eca109 
and its resistant strain Eca109/CDDP, inhibited ESCC 
cell lines proliferation and induced G2/M phase cell cycle 
arrest. This study demonstrated the central importance 
of CEH in cDDP resistance reversal in ESCC and the 
collective findings showed the mechanistic link between 
CEH and JNK/p53, indicating that CEH is a potential 
resistant therapeutic medicine for ESCC. It offers evidence 
for further research and development of this drug for 
cancer chemotherapy.

Figure 7: A simplified model of the mechanisms underlying antitumor effects of cepharanthine hydrochloride (CEH) combined 
with cisplatin in esophageal squamous cell carcinoma. (A) CEH result in the reversal of MDR in ESCC through the activation of c-Jun/JNK 
and P53 signaling pathways. (B) Inhibitors of JNK and p53 can somewhat restore the reversion of MDR mediated by CEH.
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MATERIALS AND METHODS

Cell lines and cell culture

Eca109 cells were purchased from Shanghai 
Institutes for Biological Sciences, Chinese Academy of 
Sciences (Shanghai, China). Eca109/CDDP cells were 
derived from Eca109 (Patent No. CN201511007006.2). 
The two cell lines were cultured in RPMI-1640 culture 
medium with 10% fetal bovine serum (FBS) and 100 
U/ml penicillin/streptomycin at 37 °C in a humidified 
atmosphere of 5% CO2. To maintain the resistance, 1 μg/
ml of cDDP was added to Eca109/CDDP. When the cells 
reached confluency, they were harvested and plated for 
either subsequent passages or drug treatments. The trypan 
blue exclusion test was used throughout the experiments 
to check cell viability.

Cell viability assay

Cell viability was assessed with the MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) assay. Exponentially growing cells were 
plated in 96-well culture plates (~4,000/well in 100 
μl medium), cultured overnight, and incubated with a 
series of concentrations of CEH (0-100 μM) or cDDP 
(0-50 μg/ml) for 48 h. After adding 10 μl MTT solution 
per well, the plates were incubated at 37°C for 4 h, then 
the medium was removed, formazan crystals solubilized 
in 100 μl DMSO (dimethylsulfoxide) per well, and 
the absorbance (A) was measured at a wavelength of 
570 nm on a microplate reader (Elx800, Biotek). The 
inhibition ratio was calculated as follows: (Acontrol - 
Atreated)/Acontrol × 100%, where Atreated and Acontrol are the 
absorbance of the treated and control cells after 48-h 
incubation, respectively.

Calculation of the combination effect index

We determined the inhibitory effects of CEH and 
cDDP using the MTT assay. We used the combination 
index (CI) described by Chou and Talalay [71, 72] for 
analysis and performed it by applying CalcuSyn software. 
CI < 1 indicates synergism; CI = 1 indicates summation; 
CI > 1 indicates antagonism.

Cell cycle analysis

Cells were exposed to CEH or cDDP alone or in 
combination for 48 h, harvested in cold phosphate-
buffered saline, fixed in 70% ethanol, stored overnight 
at 4 °C, and resuspended in 50 μg/ml propidium iodide 
(PI) staining reagent containing 100 μg/ml RNase and 
incubated for 30 min in the darkness. Cells were analyzed 
by flow cytometry (FACSCalubur, BD).

Colony formation assay

Cells were trypsinized to single cell suspensions 
and seeded in 6-well plates at a density of 40,000/well. 
After 168 hours of culture, the colonies were stained 
with Giemsa solution and the clone formation ratio was 
counted.

Annexin V-FITC/PI analysis

Cells were exposed to CEH or cDDP alone or in 
combination for 48 h, harvested in cold phosphate-buffered 
saline, resuspended in 500 μl incubation buffer containing 
Annexin V-FITC and PI, incubated in the dark for 15 min, 
and analyzed by flow cytometry (FACSCalubur, BD).

Western blotting

Cell were treated with CEH and cDDP for 48 h, 
harvested, washed twice in ice-cold PBS, and lysed 
in sodium dodecyl sulfate (SDS) lysis buffer (SDS: 
phenylmethylsulfonyl fluoride = 50:1) at 100 °C for 20 
min. Lysates were centrifuged (12,000 rpm) at 4 °C for 
15 min and the supernatant was collected. Equal amount 
of lysate (20-30 μg) was denatured in 5× SDS sample 
buffer, resolved with 12% SDS-polyacrylamide gel 
electrophoresis, transferred to polyvinylidene difluoride 
membranes (Millipore), blocked with 5% skimmed milk 
in Tris-buffered saline containing 0.1% Tween-20 (TBST) 
at room temperature for 1 h, and probed with primary 
antibody (1:1,000) overnight at 4 °C. The membranes 
were incubated with secondary antibody (1:5,000) for 1 h 
at room temperature. Protein bands were visualized using 
an enhanced chemiluminescence kit (Beyotime, Shanghai, 
China) and imaged by autoradiography. Immunoblot was 
performed for p21, p53, Caspase-3, Caspase-9, Apaf-1, 
Cytochrome c (Cyto-c), MDR1/ABCB1 (P-gp), c-Jun, 
p-c-Jun, c-Jun N-terminal kinase (JNK), phospho-JNK 
(p-JNK), poly ADP ribose polymerase (PARP), Bcl-2, 
Bax, and for GAPDH as a loading control.

Quantitative real-time RT-PCR (qRT-PCR)

Total RNA was extracted using Trizol reagent 
(Tiangen, Beijing, China). All RNA samples were 
measured by spectrophotometry and were reverse-
transcribed into cDNA by using PrimerScript Master 
mix (Takara Biotechnology, China) according to the 
manufacturer’s protocol. The mRNA level was evaluated 
by qRT-PCR with SsoAdvanced Universal SYBR Green 
Supermix (Bio-Rad, Hercules, CA, USA) and was 
analyzed with a C1000 Thermal Cycler (CFX96 Real-
Time System, Bio-Rad). Each sample was analyzed in 
triplicate. Relative mRNA levels were calculated using the 
comparative threshold cycle (CT) with the analyzed gene 
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expression levels normalized by those of GAPDH. Forty 
cycles (95 °C for 3 min, 95 °C for 5 s, 59 °C for 5 s) were 
performed on the Light Cycler in a 10 μl reaction volume, 
followed by the generation of a melting curve. The relative 
changes in gene expression were calculated with the 2-ΔΔCt 
method, where ΔΔCt = ΔCt (drug treated) - ΔCt (control) 
for RNA samples.

Gene-specific primer pairs used in this study  
were as follows: MDR1 Forward: 5’-CTGCTTGATGG 
CAAAGAAATAAAG-3’, MDR1 Reverse: 5’-GGCTGTT 
GTCTCCATAGGCAAT-3’; GAPDH Forward: 5’-GAGTC 
AACGGATTTGGTCGT-3’, GAPDH Reverse: 5’-GAC 
AAGCTTCCCGTTCTCAG-3’.

Xenograft tumor assay in nude mice

BALB/c-nu/nu nude female mice (4–6 weeks) 
were purchased from the Institute of Laboratory Animal 
Sciences, Chinese Academy of Medical Sciences in 
Beijing, China; and housed in a specific pathogen-free 
(SPF) environment. Eca109 (3 × 106) and Eca109/CDDP 
cells were injected subcutaneously (s.c.) into the flanks 
of mice. When tumors grew to ~ 6 mm in diameter, mice 
were grouped into eight groups (five mice per group). 
The treatment protocol with various concentrations 
of CEH or cDDP in vivo is shown in Figure 6A. The 
eight groups were treated with vehicle control or CEH 
through intra-peritoneal (i.p.) injection every day, cDDP 
was administered once every 5 days. The volume 
of administration was 10 μl/g. Tumor volumes were 
measured at the start of the treatment and every 2 days 
during the course of the therapy. The tumor length (L) 
and width (W) were measured, and the tumor volume (V) 
was calculated as follows: V = ½ × L × W2. Tumors were 
resected on the second day following the last injection, and 
weighed. The percentafe of tumor growth inhibition was 
calculated by comparing the tumor weight average values 
of the treated groups with those of the tumor-bearing 
control group. Tumor growth in saline treated control 
animals was taken to be at 100%. Tumors tissues from 
every mouse were homogenized and lysed for western 
blot analysis. The remaining tissues were embedded in 
paraffin, sectioned at 3 μm, and stained with hematoxylin 
and eosin (H&E). All experiments were performed in 
accordance with national ethical guidelines and with the 
approval from the Institutional Animal Care and Use 
Committee of Jinan University.

H&E-staining, immunohistochemistry (IHC) & 
immunofluorescence (IF)

For H&E, IHC, and IF analysis of the ESCC 
xenograft tumors, tissue sections were cut at 3 μm. 
Sections were deparaffinized using xylene and then 
rehydrated with a graded alcohol series and finally 
distilled water. After being treated with 3% H2O2 for 

15 min, the slides were treated for antigen retrieval in 
121 °C for 5 min, and then slowly cooled down to room 
temperature. The slides were put into the hematoxylin 
solution for several minutes. After being separated in 
acid water and ammonia water, slides were dehydrated 
for 10 minutes with 70% and 90% alcohol and stained 
with eosin, the stained sections were dehydrated in 
pure alcohol and cleared with xylene. After a 30 min 
incubation in 10% goat serum, the sections were 
incubated overnight with proper primary antibodies 
(1:1,000 dilution). After being washed three times with 
PBS, the sections were incubated with HRP-conjugated 
secondary antibodies (1:500 dilution), and the subsequent 
detection was performed using the standard substrate 
detection of HRP. 3,3′-diaminobenzidine (DAB) 
development and hematoxylin and eosin staining were 
performed according to standard protocols. The slides 
were observed under a fluorescence microscope (Eclipse 
Ti, Nikon) and photographed.

Statistical analysis

Data are represented as means ± SD from triplicate 
samples of at least three independent experiments. 
Differences between the mean values were analyzed 
by two-sample Student’s t-test and one-way analysis 
of variance; p-values below 0.05 were considered to be 
statistically significant.
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