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Structural basis of nSH2 regulation and lipid binding in PI3Kα
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ABSTRACT
We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α 

(PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, 
the second in complex with the lipid substrate, diC4-PIP2, respectively. The first 
structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with 
the activation loop that suggest a mechanism by which the enzyme is inhibited in its 
basal state. In the second structure, the lipid substrate binds in a positively charged 
pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop 
and the iSH2 domain. An additional lipid-binding site was identified at the interface 
of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP2 
molecule was confirmed in vitro by fluorescence quenching experiments. The crystal 
structures reveal key differences in the way the nSH2 domain interacts with wild-type 
p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area 
and two unique salt-bridges observed only in the wild-type structure suggest tighter 
inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences 
may be partially responsible for the increased basal lipid kinase activity and increased 
membrane binding of the oncogenic mutant. 
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INTRODUCTION

Dysregulation of the phosphatidylinositol 3-kinase 
(PI3K) pathway plays a critical role in tumor pathogenesis, 
with up to 50% of human cancers displaying aberrations 
in signaling [1]. A key modulator of the pathway, PI3Kα, 
is mutated in a high fraction of breast, colon, brain, 
head and neck, gastric, and endometrial cancers [2–6]. 
About 80% of these mutations are somatic, missense 
mutations concentrated in three hotspots in the p110α 
catalytic subunit of the protein (Fig. 1A) [7]. Two helical 
domain mutants, p110αE542K and p110αE545K, become 
constitutively active through the loss of auto-inhibition by 
the N-terminal SH2 domain (nSH2) [8,9]. As such, they 
are insensitive to further activation by phosphotyrosine 
peptide binding [8]. In contrast, the kinase domain 
oncogenic mutant, p110αH1047R, remains sensitive to 
activation by receptor tyrosine kinases. The mutation 
enhances membrane binding, resulting in increased 
substrate accessibility and elevation of the basal lipid 
kinase activity [8,10–12]. 

Since the publication of the first p110γ crystal 
structures in 1999, more than 80 crystal structures of the 
four Class I PI3K isoforms (PI3Kα, PI3Kβ, PI3Kγ and 
PI3Kδ) have been deposited in the Protein Data Bank 
(PDB) [13]. The structures of PI3K in complex with ATP 
and with a wide range of pan-PI3K and isoform selective 
inhibitors, spanning multiple chemical classes, have been 
determined [14]. Despite this large amount of structural 
information, the lipid substrate binding site has yet to 
be identified crystallographically. Biochemical data has 
established an important role for the positively charged 
residues of the activation loop in determining substrate 
specificity and lipid kinase activity [15,16]. Replacement 
of the activation loop in PI3Kα with that of Class II or 
III PI3K renders PI3Kα unable to phosphorylate PIP2. 
Lipid binding appears to be unaffected, however, as pre-
incubation of these hybrids with PIP2 prevented binding 
of the covalent inhibitor, wortmannin [15]. Modeling 
studies of p110α and p110γ support the biochemical 
data, placing the phospholipid head group between the 
positively charged residues of the P-loop equivalent of 
PI3K (hereafter P-loop; p110α residues 772-778) and 
the activation loop (p110α residues 935-958), with the 
3’-hydroxyl group positioned for phosphate transfer 
near the γ-phosphate of ATP [13]. Computational studies 
have postulated a role for p110α K776 within the P-loop 
in determining phosphoinositide substrate specificity 
[15]. Class II and III PI3Ks, which cannot phosphorylate 
phosphatidylinositol-4-5-bisphosphate (PIP2), do not have 
an analogous positively charged residue at this position.

The most common heterodimer construct used for 
PI3Kα structure determination is full length p110α with 
a truncated p85α consisting of the nSH2 and the iSH2 
domains (p85α residues 322-600), hereafter referred to 
as p110α/niSH2 (Fig. 1A) [11,17]. The first insights into 

the mechanism of nSH2 domain-mediated auto-inhibition 
were gained from the structures of the p110 oncogenic 
mutant, H1047R [10]. These structures revealed that 
phosphotyrosine peptides bind at the interface of the 
helical and nSH2 domains, competing with the interaction 
of the nSH2 with the kinase domain and leading to release 
of its inhibition [10,18]. However, precisely what effect 
this has on the conformation of the kinase domain, if 
any, and how this release results in activation is still not 
known. Recently, two groups have reported structures that 
include density for the nSH2 domain, the first within a 
p110α-p85niSH2 fusion construct (PDB IDs 4L1B, 4L23, 
4L2Y), and the other within a double Ras-binding domain 
(RBD) mutant (M232K, L233K) (PDB ID 4JPS)[19,20]. 
However, the structure of the nSH2 domain in complex 
with wild-type p110α has not yet been determined. 

Herein we report the structure of wild-type p110α/
niSH2, free and in complex with the truncated lipid 
substrate mimetic, di-C4-phosphatidylinositol-4,5-
bisphosphate (diC4-PIP2), refined to 2.9 and 3.4 Å, 
respectively (Table 1). The structures provide insights 
into lipid-binding and catalysis by PI3Kα. In addition, 
differences in the interaction of the nSH2 with the kinase 
domains between the wild-type enzyme and oncogenic 
mutant H1047R suggest a possible mechanism for the 
inactivation of the enzyme by the nSH2 domain and for 
its release. 

RESULTS

The lipid-substrate binding site of PI3Kα

The substrate mimetic diC4-PIP2 sits in a positively-
charged crevice bordering the ATP binding site, located 
in a groove delimited by the P-loop (p110α residues 
772-778) and the activation loop of the kinase domain 
(p110α residues 935-958), and the iSH2 helix, iα1 
(p85α residues 457-465) (Fig. 1B, 1C). The 3’ hydroxyl 
group is oriented towards the ATP-binding site, with no 
direct interactions with the protein. While the electron 
density for diC4-PIP2 is clear (Fig. S1A), only limited 
density is present for the side chains of the activation 
loop residues. The 4-phosphate group extends towards 
the activation loop, forming either a direct salt-bridge or 
water-mediated hydrogen bond with K941. One oxygen 
atom from the 5-phosphate group interacts with the iSH2 
domain, forming a salt bridge with R461. The 1-phospho 
group faces the P-loop and is located 4.8 Å from K776. 
Although this distance is too long for a direct interaction, 
the two groups probably form a water-mediated hydrogen 
bond. Both short hydrophobic tails of the diC4-PIP2 are 
positioned in a way that would allow membrane insertion 
of the endogenous PIP2 substrate’s long hydrophobic 
tails. Although neither K776 or K941 are present at the 
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equivalent positions in other Class I isoforms, there are 
lysine residues at adjacent positions in the other isoforms. 
This suggests that all Class I isoforms could interact with 
PIP2 in a similar way (Fig. 1D). The binding orientation 
of diC4-PIP2 in the crystal structure is compatible with 
biochemical data implicating the activation loop in 
determining substrate specificity [15]. The positively 
charged residues present in the activation loops of the 
Class I isoforms are missing in the Class II and III PI3K 
isoforms.  This explains why substrates such as PIP2, 
containing 4- and 5-phosphates, would bind with a much 
lower affinity to the latter isoforms.

Clear electron density for the activation loop was 
present in the crystal structure of PI3Kβ (PDB ID 2Y3A) 
and very recently, in some structures of PI3Kα (PDB 
IDs 4A55, 4JPS, 4L1B, 4L23, 4L2Y) [11,19–21]. In the 
structure of wild-type PI3Kα in complex with PIK-108 
(PDB ID 4A55), the conformation of the activation loop 
was influenced by the inhibitor binding to a non-ATP 
binding site [11]. The conformations of the activation loop 
in the other PI3Kα structures, including the two reported 

here and in ref. 19 and 20, are very similar (Fig. S2A). It 
is nestled at the interface of the kinase and C2 domains 
of p110α, with the iSH2 and nSH2 domains of p85α. In 
protein kinases, activation loop phosphorylation results in 
activation of the kinase activity of the enzyme [22,23]. In 
PI3Ks, however, a similar phosphorylation event has not 
been shown to occur.

Catalysis and nSH2 domain inhibition

The position of the bound ATP was modeled using 
a structural alignment of the PIP2 bound structure (PDB 
ID 4OVV) with the p110γ crystal structure in complex 
with ATP (PDB ID 1E8X) (Fig. 2A) [13]. In this model, 
the 3’-hydroxyl group of PIP2 is oriented toward the ATP 
γ-phosphate, in a position ideally suited for phosphate 
transfer. As in the p110γ-ATP complex structure, D915, the 
residue analogous to the catalytic base in protein kinases, 
is too far away to deprotonate the 3’-hydroxyl (10.9 Å), 
suggesting that in PI3Ks another residue may function 
as the base [13]. In the PI3Kα structure, there are two 

Table 1: Data collection and refinement statistics. 
p110α/niSH2 p110α/niSH2 + diC4-PIP2

Data collection
Space group p212121 p212121

Cell dimensions  
    a, b, c (Å) 114.7, 116.2, 149.1 114.3, 116.1, 148.7
Resolution (Å) 50.00-2.96(3.01-2.96) 50.00-3.36(3.42-3.36)
Rsym 0.068 (0.69) 0.103 (0.71)
I / σI 3.6 (3.2) 3.5 (4.4)
Completeness (%) 99.6 (100) 99.9 (100)
Redundancy 7.2 (7.1) 9.0 (9.2)
Unique reflections 41,914 28,636
Total reflections 300,309 256,465
X-ray source
wavelength 0.9788 Å 0.9788 Å
Refinement
Resolution (Å) 37.79-2.96 37.45-3.5
No. reflections 39,719 27,082
Rwork / Rfree 0.19/0.27 0.24/0.33
No. atoms
    Protein 10,830 10,584
    Ligand - 83
    Water 18 5
B-factors
    Protein 53.82 65.81
    Ligand - 90.00
    Water 21.22 78.00
R.m.s. deviations
    Bond lengths (Å) 0.011 0.015
    Bond angles (°) 1.7 1.9
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histidine residues in proximity to the 3’-hydroxyl, H917 
(9.6 Å from the 3’-hydroxyl; equivalent to H948 in p110γ, 
proposed as an alternative base [13]) and H936 (7.4 Å 
from the 3’-hydroxyl). Both histidines are conserved in 
all Class I PI3K isoforms. Neither of these residues are 
close enough to deprotonate the hydroxyl. H936, however, 
is located on the activation loop, which is known to be 
flexible, and may undergo a conformational change that 
brings H936 into position to deprotonate the 3’-hydroxyl. 

Interestingly, a salt-bridge formed between K948 
of the activation loop and E342 in the nSH2 domain, 
suggests a mechanism through which the nSH2 domain 
inhibits catalytic activity (Fig. 2B): it presumably keeps 
the activation loop in an inactive conformation. Binding of 
phosphotyrosine-containing activators at the helical-nSH2 
interface dislodges the nSH2 domain from its association 
with p110, disrupting the contacts with the activation loop 
and allowing it to adopt an active conformation in closer 
proximity to the lipid substrate.

The third helix of the iSH2 domain (p85α residues 
587-598), iα3, forms an additional interface with the 
activation loop (Fig. 2C). This interface is mediated by 
hydrophobic interactions between L598 (p85α) and F945 
(p110α), and a hydrogen bond between Q591 (p85α) and 
K948 (p110α). Deletions (Δ583-602) or truncations (p85-
572STOP) of this section of the iSH2 domain are known to 
be oncogenic [24]. Previous studies have suggested that 
these iSH2 mutations activate the enzyme via a disruption 
of the iSH2-C2 interface [24,25]. Hydrogen and deuterium 
exchange mass spectrometry experiments have suggested 
that the disruption of this interface is a normal step in the 
PI3Kα catalytic cycle, and may occur upon membrane 
binding [12]. These oncogenic deletions appear to function 
by mimicking this activation step. Our structures  (PDB 
IDs 4OVU, 4OVV) suggest an additional mechanism 
through which these oncogenic mutations might activate 
the enzyme: in addition to disrupting the iSH2-C2 
interface, the deletion of the iSH2 iα3 helix would release 
an inhibitory interaction between p85 and the activation 
loop, weakening the nSH2 domain mediated inhibition of 
kinase activity (Fig. 2D).

Interactions of wild-type p110α with the nSH2 
domain

Comparison of the structure of the apo wild-type 
p110α in complex with p85α-niSH2 (reported here) and 
that of the H1047R mutant reveal key differences in the 
interactions between p110α and nSH2 [10]. Many of 
these differences are similar to those between the wild-
type and mutant reported by Mandelker et al. and will 
not be discussed further [10]. However, some important 
differences in the nSH2 and iSH2 domains and their 
interactions with p110α were not evident in previous 
studies. 

Fig 1: Lipid-binding in PI3K. (A) Domain organization 
of the PI3Kα subunits, p110α and p85α, colored by domain. 
The positions of p110α hotspot oncogenic mutations are 
indicated. The niSH2 p85α construct used for crystallography 
is highlighted. (B) The substrate mimetic diC4-PIP2 binding 
site. This site is adjacent to the ATP binding site, between the 
activation loop and the P-loop of the kinase domain (shown 
in purple) and the iSH2 domain (shown in blue). (C) PI3Kα 
surface colored according to electrostatic potential, highlighting 
the positively charged PIP2 binding-site. (D) Activation loop 
sequence alignment, performed between the Class IA, II and 
III PI3Ks. Blue represents identical residues, orange represents 
similar residues, pink represents differences that have been 
identified as being important for PIP2 recognition and binding.
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One such difference is a shift of up to 5.5 Å 
(measured at p85α 450, Fig. S3) in the position of the 
Cα atoms of the N-terminal helix at the end of the coiled 
coil iSH2 domain (p85α residues 443-475)(Fig. 3A). The 
change is less pronounced in the second helix, with an 
average movement of 2.5 Å (measured at p85α residues 
565-579; maximum distance is 3.9 Å at p85α 577, Fig. 
S3). The positively charged residues on one face of the 
iSH2 domain, along with two key loops in the kinase 
domain (p110α residues 723-729 and 863-867) are thought 
to play a major role in mediating the interaction between 
PI3Kα and the cell membrane [17]. The iSH2 helices in 
the oncogenic mutant structure appear to be bent towards 
the membrane to a greater degree than those in the wild-
type, which would be consistent with the increased 

membrane binding of the oncogenic mutant [10,11]. These 
changes may act synergistically with the changes in the 
loops identified previously to further enhance membrane 
binding.

Striking differences are also observed in the 
interaction of the nSH2 domain with p110 (Fig. 3B). In 
the oncogenic mutant, the nSH2 domain interacts with 
the C2, helical and kinase domains of p110α, influencing 
the conformation of these adjacent domains [10,26]. In 
the wild-type structure, the nSH2 is rotated 14° towards 
the kinase and C2 domains. This change results in an 
increased buried surface area between the nSH2 domain 
and p110α in the wild-type protein compared to the 
H1047R mutant (calculated with PISA for the wild-
type, 1083 Å2, and mutant, 820 Å2, considering only the 

Fig 2: Structural insights into catalysis. All domains are colored according to the scheme in Fig. 1A. (A) The relationship between 
the two substrates was inferred by modeling a molecule of ATP into the binding site (from the alignment with the p110γ-ATP complex 
structure, PDB ID 1E8X). The 3’-hydroxyl is oriented toward the ATP γ-phosphate. There are two histidine residues in the binding site, 
which may deprotonate the 3’-hydroxyl for catalysis. Distances are shown in cyan colored dashed lines. (B) The nSH2 domain locks the 
activation loop in an inactive conformation via a salt-bridge between K948 (p110) and E342 (p85α). (C) The C-terminal residues of the 
iSH2 (p85α residues 587-602) form a short helix (iα3) which forms an interface with the activation loop. A hydrophobic stacking interaction 
is made between F945 (p110α) and L598 (p85α). Two key interactions between p85α (E342 and N591) are made with K948 of the 
activation loop, locking it in an inactive conformation. (D) Schematic representation of the p110α/niSH2 heterodimer showing the general 
position of the hydrogen bond network that locks p110α in an inactive conformation. In this scheme, p110α is represented in white. The two 
hexagons represent the PIP2 binding sites. The binding of phosphotyrosine residues at the helical-nSH2 interface causes a conformational 
change that breaks interactions with the activation loop, thereby activating the enzyme. In the basal state, this interface is maintained by 
key hydrogen bonds or salt-bridges between the subunits, represented by the purple and green lines.
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residues present in both structures) [27]. This suggests that 
the inhibition of the nSH2 domain in the oncogenic mutant 
may be less potent than in the wild-type protein. The best 
explanation of these observations can be summarized 
as follows: the p110 domains differ in their interactions 
with their nSH2 domains in such a way that the wild-type 
structure shows extra interactions that result in a tighter 
contact and consequently greater inhibition (Table S4). 

In the helical domain of the wild-type structure, 
residues p110α K573 and p85α N417 form a hydrogen 
bond that is not present in the H1047 mutant, because 
p85α N417 interacts instead with the backbone of p110α 
G512 (Fig. 3C). A greater difference is observed at the 
interface between the C2 domain and nSH2, where a 
number of unique hydrogen bonds are made in each 
structure. The wild-type nSH2 domain makes three unique 
hydrogen bonds with the C2 domain, while the oncogenic 

mutant makes five unique hydrogen bonds with these 
domains, reflecting the shift in nSH2 conformation (Table 
S4). Perhaps the most striking difference is the two salt 
bridges between the kinase domain (R1023 and D1029) 
and nSH2 (E341 and R340) that are only observed in 
the wild-type protein (Fig. 3D). These same kinase-
nSH2 domain interactions are also present in the higher 
resolution structures published by Zhao et al. [20]. The 
lack of these key salt-bridges in the oncogenic mutant may 
reduce the nSH2 domain auto-inhibition in this mutant, 
resulting in higher lipid kinase activity. 

A second lipid binding site in PI3Kα

Unexpectedly, electron density for a second diC4-
PIP2 molecule was observed in the structure of the p110α/
niSH2 in complex with the lipid mimetic (Fig. S1B). This 

Fig 3: Wild-type p110α has more interactions with the nSH2 domain than the oncogenic mutant H1047R. Superposition 
of the wild-type crystal structure p110α/niSH2 (PDB ID 4OVU) with the p110αH1047R/niSH2 oncogenic mutant (PDB ID 3HHM), 
obtained by aligning the two p110α molecules. The wild-type p110 and p85α are shown in dark blue and teal, respectively, while the 
p110αH1047R/niSH2 mutant structure is displayed as light grey (p110α) and purple (p85α). (A) The largest difference between the iSH2 
domains is highlighted with a dashed line, measured between the Cα atoms of p85α 450 in each structure. (B) The 14° rotation of the nSH2 
domain is identified with an orange arrow. p110αH1047R is shown as a surface representation. (C) Differences in the interactions between 
the helical and nSH2 domains of the wild-type and oncogenic mutant structures. (D) Two key salt-bridges between the kinase domain and 
nSH2 are present in the wild-type but absent in the oncogenic mutant structure.
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second diC4-PIP2 molecule binds in a groove between 
the ABD, kinase and iSH2 domains (Fig. 4A,B). One of 
the 4’-phosphate oxygens is within hydrogen bonding 
distance of the backbone of G12 and E722 is 3.6 Å from 
the 1-phosphate. As with the catalytic PIP2 molecule, the 
truncated C4-hydrophobic tails are well positioned for 
membrane binding. The calculated electrostatic potential 
surface shows very few positive charges, possibly 
suggesting this may be a general lipid-binding site rather 
than a specific PIP2 binding site (Fig. 4C). Its function may 
contribute to anchoring PI3K to the cell membrane, but 
further work is necessary to validate this hypothesis. 

To determine whether PI3Kα could indeed bind an 
additional PIP2 molecule within the context of the lipid 
bilayer of a phospholipid membrane, we measured the 
ability of PI3Kα to bind and cluster BODIPY® FL-PIP2 
embedded within phospholipid vesicles. Gambhir et al. 
reported that at a concentration of 0.1% PIP2 in 100 nm 
diameter vesicles, the distance between PIP2 molecules 
is ~300 Å [28]. Self-quenching of the BODIPY® 
fluorescence occurs when PIP2 molecules are brought 
within 50-60 Å [29]. Therefore if PI3K binds and 
clusters two or more molecules of BODIPY®-FL-PIP2, 
fluorescence quenching should be observed. A similar 

Fig 4: Two PIP2 molecules bound to p110α/niSH2. p110α/niSH2 in complex with diC4-PIP2 is shown as a molecular surface with 
the kinase domain colored in purple, ABD domain in yellow, helical domain in pink, C2 in green, iSH2 in blue and nSH2 in orange. PIP2 
molecules are shown as sticks with grey carbons. (A) Two molecules of PIP2 bind at the interface between p110α and iSH2 of p85α. The 
distance between the two binding sites is ~21 Å. (B) A second molecule of PIP2 binds at the interface between the ABD (yellow) and kinase 
(purple) domains. (C) The surface of the second PIP2 binding site colored according to the electrostatic potential shows a very hydrophobic 
surface, suggesting possibly a general lipid-binding site rather than a specific PIP2 binding site. (Fig. 4D-G) PI3K clusters PIP2 in model 
membrane vesicles containing 50 nM of BODIPY®-FL-PIP2. The highest normalized emission intensity corresponds to the vesicles alone. 
Each subsequent spectrum represents an incremental addition of the corresponding protein. All experiments were performed with N=3. 
Graphs shown are representative and present the data from a single experiment.  (D) Wild-type p110α/p85α quenches 20% of the signal at 
4 µM. (E) Wild-type p110α/niSH2 quenches in a similar fashion to the full-length complex. (F) The displayed quenching by p110αE545K/
niSH2 is similar to wild-type p110α/niSH2. (G) p110αH1047R/niSH2 quenches the signal with a much higher potency than wild-type. Only 
500 nM of protein is required to quench the signal by 20%.
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approach has been used to demonstrate clustering of 
BODIPY®-FL-PIP2 by MARCKS, NAP-22 and myelin 
basic protein (MBP) as well as clustering of BODIPY®-
TMR-PIP2 by dynamin [28,30–32].

BODIPY®-PIP2 fluorescence quenching was 
measured using unilamellar vesicles with a diameter 
of 100 nm. The addition of wild-type, full-length PI3K 
(p110α/p85α) to vesicles containing BODIPY®-FL-PIP2 
resulted in quenching of the fluorescence signal in a 
dose dependent manner suggesting PI3Kα can bind and 
cluster two or more molecules of PIP2 (Fig. 4D). Titration 
of vesicles with p110α/niSH2 (Fig. 4E), a complex 
devoid of the RhoGap, SH3 and cSH2 domains of p85α, 
demonstrated fluorescence quenching to the same degree 
as full length p110α/p85α. There was relatively little 
quenching by p85α alone in the absence of p110α (Fig. 
S5). Taken together, these data suggest that there is an 
additional binding site for PIP2 on p110α or at the interface 
of p110α and p85α subunits of PI3Kα. 

We also examined the effects of two oncogenic 
mutations on the ability of PI3K to bind two PIP2 
molecules. In similar experiments, p110αE545K/niSH2 
showed comparable fluorescence quenching to wild-type 
p110α/niSH2, suggesting that this mutation does not affect 
PIP2 binding (Fig. 4F). Interestingly, p110αH1047R/
niSH2, demonstrated greatly increased quenching 
compared to wild-type p110α/niSH2 (Fig. 4G). Based 
on these results, along with previous data and inferences 
discussed in this work, it seems likely that this effect is due 
to increased membrane binding of the H1047R mutant. 

DISCUSSION

Binding of phosphotyrosine-containing effectors 
at the nSH2-helical interface activate PI3Kα catalysis 
[8,10]. The structures of wild-type p110α/niSH2 alone and 
in complex with diC4-PIP2 reported here provide insight 
into how binding of effectors may be communicated to 
the kinase domain. We have identified key interactions 
between the nSH2 domain and the activation loop, along 
with an iSH2-activation loop interface through which the 
phosphotyrosine binding event may affect the activation 
state of the kinase domain and increase kinase activity. 

In PI3K, lipid substrate specificity is determined 
by key positive residues on both the activation loop and 
the iSH2 domain which recognize the 4- and 5-phosphate 
groups of the lipid substrate, PIP2. The importance of these 
regions has previously been demonstrated biochemically 
[15,16]. H936, located on the activation loop, may act as 
a base to deprotonate the 3’-hydroxyl group as part of 
the phosphoryl transfer. Binding of a phosphotyrosine 
peptide at the helical-nSH2 interface would result in the 
dislocation of the nSH2 domain, releasing the activation 
loop to close in on the substrate and repositioning H936 to 
deprotonate the 3’-hydroxyl. 

The structure also shows, surprisingly, that PI3Kα 

binds an additional PIP2 molecule. This observation was 
confirmed by fluorescence quenching experiments. Further 
studies are required to ascertain the functional relevance of 
this additional binding site. Regardless, the identification 
of multiple lipid binding sites provides additional targets 
that may enable more selective inhibition among the 
various isoforms, or even between mutants and wild-type 
PI3Kα. 

METHODS

Protein expression for crystallization

Sf9 cells were grown in suspension culture in Sf-
900 III Serum Free Media (Invitrogen) supplemented 
with 0.5% penicillin-streptomycin at 27°C. At a density 
of 4 x 106 cells per milliliter, cells were infected with WT 
p110α (or p110αH1047R or p110αE545K) and p85α-
niSH2 (or p85α) viruses at a multiplicity of infection ratio 
of 3:2. Media was supplemented with a PI3K inhibitor as 
described in Mandelker et al. [10]. Cells were harvested 
72 hours after infection and the cell pellet collected 
through centrifugation at 900 x g. Protein purification was 
performed as previously described [10,17]. 

p85α Protein expression and purification

Full-length p85α was expressed heterogeneously 
in Escherichia coli as described previously. Briefly, cells 
transformed with the pGEX 4T plasmid containing an 
N-terminal glutathione S-transferase (GST) fusion-p85 
were grown at 37°C in LB medium. Expression was 
induced with 1 mM isopropyl β-D-1-thiogalactopyranoside 
(IPTG). Following 4 hours of induction at 37°C, cells were 
pelleted and stored at -80°C. Cell pellets were resuspended 
in PBS, 2 mM DTT, Roche complete EDTA-free protease 
inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, 
Germany), pH 7.4 and lysed using a microfluidizer 
(Microfluidics, Newton, MA). Clarified lysate was 
incubated with glutathione sepharose HP resin (GE 
Healthcare) in binding buffer (PBS, 2 mM DTT, pH 7.4), 
at 4°C for 2 hours with gentle agitation. The GST-tagged 
p85 was eluted with 10 volumes of elution buffer (50 mM 
Tris, 150 mM NaCl, 1 mM EDTA, and 10 mM reduced 
glutathione, pH 8.0). After thrombin cleavage, the p85 was 
purified by anion exchange Resource-Q anion exchange 
column (GE Healthcare). p85 was eluted using a linear 
gradient of 0 – 100% anion exchange buffer B (50 mM 
Tris, 500 mM NaCl, pH 8.0) over 60 column volumes. 
p85 of ≥ 90% homogeneity, was loaded onto a HiLoad 
26/60 Superdex 200 prep grade gel filtration column (GE 
Healthcare) equilibrated in gel filtration buffer (50 mM 
Tris, 300 mM NaCl, pH 8.5); fractions containing p85 of 
≥ 95% homogeneity, as determined by SDS-PAGE, were 
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pooled. p85 was concentrated to 15 mg/mL. 

Crystallization and data collection

Crystallization was performed as previously 
described and improved with successive rounds of 
macroseeding [17]. Crystals of p110α/niSH2 were soaked 
for one hour with 1 mM diC4-phosphatidylinositol-4,5-
bisphosphate (Echelon Biosciences). X-ray diffraction 
data were collected at beamlines X6A and X25 of NSLS at 
Brookhaven National Laboratory. The crystals diffracted 
to a resolution of 2.96 Å in the absence of diC4-PIP2 and 
3.37 Å in the presence of diC4-PIP2. Data were processed 
with HKL2000 (Table 1)[33].

Structure determination and analysis

The free structure was determined by using the 
coordinates of the previously determined WT p110α/
niSH2 (PDB ID 2RD0) [17] as a model. After rigid body 
and positional refinement, the program Coot [34] was 
used for model building. Initial refinement revealed that 
the nSH2 domain of p85α was present and ordered in the 
structure. Therefore, the nSH2 domain of p110αH1047R/
niSH2 structure (PDB ID 3HHM) [10] and the p85α nSH2 
crystal structure (PDB ID 2IUG) [35] were used as a guide 
to fit the additional electron density in this region. Iterative 
rounds of refinement using REFMAC 5.0 [36–38] yielded 
a final Rwork of 0.191 and an Rfree of 0.271 to 2.95 Å in 
the absence of diC4-PIP2 . The refined coordinates of the 
free wild-type structure were used as an initial model for 
the determination of the structure in the presence of diC4-
PIP2; refinement yielded an Rcryst of 0.23 and an Rfree of 
0.33. The overall quality of the final model was assessed 
by using the programs PROCHECK [39] and WHATIF 
[40]. Visualization, analysis and figure preparation 
were carried out with PyMOL (The PyMOL Molecular 
Graphics System, Version 1.5.0.1 Schrödinger, LLC). 
Sequence alignments were done using Clustal Omega and 
colored with EsPRIPT [41]. The calculation of the buried 
surface was done with the program PISA [27]. 

Preparation of BODIPY-FL-PIP2 vesicles

Unilamellar vesicles containing PC/PE/PS/
BODIPY-FL-PIP2/cholesterol with a molar ratio of 
54.9/25/5/0.1/15 were generated as follows: Lipids were 
dried under a stream of nitrogen in a glass test tube then 
held under vacuum for 24 hours to completely remove 
organic solvents. Lipids were then heated in the presence 
of assay buffer (50 mM Tris pH 7.6, 150 mM NaCl, 1 
mM EDTA, 2 mM DTT) at 50°C for 10 mins. Lipids 
were resuspended by vortexing then extruded through 
a polycarbonate filter with 100 nm pore sizes to yield 

unilamellar vesicles 100 nm in diameter. BODIPY®-FL-
PIP2 was purchased from Echelon Biosciences. All other 
lipids were purchased from Avanti Polar Lipids. 

Fluorescence quenching experiments

BODIPY®-FL-PIP2 containing vesicles were 
diluted to a final concentration of 50 μM lipid (50 nM 
BODIPY®-FL-PIP2) in assay buffer (50 mM Tris pH 
7.6, 150 mM NaCl, 1 mM EDTA, 2 mM DTT) for all 
assays. Ovalbumin (0.5 mg/mL) was added to the assay 
solution to minimize signal loss due to vesicle binding to 
glass surfaces during mixing and binding measurements. 
Fluorescence measurements were taken on a FluoroLog 
fluorometer from HORIBA scientific. BODIPY®-FL-
PIP2 was excited at 490 nm and emission readings were 
recorded from 500 to 600 nm. The spectral bandwidths for 
excitation and emission were 2 and 5 nm respectively. All 
binding experiments took place at 25°C in a quartz cuvette. 
Quenching signals were normalized to the fluorescence 
signal from the vesicle solution alone and adjusted for 
dilution due to the addition of the corresponding protein. 
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Data deposition footnote

p110α/niSH2 heterodimer structures, both free and 
in complex with diC4-PIP2 have been deposited in the 
Protein Data Bank (PDB IDs 4OVU and 4OVV).
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