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ABSTRACT

Genomic rearrangements involving transcription factors (TFs) can form fusion
proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional
domain (FD) retention is a critical factor in the activity of transcription factor fusion
genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome
(e.g. expression changes) in a pan-cancer study has not yet been completed. Here,
we examined the FD retention status in 386 TFFGs across 13 major cancer types
and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential
biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index
(MAII) and built a prioritized TFFG network using MAII scores and the observed
frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA,
RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores
showed 50 differentially expressed target genes (DETGSs) in fusion-positive versus
fusion-negative cancer samples. DETG analysis revealed that they were involved
in tumorigenesis-related processes in each cancer type. PLAU, which encodes
plasminogen activator urokinase and serves as a biomarker for tumor invasion, was
found to be consistently activated in the samples with the highest MAII scores. Among
the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were
expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed
an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-
RARA positive samples. In summary, this study revealed several TFFGs and their
potential target genes, and provided insights into the clinical implications of TFFGs.

INTRODUCTION

Chromosomal aberrations leading to gene fusions
occur frequently in cancer cells. Gene fusions play critical
roles in tumorigenesis, can aid in cancer diagnosis, and
serve as therapeutic targets. The recurrence of a fusion
gene and retention of important functional domains (FDs)
are important factors in assessing whether it plays an
oncogenic role and has clinical relevance. Driver fusion
genes typically retain functional domains (e.g., kinase

domains or DNA-binding domains) [1, 2]. In our previous
study [3], we performed a comprehensive analysis of
kinase fusion genes that retain kinase domains and
discovered features commonly present in recurrent kinase
fusion genes. In this study, we performed a systematic
annotation of transcription factor fusion genes (TFFGs),
aiming to identify driver transcription factors (TFs) and
fusion genes (FGs) across 13 major cancer types. TFFGs
may enhance the activity or result in loss of function of a
TF and its target genes. TFFGs are also known for their
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dominant-negative effects, supported by the observation
of a higher frequency of DNA binding domains than
transcriptional activation domains [4].

One classical example of a TFFG is the fusion
between the promyelocytic leukemia (PML) gene and the
transcription factor, retinoic acid receptor alpha (RARA),
which is seen in 95% of acute promyelocytic leukemia
(APL) patients. The PML-RARA fusion protein retains
domains of the RARA protein that allows binding to retinoic
acid response elements (RARE) and dimerization with
the retinoid X receptor protein (RXRA) [5]. This causes
reduced transcriptional activation and inhibition of myeloid
differentiation leading to APL [6]. Recently, the National
Comprehensive Cancer Network guidelines specified
arsenic trioxide and all-trans retinoic acid (ATRA) as front-
line treatments for APL [7]. Pharmaceutical companies
have developed many kinase inhibitors targeting kinase
fusion genes; however, few drugs target TFFGs, despite
their pivotal role in enhancing or reducing the functionality
of a TF and its target genes. Therefore, a comprehensive
analysis of TFFGs in cancer will likely provide important
insights into the mechanism of tumorigenesis of TFFGs and
uncover new candidate therapeutic targets.

In this study, we performed a pan-cancer annotation
of 386 TFFGs including 232 TFs. Investigating FD
retention led to the identification of 148 TFFGs including
109 TFs. To prioritize the potential clinical relevance
of these TFs, we introduced a new scoring system, a
Major Active Isofusion Index (MAII) (see Materials and
Methods). We also examined binding-related FD retention
and identified 83 TFFGs that retained binding related
FDs, including 67 TFs. We created a prioritized TFFG
network using both of the MAII scores and the observed
frequency. To assess the influence of TFFGs on their
target genes, we examined the differentially expressed
target genes (DETGs) of the 12 TFFGs with FD retention,
which occurred in at least two samples of the same cancer
type. In our comparison of the expression levels of target
genes in fusion-positive with fusion-negative samples in
each cancer type, we found four TFFGs (PML-RARA,
RUNXI-RUNXITI, TMPRSS2-ERG, and SFPQ-TFE3)
that had 50 DETGs. Interestingly, these four TFFGs had
the highest MAII scores. Furthermore, these DETGs
were involved in the biological processes relevant
to tumorigenesis in each cancer type. Interestingly, a
DETG that encodes the plasminogen activator, urokinase
(PLAU), a known biomarker for tumor invasion, was
consistently upregulated in samples positive for the four
TFFGs (PML-RARA, RUNXI-RUNXITI, TMPRSS2-
ERG, and SFPQ-TFE3). Our further analysis indicated
that 21 of the 50 DETGs were candidate drug targets.
In addition, 14 of the 21 candidate targets occurred in
samples with the RUNXI-RUNXIT]I fusion. Finally, we
constructed an AML-specific DETG network based on
gene expression changes in samples with PML-RARA or
RUNXI-RUNXITI fusions.

RESULTS

Transcription factor fusion genes (TFFGs)
retaining functional domains

The concept of FD (i.e., fusion domain) retention
in TFFGs is shown in Figure 1A. When a TFFG retains
its functional domain (e.g., DNA-binding domain), the
resulting fusion protein likely binds to the promoter
region and the distal-regulatory region of its target genes,
and regulates downstream gene expression. In contrast,
if a TFFG does not retain the DNA binding domain, it
would not bind to its target genes, leading to the partial
or complete loss of gene expression. Figure 2A shows
our pipeline for identifying driver TFs and TFFGs. From
~8,000 fusion genes available in the TCGA Fusion Gene
Data Portal [8], we selected 2,782 in-frame fusion genes.
By overlapping these fusion genes with the TFs that
had target gene information from the TRANSFAC [9]
and TRRUST [10] databases, we obtained 386 fusion
genes (FGs) involving 232 TFs. We next investigated
the retention of FDs by translating the fusion transcripts
into amino acid sequences and searching for the presence
of 34 protein features from UniProt (see Materials and
Methods). This FD retention analysis resulted in 81,
59, and 10 TFFGs that had 52, 51, and 19 TFs at the
5’-position (5’-TFFGs), the 3’-position (3’-TFFGs), or
both 5’- and 3’-positions (5°-3’-TFFGs), respectively
(Supplementary Table 1). To investigate which protein
domains were more frequently retained in TFFGs, we
compared the retention status of all UniProt’s protein
features in the TFFGs, with those in all other FGs (non-
TFFGs). As shown in Figure 3, TFFGs significantly
retained 14 out of 34 protein features at a relatively higher
frequency than non-TFFGs; these domains are: ‘site’,
‘compositional bias’, ‘cross-link’, ‘zinc finger’, ‘region’,
‘DNA binding’, ‘mutagenesis’, ‘modified residue’,
‘motif”, ‘helix’, ‘turn’, ‘initiator methionine’, ‘metal
binding’, and ‘beta strand’. This result is consistent with
previous reports that TF fusion proteins often contain
several different protein domains such as a DNA-binding
domains, domains that act in homo or hetero-dimerization,
and domains that interact with chromatin remodeling
components such as co-repressor molecules [11]. Among
these FD-retained TFFGs, we focused on the domains with
TF activity such as ‘calcium binding’, ‘DNA binding’,
‘domain’, ‘metal binding’, ‘motif”, ‘nucleotide binding’,
and ‘zinc finger’. After applying this filter, we identified
37, 36, and 10 TFFGs including 24, 30, and 19 TFs for
5’-TFFGs, 3’-TFFGs, and 5°- 3’-TFFGs, respectively.
Only 12 TFFGs retained their FDs in at least two samples
(Figure 2B). Of those, TMPRSS2-ERG was the most
frequent (21 samples retained TF domains among 59
TMPRSS2-ERG positive samples in PRAD). Three TFFGs
had a transcription factor as both (the 5’ and 3”) partners.
We annotated these as 5°-3’-TFFGs. They are PML-RARA
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(15 samples in AML), RUNXI-RUNXIT]I (seven samples
in AML), and SFPQ-TFE3 (three samples in KIRC).

Identification of “effective” TFs in FGs by
Major Active Isofusion Index (MAII) score and
network analysis

We hypothesized those TFs that are involved in
fusion genes in multiple cancer types, have breakpoints
in multiple locations, or have multiple partner genes,
would have a critical role in tumorigenesis. Therefore, we
used a method we previously developed [12] to quantify
the recurrence of these fusion genes. We utilized three
characteristics of TFFGs: (1) the number of partner genes
of each TF, (2) the number of break points in each TF,
(3) and the number of cancer types associated with each
TF fusion. Using these factors, we defined a Degree-of-
Frequency (DoF) score (Table 1). By applying DoF scores
to TFs involved in gene fusions, we found 15 potentially
effective TFs including EP300, ERG, ETV6, FOXK?2,
KDM4B, KDM5A4, MLLT10, NCOR2, NFIX, NSD1, RFX4,
SMARCA4, SNDI, TBLIXR1, and VAVI. However, in the
TFFGs, the DoF scores did not always follow the observed

Transcription Factor (TF)

frequency of the number of samples with fusion genes.
To resolve this issue, we introduced another measurement
of TF effectiveness in gene fusions: the Major Active
Isofusion Index (MAII). The MAII is calculated by
dividing the number of observed samples with a particular
TFFG by its DoF score (Table 1). Here, an isofusion
refers to one particular gene fusion combination, with one
particular partner gene and one particular break point, in
one particular cancer type. This new score (MAII) can
give us the average frequency of each TF for each possible
isofusion. A TF with a high MAII score is considered
“effective” (i.e., highly recurrent) in cancer fusion genes.
To make the MAII scores (ranging from 0.11 to 15) more
intuitive, we transformed MAII scores of <1 to reversed
negative values (tMAII). We generated a box plot of
tMAII values for the TFs involved in TFFGs that retained
binding domains, except those who had a DoF of ‘1.0’ in
one sample (Figure 4A). A TF with a high tMAII score
(i.e., >1) means that it has a high frequency of occurrence
per one isofusion. We refer to these as “effective TFs in
fusion genes” (eTFinFGs). The eTFinFGs include RARA,
RUNXITI, PML, ERG, RUNXI, SFPQ, and TFE3.
Alternatively, if a TF has a tMAII score of less than *-1.0’
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Figure 1: Illustration of DNA binding domain (DBD) retention in transcription factor fusion genes (TFFGs). The
activities of retained domains of transcription factors (TFs) involved in fusion genes may subsequently affect the expression of their target

genes.
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and a DoF score of more than ‘8’, which is the threshold
of high frequent gene fusions in our previous study, it
indicates that the TF has a higher chance of generating
FGs in different cancer types, with multiple partner genes,
and multiple break points than observed. We named these
as “possibly effective TFs in fusion genes” (peTFinFGs).
We found 34 peTFinFGs including NSD1, KDM4B, SND1,
SMARCA4, NCOR2, KDM5A, VAVI, TBLIXRI, EP300,
MLLTI0, ETV6, LIN284, and 22 additional genes (Table
1). Next, we created a TFFG network based on both
observed frequency and tMAII scores of 83 TFFGs that
retained functional domains related TF activity, including
67 TFs, (Figure 4B). In this figure, we excluded the TFFGs
with a tMAII of 1.0°, represented by the non-highlighted
cases. Using a gradient color scale of the nodes, which
represents the tMAII score of each TF, we can assess the
“effective TFs” and “possibly effective TFs” in pan-cancer
fusion genes at a glance.

Analysis of differentially expressed target gene
(DETG) identified consistent up-regulation of
PLAU in four TFFGs

Focusing on the 12 TFFGs with FD retention in
at least two samples, we explored the DETGs between

A

7993 FGs

fusion-positive and fusion-negative samples within
each cancer type (Supplementary Table 2). The aim of
this analysis is to understand the oncogenic role of each
TFFG in each cancer type. Analysis of DETGs (Wilcoxon
rank sum test followed by multiple test correction using
Benjamini-Hochberg’s method [13], [log,(Fold change,
FC)| > 0.585 and adjusted p-value (i.e., g-value) < 0.1)
revealed 50 DETGs from four gene fusions (PML-
RARA, RUNXI-RUNXITI, TMPRSS2-ERG, and SFPQ-
TFE3). Remarkably, these four gene fusions were those
with the highest tMAII scores as shown in Table 1. This
supports the reliability of the tMAII scoring system in
determining the biological relevance of gene fusions.
A schematic representation of gene fusions and their
important domains is shown in Figure 5A. Figure 5B
shows the different expression levels of DETGs between
fusion-positive and fusion-negative samples. In our
results, a DETG is especially interesting. This DETG is
the plasminogen activator, urokinase (PLAU, synonym:
uPA), whose expression was significantly increased in
AML samples with PML-RARA or RUNXI-RUNXITI
fusion genes. PLAU is also known to be induced by
ERG, which is upregulated in 21 samples harboring the
TMPRSS2-ERG fusion. Furthermore, in the SFPQ-TFE3
positive samples, there was consistent downregulation of
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Figure 2: Pan-cancer analysis of TFFGs. (A) Workflow of the functional domain retention analysis of TFFGs in pan-cancer. (B)
Recurrent TFFGs retaining functional domains in TCGA fusion gene dataset. Y-axis represents the number of samples.
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Table 1: The Major Active Isofusion Index (MAII)

Gene # cancer types  # partners  # break points DoF score Obs. frequency MAII tMAII
RARA 1 1 1 1 15 15 15
RUNXITI 1 1 1 1 7 7 7
PML 1 1 3 3 16 5.33 533
ERG 2 3 2 12 24 2 2
RUNXI 1 2 2 4 8 2 2
SFPQ 1 1 2 2 3 1.5 1.5
TFE3 1 1 2 2 3 1.5 1.5
TRPSI 1 4 1 4 4 1 1
YYl 1 2 1 2 2 1 1
BPTF 1 2 3 6 3 0.5 -2
GLIS3 2 2 1 4 2 0.5 -2
IKBKB 1 2 2 4 2 0.5 -2
KAT64 2 2 1 4 2 0.5 -2
NCORI 1 2 2 4 2 0.5 -2
RFWD?2 1 2 2 4 2 0.5 -2
WWPI1 1 2 2 4 2 0.5 -2
BRIPI 1 2 2 4 2 0.5 -2
ARIDIB 2 2 1 4 2 0.5 -2
RBMS1I 2 1 2 4 2 0.5 -2
PAXS 1 2 2 4 2 0.5 -2
UHRFI 2 2 1 4 2 0.5 -2
ZNF143 2 2 1 4 2 0.5 -2
FOXK2 1 3 3 9 3 0.33 -3
NFIX 2 3 2 12 3 0.25 -4
RFX4 2 3 2 12 3 0.25 -4
CLOCK 2 2 2 8 2 0.25 -4
KHSRP 2 2 2 8 2 0.25 -4
NFIB 2 2 2 8 2 0.25 -4
TRIM24 2 2 2 8 2 0.25 -4
YAPI 2 2 2 8 2 0.25 -4
ZBTB48 2 2 2 8 2 0.25 -4
FGFRI 2 2 2 8 2 0.25 -4
LIN28A 2 2 2 8 2 0.25 -4
ETV6 3 3 5 45 10 0.22 -4.5
MLLTI10 2 3 6 36 7 0.19 -5.14
EP300 2 3 3 18 3 0.17 -6
TBLIXRI 2 3 3 18 3 0.17 -6
VAV 2 3 3 18 3 0.17 -6
KDM54 2 4 4 32 4 0.13 -8
NCOR?2 3 3 3 27 3 0.11 -9
SMARCA4 3 3 3 27 3 0.11 -9
SND1 4 4 5 80 6 0.08 -13.33
KDM4B 5 5 3 75 5 0.07 -15
NSDI 4 5 5 100 6 0.06 -16.67

Obs: observed.

DoF score = (# cancer types) x (# partners) x (# break points).

MAII = (# obs. frequency) / (DoF score).

tMAIL: transformed MAIL tMAII = if MAII < 1, then do (MAII)" x (—1).
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the serine proteinase inhibitor SERPINE1, an inhibitor of
tissue plasminogen activator (tPA) and urokinase (uPA).
PLAU encodes a secreted serine protease that converts
plasminogen to plasmin, promoting fibrinolysis and
degradation of the extracellular matrix, facilitating cancer
growth and metastasis [14, 15]. As a cancer biomarker,
PLAU plays a role in tumor invasion [16]. Recently, a
positive correlation was reported between the expression
level of plasminogen activator inhibitor (PAI)-1 and poor
prognosis in patients with ovarian cancer [17]. These
results suggest that pharmacological combination therapies
using PAI-1 and urokinase inhibitors may be potentially
effective in patients with PML-RARA, RUNX1-RUNXIT],
or TMPRSS2-ERG fusion genes.

PML-RARA

An in-frame PML-RARA fusion was present in
15 of the 170 TCGA AML samples. This fusion gene
retains the ‘zinc finger’ and ‘DNA binding domain’ in
the 5’-partner gene (PML), and 3’-partner gene (RARA),
respectively (Figure 5A). PML retains two different zinc
finger (ZnF) domains; ZnF RING-type (PROSITE id:
PS50089) and ZnF B-box-type (PROSITE id: PS50119).
The ZnF B-box-type domain is considered essential but
not sufficient to localize the PML protein in a punctate
pattern in interphase nuclei. The DNA binding domain of

RARA is of the nuclear hormone receptor type (PROSITE
id: PS51030). RARA is a ligand-activated transcription
factor that regulates gene expression by interacting with
specific DNA sequences upstream of its target genes [18].
The up-regulated target genes of PML, through comparing
15 fusion-positive samples versus 155 fusion-negative
samples, were ANXAS, APOA1, CCNAI, CRABPI, PLAU,
PRKCA, and RPTOR. The overexpression of ANXAS has
been reported as associated with AML [19]. APOAI is
known as a biomarker for leukemia aggressiveness [20].
CCNAI is reported to have increased expression in AML
too [21]. The down-regulated target genes were ABCC3,
CDID, FOLR2, ICAM1, MACRODI, RARG, and SCD.
The major mechanism of tumorigenesis of the PML-RARA
gene fusion is the disruption of the retinoic acid (RA)
signaling pathway and arrest of myeloid differentiation
[22]. In agreement with this mechanism, RARG is
involved in the retinoic acid signaling and myeloid cell
differentiation and SCD is involved in fatty acid metabolic
process [23]. ABCC3, FOLR2, ICAM1, and MACROD1
are involved in lymphocyte regulation, modification, and
migration [23].

RUNXI-RUNXITI

Eight percent of AML and 20% of M2-type AML
have this gene fusion, which is now recognized by the

TFFGs Protein feature all other FGs
Metal binding 4] 1.0
DNA binding 4 0.1
Motif 1 ]14
Initiator methionine 4 | 2.2
Zinc finger 1] 10
Cross-link 1] 0.7
I 43
Mutagenesis 4 ] 35
Site 1] 09
Region 4 33
Beta strand | 5.2
Helix | 55
Compositional bias {1 3.2
10.5 Modified residue | 8.8

75 65 35 15
%

012345867
%

Figure 3: Comparison of retained protein features between TFFGs and all other FGs. For each protein feature (Y-axis), the
relative proportion of samples involving TFFGs and other FGs is represented. After calculating the p-value via a hypergeometric test, 14
protein features were selected as significantly enriched features in TFFGs, not in all other FGs (p-value < 0.001).
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World Health Organization (WHO) classification system disrupt terminal differentiation of myeloid cells, and
as a specific subtype of AML [24, 25]. The RUNXI- increase DNA damage [26]. From a structural point of
RUNXITI fusion gene is known to promote self-renewal, view, RUNX]I retains the Runt domain (PROSITE id:

A eTFinFGs

25
20
15
E || ‘
> flthll |1
I lllllllllllllllllllllllllllll III|III|I
0 S e i Sn n e bu bu hn b b
||||||||||||||||III
-5
-10
15 peTFinFG
-20
- O 0NLON < N T - N- -0 AXITXALAANOT T OO o AN ~—M
rESgXaUlEFrd¥YyoexrooacnoXLIETXorpdadro>roxr>unr<osn
<;n_,_l_,z._._u_n._lmr—oggn:g§<n:Exzu-omz§<mu_t\ll—ljg><<zooz§w
o SDpn ko X mo I O [ >EoZuw ->0A xwmwanz
z = CXEopzoER gl  Yge g g I ug €272
o -
(7]
SKAP1 \ooas MAPKAP1 ZER . CIITA Nupge raae | VNKI TBC1D9B
ANO2 C190rf66
FOXK2 —
& UHRF1 ‘ B4GALT7 KDM5A TRPS1
UBE2D2 NINJ2 PDE4DIP
FAT2
TBCD AKAPSL. o c011498.1 AHCYL2 CDH23 RAE1 SPAG1
NFIX CHAF1A MPND
M
GATAD2A o
SCARB1 EVISL HNRNPH1 C120rf23 PICALM NTRK3 BCOR
MR1NB
NEBR-F VAVA cxvLT2 NDRG1  RFX4 cpsT11 M?DSNTG1 ETV6ypamMTS16  EPS0DTNRCER
GATA4 ZNF823 TMPRSS2 RIC8B MLL BCL2L14 ARHGEF17
LXN C190rf38 GOTILY gumst NFE2L2 MECOM MYB ZNF14
IKBKB
PAX8 1 NFIB STAT5A
TBLAXR1 reT  SMBRBADNM?2 ANKA
LRPS ZDHHC21 ARNTL2
USP13 DOCK6
DIP2C  KIF14  BAG4 NPAS1 MEIS2 C6orf35 CD70 EIF4G3 STIM1 BCAS3 ESPN  CPB2
TCF12
YY1 RFWD2 FGFR1 ZNF143 ARID1IB KHSRP LIN28A YAP1 BRIP1 ZBTB48 WWP1
RNF111
ZC3H3  XPR1 WHSCIL1 SWAP70 SASH1 SAFB2 RPS6KA1 PPP6R3 DDX42 TASTR1 NUBPL
NTRK2 ACER3 C9orf46 PHF21A PITPNC1 . TCFL5 -a RBMS1
TRIM24 NCOR1 GLIS3 CLOCK BPTF ITGB6 eTFinFGs

g peTFinFGs

Figure 4: TFFG network providing clinical relevance. (A) TFs ranked by tMAII score. “eTFinFGs” refers to effective transcription
factor gene fusions (TFFGs) based on high tMAII score. “peTFinFGs” refers to potentially effective TFFGs based on low tMAII score, that
is, those have higher possible combination of gene fusion than the observed frequency. (B) TFFG network showing TFFG pairs retaining
binding domain features. In this network, we show only TFFGs including the TFs that formed fusion genes with multiple partners. Nodes
in red refer to TFs with a high tMAII score and nodes in blue refer to the TFs with a low tMAII score.
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PRUO0039) which confers DNA binding ability [18].
RUNXITI retains the zinc finger domain (MYND-type
ZnF) (PROSITE id: PS50865). Proteins with MYND-type
ZnF domains are known to include the transcriptional co-
repressor protein BS69 within them [27]. We compared
seven RUNXI-RUNXITI fusion-positive samples with
163 fusion-negative samples through our DETG analysis.
This analysis identified nine up-regulated genes (BAALC,
CD34, ELANE, MPL, MPO, MYC, NCAMI, PLAU, and
VEGFA). The high expression of BAALC and CD34 are
known as a maker for prognostic risk stratification of
AML and B lymphoblastic leukemia, respectively [28,
29]. MPL has been reported to be involved in initiating
and maintaining RUNXI-RUNXITI positive AML
[30]. Myeloperoxidase (MPQO) has been associated
with prognosis of AML patients [31]. Four of these up-
regulated genes are oncogenes: MPL, MYL, PLAU, and
VEGFA (Figure 6A). The oncogene VEGFA, encoding
vascular endothelial growth factor A, induces proliferation
and migration of vascular endothelial cells to promote
angiogenesis in cancer [32]. Additionally, we found 16
down-regulated genes (BCL2, CCL3, CD36, CHI3LI,
GPIBA, GPRI132, ITGA2B, ITGB2, KLF4, LGALS3,
LILRBI1, LTB4R, MYH10, OCLN, PF4, and SLC44A1).
CCL3, LGALS3, LILRBI, and PF4 are involved in
‘regulation of myeloid leukocyte differentiation’ pathway.
BCL2, ITGB2, and OCLN are the genes involving in
‘leukocyte migration’. The other genes are involved
in the pathways such as ‘regulation of angiogenesis’,
‘regulation of protein kinase activity’, and ‘regulation
of macromolecule metabolic process’ [23]. This result is
consistent with a study of transcriptional dysregulation
mediated by RUNXI-RUNXIT! in normal human
progenitor cells and in AML [33]. While microarray data
was used in this previous study, here we provided DETGs
that are more accurate by using the digital expression
levels from RNA-seq data.

TMPRSS2-ERG

Chromosomal rearrangements between the
androgen-regulated gene, TMPRSS?2, and the oncogenic
ETS transcription factor gene, ERG, occurs in
approximately 30-50% of prostate cancers (PRAD)
[34]. The 3’-partner gene, ERG, retains the ETS DNA-
binding domain (PROSITE id: PS50061), which is
enriched in positively-charged and aromatic residues and
binds to purine-rich segments of DNA [35]. Out of the
59 TMPRSS2-ERG positive PRAD samples, 21 samples
had an in-frame gene fusion retaining FDs. DETG analysis
between 21 in-frame TMPRSS2-ERG positive samples
versus 471 fusion-negative samples yielded only two
up-regulated target genes: ERG and TDRDI. Previous
transcriptional profiling studies have shown that ERG
knockdown in TMPRSS2-ERG positive prostate cancer
cell-lines leads to decreased expression of genes that

are typically overexpressed in PRAD as compared to
prostatic intraepithelial neoplasia [36]. Furthermore, ERG
regulates the expression of target genes associated with
cancer initiation and progression pathways such as DNA
damage, inflammation, epigenetic control, regulation of
differentiation, epithelial mesenchymal transition (EMT),
cell proliferation and cell invasion [37]. Interestingly, one
study demonstrated that ERG induced the expression of
metalloproteinase and plasminogen activator pathway
genes such as MMP3, PLAT, and PLAU [34]. The
activation of the second up-regulated gene, tudor domain-
containing proteinl (7TDRD1), is known to be induced by
ERG in prostate cancer cells harboring an £RG fusion
[38-40].

To find DETGs that could drive cancer in the
other 38 PRAD samples with TMPRSS2-ERG fusion
not retaining functional domains, we performed DETG
analysis by comparing 38 samples with out-of-frame
fusion versus the 21 in-frame fusion samples ([log2(Fold
change, FC)| > 0.585, g-value < 0.2, and Supplementary
Table 3). We found one amplified gene in the in-frame
fusion samples, hydroxyprostaglandin dehydrogenase
15-(NAD) (HPGD), which was reported as a therapeutic
target in prostate cancer due to its involvement in the
arachidonic acid pathway with PLA2G7, EPHX2, and
CYP4F§ [41]. HPGD was highly expressed in androgen
receptor (AR)—overexpressing advanced tumors, as well
as in metastatic prostate cancers.

SFPQ-TFE3

SFPQ retains two eukaryotic RNA recognition motif
(RRM) domains (PROSITE id: PS50102). TFE3 retains
Myec-type, basic helix-loop-helix domain (PROSITE id:
PDOCO00038). This ‘helix-loop-helix’ (HLH) domain
mediates protein dimerization. Most proteins with HLH
domains have an extra basic region of approximately 15
amino acid residues and this motif sequence binds to DNA
[18]. A previous study on the molecular genetics of the
TFE3 fusion gene in TCGA renal cell carcinoma samples
suggested that it could contribute to carcinogenesis
pathways such as TGFf signaling, MET oncogene up-
regulation, insulin signaling, Rb-dependent cell cycle,
ETS oncogene regulation, FLCN/AMPK signaling, T-cell
activation, and E-cadherin regulation [42]. The most
widely accepted model for the oncogenic effects of the
TFE3 gene fusions is the introduction of a constitutively
active promoter leading to dysregulated 7FE3 activity
[16]. Accordingly, we found two up-regulated target genes
(i.e., SLC2543 and TFE3) in three fusion-positive samples
compared to 523 fusion-negative samples.

AML specific DETG network

Out of the 50 DETGs identified in our study,
38 genes were from the two gene fusions (i.e., PML-
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RARA and RUNXI-RUNXITI) in AML. Using these 38
DETGs as initiating genes in the GeneMANIA Cytoscape
plugin [43] (see Materials and Methods, Figure 6B),
we constructed an AML-specific DETG network. This
network was composed of the 38 DETGs and the top 20
related genes suggested by GeneMANIA. After running
GSEA for the nodes in this network (GeneMANIA,
hypergeometric test followed by multiple test correction
using Benjamini-Hochberg’s method [13], g-value < 0.05),
we found that DETGs of the AML fusion-positive samples
were significantly enriched in ‘leukocyte migration’ and
‘leukocyte differentiation’ pathways, suggesting that an
abnormal regulation of leukocyte function plays a role in
the development of AML.

Rare gene fusions with clinically relevant DETGs

Although we could not perform the differentially
expressed gene test for TFFGs with retained FD occurring
in only one sample, several examples are worth reporting.
For example, Erb-b2 receptor tyrosine kinase 2 gene
(ERBB2, synonym: HER2) was upregulated in one breast
cancer sample containing the ATF7-SPATS?2 fusion. The
expression level of ERBB2 in the fusion-positive sample
was about 25 times higher than in fusion-negative samples.
Supplementary Figure 1 shows the comparison of ERBB2
expression across 113 BRCA samples with matched
normal samples, HER2-negative samples, and HER2-
positive samples, according to the PAMS50 annotation
information for clinical subtype classification of BRCA
subtype [44]. The ATF7-SPATS?2 fusion-positive sample
had the highest expression level of ERBB2 among HER2-
positive samples and all BRCA samples.

A high level of proto-oncogene receptor tyrosine
kinase, KIT, expression is a well-known driver of
proliferation of breast cancer cells. In this study, we
identified up-regulation of KIT in MYB-NFIB positive
samples. KIT expressed 15.4 times higher in BRCA
samples with the MYB-NFIB than in fusion-negative
samples. The RPKM value was 13,081 in the fusion-
positive sample while the average of fusion-negative
samples was 849. Based on this, we hypothesized that
c-Kit inhibitors might be helpful in treating BRCA patients
harboring the MYB-NFIB fusion. The MYB-NFIB fusion
gene resulted in loss of the 3’-end of MYB, including
several highly conserved target sites for microRNAs
that negatively regulate MYB expression. Deletion of
these miRNA target sites may disrupt the repression of
MYB, leading to overexpression of MYB-NFIB fusion
transcripts and subsequent transcriptional activation of
critical MYB target genes associated with apoptosis, cell
cycle control, cell growth/angiogenesis and cell adhesion
[45]. Additionally, expression of GATA binding protein
3 (GATA3), which encodes a trans-acting T-cell specific
transcription factor protein, was significantly decreased in
the MYB-NFIB fusion sample (RPKM was 601 in fusion

sample, 13072 on average in no-fusion tumor samples).
GATA3 is one of the three genes (TP53, PIK3CA and
GATA3) mutated in more than 10% of breast cancer
samples [46].

DISCUSSION

This study presents a novel assessment scoring
system to identify TFs and FGs that may act as potential
cancer driver genes, through a comprehensive analysis
of functional domain retention of 386 TFFGs and their
affected target genes, across 13 major cancer types. The
MALII score is influenced by the frequency at which a
gene fusion occurs. Therefore, the score for fusions that
do not occur at a high frequency, but might be biologically
relevant, could be low. A high MAII score should be
better in prioritizing fusions that may be biologically
significant. However, due to the lack of an independent
data set with an abundant number of fusion genes across
multiple cancer types, we could not extensively validate
our scoring system. Furthermore, gene fusions are not
as common as many of the somatic point mutations.
Therefore, the small number of recurrent samples is a
reflection of the nature of fusion genes in cancer. Due to
this nature, we acknowledge the limitations of the DETG
analysis. Another limitation of our approach is focusing
on gene fusions in which at least one of the partners
retained an important functional domain. Although this
approach is helpful for identifying potentially active
gene fusions, it cannot identify gene fusions that disrupt
or eliminate the activity of a transcription factor. Thus,
more investigations will be needed for TFFGs that may
contribute to carcinogenesis by such mechanisms.

ETV6-NTRK3, a known oncogenic fusion involving
a TF (ETV6) and a tyrosine kinase receptor (NTRK3), was
identified as one of the 12 TFFGs with retained FDs in
at least two samples, had only one DETG, growth arrest
specific 2 (GAS?2). This might be related to the fact that
ETV6 has a low MAII score, that is, the average frequency
of the TF for each possible isofusion was not enough to
show DETGs. In contrast, the four fusions that showed
significant DETGs are those with the highest MAII
scores. Furthermore, three out of four of the fusions are
5°-3’ TFFGs (PML-RARA, RUNXI-RUNXITI and SFPQ-
TFE3), that is, both fusion partners are transcription
factors. These findings suggest that TFFGs are more
likely to alter gene expression when both partners in
the fusion are transcription factor genes. It is worth
noting several rare TFFGs found in our study. ERBB2 is
known to be overexpressed in 18-20% of BRCA positive
samples due to gene amplification [47, 48]. We identified
the ATF7-SPATS2 fusion as a potential regulator of
ERBB?2 expression through ATF7’s action on the ERBB2
promoter, as shown by the higher ERBB2 expression in
the fusion positive sample. Furthermore, the KI/7T tyrosine
kinase gene showed up-regulated expression (15.4 times
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higher) in MYB-NFIB fusion positive BRCA. From these
examples, we carefully suggest combinational therapy
using kinase inhibitors to TFFG patients for better therapy.

Fusion genes are usually cancer type-specific, but
TFs can be involved in multiple cancer types. Therefore,
we performed a pan-cancer analysis for prioritizing TFs
involved in FGs. To find the insights into the tumorigenic
mechanism of TFFGs, we analyzed DETGs in each cancer
type. Although the number of samples with TFFGs is small,
chromosomal rearrangements involving TFs have clinical
importance, due to their effects on the regulation of gene
expression. This is the first study demonstrating druggable
TFFGs with a systematic annotation of functional domains.
A comprehensive understanding of TFFGs could help the
development of new therapeutic strategies.

MATERIALS AND METHODS

Pan-cancer fusion gene data

The pan-cancer fusion gene dataset was obtained from
the TCGA Fusion Gene Data Portal (http://54.84.12.177/
PanCanFusV2, December 2014) [8]. A total of 7,993
fusion genes were curated in 13 cancer types from 4,366
primary tumor samples: bladder carcinoma (BLCA), breast
carcinoma (BRCA), glioblastoma multiforme (GBM),
head and neck squamous carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), acute myeloid leukemia
(AML), low grade glioma (LGG), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), prostate adenocarcinoma
(PRAD), skin cutaneous melanoma (SKCM), and thyroid
cancer (THCA). For these fusion genes, the following
information was collected: TCGA sample ID, fusion gene
name and its two partner genes, fusion protein frame
information, and exon junction break point information at
the genomic level. We followed the definition of fusion gene
direction for the 5’- and 3’-partner genes to this dataset.

Transcription factors and their target genes

TF-target pairs were downloaded from two
databases, TRANSFAC (April, 2016) [9] and TRRUST
(June 2015) [10]. From the downloaded data file of
TRANSFAC, we obtained 1,001 human TFs with target
gene information. TRRUST is a manually curated
database of human transcriptional regulatory networks.
From TRRUST, we obtained 748 human TFs with their
target information. Combined, we had 1,307 human TFs
with target gene information.

Annotation of protein domain retention

From ~8,000 fusion genes, we selected in-frame
fusion genes using the annotations from the TCGA
Fusion Gene Data Portal. Specifically, we selected fusion

genes whose reading frames were not disrupted by the
breakpoints; this resulted in 2,782 in-frame fusion genes.
Next, we identified the TFs and their partner pairs using
the 1,307 human TFs and their target gene dataset as
described above. This process led to 232 TFs that involved
386 fusion events. To survey the TF domain retention, we
downloaded the protein domain annotation information
for the 232 TFs from the UniProt database, using the
UniProtKB search module [49]. Because the protein
domain information was based on amino acid sequence,
we converted the genomic break point information into
the amino acid sequence by considering all UniProt
protein accessions, transcript isoforms, and multiple
break points for each TF. To map protein domain loci onto
the human genome, we used the RefSeq gene model of
human reference genome (hg19) from the UCSC Genome
Browser [50, 51]. For the fusion genes whose 5’-partner
genes were TFs (5°-TFFGs), we considered the protein
domain being retained in the fusion if the break points
were at the 3’-end of the functional domain. Similarly,
for the fusion genes whose 3’-partner genes were TFs
(3’-TFFGs), we considered the protein domain being
retained if the break points occurred at the 5’-end of the
functional domain. We also examined functional domain
retention in fusion genes whose 5’- and 3’- partners
were both TFs (5’-3’-TFFGs). As a result, we obtained
148 TFFGs with 109 TFs. These were 81 5’-TFFGs, 59
3’-TFFGs, and 10 5°-3’-TFFGs involving 52, 51, and 19
unique TFs, respectively. All annotations that included
protein domains on the amino acid sequence for each
fusion gene are provided in Supplementary Table 1. To
investigate the features of TF related domains, we used
fusion genes retaining binding motifs such as ‘calcium
binding’, ‘DNA binding’, ‘domain’, ‘metal binding’,
‘motif’, ‘nucleotide binding’, and ‘zinc finger’ for further
research. As a result, we obtained 83 TFFGs involving 67
TFs.

Construction of the TFFG network

We built a TFFG network using gene fusion partner
genes for which FDs with TF activity were retained. In
this network, each node represents a partner gene or TF
and each edge represents a gene fusion event. A gene
fused with different partners would have multiple edges. A
fusion gene can also occur in different cancer types, thus,
we allowed multiple edges to represent the same fusion
gene in different cancer types. We used Cytoscape (version
3.2.1) [52] for visualization and analysis of the network.

Annotation of differentially expressed target
genes (DETGs) for recurrent TFFGs

Gene expression data were obtained from TCGA
(November 2016). The normalized gene expression,
measured in log2 transformed normalized read count
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plus 1 from RNASeqV2, was extracted using the R
package TCGA-Assembler [53]. The Wilcoxon rank sum
test in the R software package was used in the DETG
analysis followed by Benjamini-Hochberg’s method [13]
for multiple test correction. We defined significantly
DETGs if they had [log (FC)| > 0.585 and g-value < 0.1.
For the expression levels of rare gene fusions, we used
normalized gene expression measurements of reads per
kilobase per million mapped reads (RPKM) from TCGA
(January 5, 2015).

Construction of AML DETG network

There were 38 DETGs for the PML-RARA and
RUNXI-RUNXITI fusion genes. We used these DETGs
as initiating gene nodes to GeneMANIA Cytoscape
plugin (version 3.4.1), a fast, in-silico, gene function
prediction tool [43]. We used human network data
including 20,531 genes and over 14 million interactions
from the GeneMANIA database (version 2014-08-12-
core). The algorithm for the construction of the network in
GeneMANIA included interactions such as co-expression,
co-localization, genetic interactions, signaling pathways,
physical interactions, predicted interactions, and
shared protein domains. Among all the network results,
GeneMANIA added the top 20 related genes with up to 20
attributes using automatic weighting to the AML-specific
DETG network.
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