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Genetic variants associated with Fabry disease progression 
despite enzyme replacement therapy
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ABSTRACT

Enzyme replacement therapy (ERT) has been widely used for the treatment of 
Fabry disease, a rare X-linked recessive disorder due to absent or reduced activity of 
lysosomal enzyme α-galactosidase A. It is still unclear why some patients under ERT 
show disease progression typically with renal, cardiovascular and cerebrovascular 
dysfunctions. Here, we investigated the involvement of drug absorption, distribution, 
metabolism, and excretion gene variants in response variability to ERT, genotyping 
37 patients with the Affymetrix Drug Metabolizing Enzyme and Transporters (DMET) 
Plus microarray. We found three single nucleotide polymorphisms in human alcohol 
dehydrogenase (ADH)4 gene (rs1126670, rs1126671, rs2032349) and one in ADH5 
gene (rs2602836) associated with disease progression (p < 0.05). Our data provide a 
basic tool for identification of patient with ERT non-response risk that may represent 
a framework for personalized treatment of this rare disease.
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INTRODUCTION

Fabry disease (FD, OMIM #301500) is a rare 
X-linked recessive disorder characterized by the 
absence or reduced activity of α-galactosidase A 
(α-GalA). This enzyme deficiency leads to deposition of 
globotriaosylceramide (Gb3) in body fluids and in the 
vascular endothelium of many organs [1]. The initial 
signs and symptoms appear in childhood or adolescence 
and include angiokeratoma, acroparasthesia, corneal 
opacities, hypohidrosis and gastrointestinal symptoms 
[2–5]. 

Vascular dysfunction is the main manifestation of 
later disease progression observed in FD patients, who 
typically manifest abnormalities of renal function, cardiac 
defects and cerebrovascular complications, resulting in 
early demise, typically in the fourth or fifth decade of life 
[6]. Enzyme replacement therapy (ERT) with recombinant 
α-GalA has been widely used for the treatment of FD 
patients. Clinical trials using agalsidase alfa (Replagal® 
Shire HGT) and agalsidase beta (Fabrazyme® Genzyme 
Corp) have shown that ERT is safe and well tolerated and 
is able to remove Gb3 inclusions from smooth muscle, 
epithelial cells, myocardium and kidney [7–12]. 
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However, it has become evident that the removal 
of stored Gb3 from endothelial cells does not prevent 
progression of vascular disease in all patients [13], 
specifically in advanced stage with renal impairment, 
suggesting a limited success in treatment. Involvement 
of modulators in the vascular pathophysiology of FD, 
unrelated to α-GalA and Gb3 accumulation, such as 
genetic and environmental factors, has been largely 
investigated. Several studies reported the association of 
single nucleotide polymorphisms (SNPs) or mutations 
in inflammatory and coagulation factor genes, such as 
interleukin 6 (c.−174G>C), endothelial nitric oxide 
synthase (p.Glu298Asp), the factor V (p.Arg506Gln), and 
the gene encoding the vitamin-K-dependent protein Z 
(c.−13A>G, IVS6 + 79G>A), with an increased risk 
of cerebral lesions and stroke in patients with FD  
[14–16]. In the present study, we investigated whether, 
in addition to α-GalA, genetic variants in genes encoding 
drug absorption, distribution, metabolism, and excretion 
(ADME) proteins exert some effect on response variability 
to ERT in a group of 37 FD patients. We compared the 
genetic profiling of 1936 variants across 231 genes in 28 
responders versus 9 non-responders using the Affymetrix 
Drug Metabolizing Enzyme and Transporters (DMET) 
Plus platform. 

RESULTS

Response to ERT

According to Mains Severity Score Index (MSSI) 
twenty-eight patients were classified as responders and 
nine as non-responders. At baseline total MSSI score in 
responders ranged from 3 to 45 (median 24). Twenty-
one, six and one patients showed mild, moderate and 

severe involvement respectively. In non-responders 
total MSSI score ranged from 14 to 36 (median 25). 
Six non-responders showed mild while three moderate 
involvement. Figure 1 shows significant changes in total 
MSSI score between responders and non-responders after 
at least 1 years of ERT (median duration of treatment 5 
years, range 1–10 years) (p = 0.0003). Five responders 
showed an improvement in total MSSI score (median 
change −1.8, ranged from −1 to −3), twelve worsened 
(median change +2.8, ranged from +1 to +8), and ten 
remained stable. In non-responders the total MSSI score 
increased with a median change of 9.5, ranged from +4 to 
+27. When we evaluated MSSI score for single clinical 
parameters (general, cardiovascular, neurological and 
renal), we observed a significant difference between the 
two groups in cardiovascular baseline MSSI score (p = 
0.001), also after Bonferroni correction (p = 0.006). At 
follow-up non-responders showed an increase in MSSI 
score for general (p = 0.002) and renal (p = 0.004) 
parameters in addition to cardiovascular (p = 0.0004) 
(Figure 2). No correlation has been observed between 
response to ERT and age, sex and treatment duration.

Genetic and statistical results

All 37 patients passed QC metrics and produced 
useable genotypes with an average call rate >95%. Among 
the 1936 SNPs included in the DMET assay, we used 
genotyping data from 993 polymorphic SNPs for statistical 
analysis. The rs953062 in CYP39A1 failed to meet Hardy-
Weinberg equilibrium (HWE) and thus was excluded from 
further analysis. Three SNPs in ADH4 gene (rs1126670, 
rs1126671, rs2032349) and one in ADH5 (rs2602836) 
resulted significantly associated with response to ERT 
(Table 1). The heterozygous genotypes GT (rs1126670), AG 

Figure 1: Changes in total MSSI scores among responders and non-responders at baseline (red) and after at least 
1 years of ERT (blue). The box plots show, median (rule), interquartile range (box), and minimum and maximum values (whiskers) 
(GraphPad Prism v.7). *p ≤ 0.05.
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(rs1126671) and CT (rs2602836) resulted more frequent 
in non-responders compared with responders, while the 
homozygous genotypes CC (rs2032349 and rs2602836) 
were more frequent in  responders. All related genotypes 
were confirmed with TaqMan SNP genotyping assays. 

DISCUSSION

ERT has been widely used for the treatment of FD. 
However, it is still unclear why some patients under ERT 
progress to renal, cardiovascular and cerebrovascular 
dysfunctions. Growing evidence is supporting the notion 
that Gb3 acts as a second messenger inducing oxidative 
stress and inflammation in FD vasculopathy [17–19]. In 
this context, Biancini et al. [20] found decreased levels 
of antioxidant defenses in FD patients while compared to 
controls: reduced glutathione and glutathione peroxidase 
activity and increased superoxide dismutase/catalase ratio 
in erythrocytes. Also, authors reported increased plasma 
levels of malondialdehyde and protein carbonyl groups in 
FD patients, as a consequence of higher lipid peroxidation 
and protein damage, compared to controls. However, the 
underlined molecular mechanisms that lead to cell and 
tissue damage in FD vasculopathy can be only partially 
explained by Gb3 accumulation, as demonstrating by 
lack of ERT responsiveness in FD patients despite Gb3 
removal.

In this study, we investigated the impact of ADME 
gene variants on treatment failure in a cohort of 37 FD 
patients under ERT. We found three SNPs in ADH4 gene 
(rs1126670, rs1126671, rs2032349) and one in ADH5 gene 
(rs2602836) associated with disease progression. Both 
genes belong to the human alcohol dehydrogenase (ADH) 
family clustered on chromosome 4q22-23 [21]. Active 
ADH enzyme is formed by a dimerization interaction 

between two of nine possible different subunits, each 
encoded by a unique gene. The ADH4 gene encodes the 
human π subunit and contributes to the metabolization of 
a wide variety of substrates, including ethanol, retinol, 
other aliphatic alcohols, hydroxysteroids, and lipid 
peroxidation products. This gene is expressed primarily 
in the liver and at lower levels in the gastrointestinal tract 
and spleen. The ADH5 gene encodes the χ  subunit and 
is involved in the metabolism of alcohols and aldehydes 
[22]. Unlike other members of the ADH family, ADH5 is 
ubiquitously expressed. The ADH4 rs1126671 at exon 7 
results in the amino acid substitutions Val-Ile and might 
affects the function of the π subunit. The rs1126670 at 
exon 6 and the rs2032349 at exon 3 are synonymous 
changes, respectively of Pro-Pro and Ser-Ser. The 
rs2602836 in ADH5 gene is located at intergenic level 
and could be important for gene expression level. In 
previous study, ADH variants have been implicated in the 
risk for alcohol and drug dependence [23], schizophrenia 
and autism [24], cancer [25, 26]. ADH genes are also 
involved in the metabolism of 4-hydroxynonenal (4-
HNE) to produce alcohol 1,4-dihydroxy-2-nonene (DHN). 
4-HNE is an aldehyde which can be formed as secondary 
product during lipid peroxidation and its levels increase 
significantly in plasma and tissues in disease associated 
with oxidative stress, such as atherosclerosis and diabetes, 
and neurological disorders [27]. Studies have found 
abundance of 4-HNE in the vascular endothelial and 
smooth muscle cells. Levels of 4-HNE in vasculature 
are not only dependent on the rate of lipid peroxidation 
and 4-HNE synthesis, but also on the removal of 4-HNE 
adducts by phase II metabolic pathways.  Because at 
high level 4-HNE can react with protein and DNA to 
form adducts, with consequent toxicity, it is evident that 
mutations and/or functional SNPs in genes involved in 

Figure 2: Changes of clinical parameters included in the MSSI score (general, neurological, cardiovascular, renal) 
among responders and non-responders at baseline and after at least 1 years of ERT (GraphPad Prism v.7). *p ≤ 0.05.
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4-HNE metabolism, such as ADH genes, could reduce the 
rapid intracellular metabolism of this compound and could 
be crucial for cell survival in a compromised oxidative 
stress system. ADH4 is highly active in the reduction of 
4-HNE, supporting a defense role for cells [28].

We suggest that SNPs in ADH4/ADH5 genes, 
observed in this study, could be considered a risk factor, 
linked to oxidative stress state, for disease progression 
in FD patients despite enzyme replacement therapy. 
However, for the absence of functional analysis and the 
small size of population our study should be considered 
a hypothesis generating study. Validation of our results 
has been planned in a larger and independent cohort 
to evaluate the correlation between 4-HNE plasmatic 
levels, ADH4/ADH5 genotypes and MSSI score index. In 
conclusion, our results provide a basic tool and framework 
in the light of personalized medicine for FD. 

MATERIALS AND METHODS

Patients

From January 2004 to May 2014, 37 patients with 
a clinical and molecular diagnosis of FD have been 
regularly monitored at the Pediatric Unit of Magna 
Graecia University of Catanzaro and at the Department of 
Nephrology of Federico II University of Naples. Of these, 
33 patients received infusions of agalsidase alfa 0.2 mg/
kg every other week, the remaining 4 were treated with 
agalsidase beta every 2 weeks at a dose of 1 mg/ kg. ERT 
with algasidase alfa was initiated 1–6 years (median:2.3) 
after diagnosis (median age 35.7 years, range 15–62 
years), while ERT with algasidase beta 1–4 years (median: 
3.2 years) after diagnosis (median age 41.7 years, range  
25–57 years). 

Clinical characteristics of patients are summarized 
in Table 2. Study protocols were approved by institutional 
ethics committee and written informed consent was 
obtained from all participants.

Treatment outcome

Disease progression and treatment effects in 
individual patients were assessed longitudinally as 
changes from baseline using MSSI [29]. The MSSI 
scoring system consists of four sections that include 
general, neurological, cardiovascular and renal signs and 
symptoms [30]. For each component, a single rating was 
assigned, and the corresponding points were summed 
to produce a total score. Individual scores were then 
combined to calculate the total score MSSI. MSSI was 
evaluated as mild for values between 0–20, moderate 
for values between 20–40, and severe for values higher 
than 40. Baseline MSSI values were obtained before 
treatment, follow up values after at least 1 year of ERT. 
Patients were classified as non-responders if MSSI 
values changes from mild (at baseline) to moderate or 
from moderate to severe. 

Methods

Genomic DNA was extracted from peripheral 
blood using Perfect Pure DNA Blood kit (5 Prime) and 
analyzed using the DMET Plus assay (Affymetrix, Santa 
Clara, CA), as previously described [31–35]. DMET 
Console version 1.1 (Affymetrix, Santa Clara, CA) was 
used to perform genotype calls from intensity array data 
using the Dynamic Genotype Boundaries algorithm. 
We applied a call rate less than 95% as exclusion 
criteria from further analysis. Association analysis 

Table 1: Genotypic distribution of SNPs in ADH4 and ADH5 among responders and non-responders 

SNP IDa Gene Chr Alleles
Genotype(no.)

P-value OR (95% C.I.)Responders
(N = 28)

Non-responders 
(N = 9)

rs2602836 ADH5 4 C/T*
 CC=15
CT=9
TT=4

CC=0
CT=8
TT=1

0.0052
0.0052

0.046 (0.0024 to 0.8636) 
16.89 (1.8251 to 156.2884)

rs1126670 ADH4 4 G/T*
GG=3
GT=8 
TT=17

GG=0
GT=9
TT=0

0.0002
0.0015

45.82 (2.3885 to 879.1319 
0.035 (0.0018 to 0.6540)

rs1126671 ADH4 4 A/G*
AA=4
AG=7  
GG=17

AA=0
AG=9
GG=0

0.0001
0.0015

54.47 (2.8144 to 1054.0945) 
0.035 (0.0018 to 0.6540)

rs2032349 ADH4 4 C/T*
  CC=27

CT=1
TT=0

CC=6
CT=3
TT=0

0.0375 0.074 (0.0065 to 0.8414)

SNPs were tested for association using Fisher’s exact test. SNPs and genes indicated were limited to those in which p < 0.05. 
SNP ID* is the SNP identifier based on NCBI dbSNP. *genotypes reported as reverse strand.
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was performed using DMET-Analyzer Tool software 
[36]. The observed genotype frequencies for each SNP 
were tested for HWE  in both groups, responders and 
non-responders, using χ2 test. Odds ratios (ORs) and 
corresponding 95% confidence intervals (CIs) were 
calculated for 2 × 2 table using Med Calc v12.3.0. 
Unpaired t-test and Bonferroni correction were done in 
GraphPad Prism 7 (GraphPad Software, Inc).

All genotypes of interest were validated using pre-
designed TaqMan SNP genotyping assays (Assay ID: 
C_519458_40, C_11941799_30, C_11941805_40 and 
C_9523470_10, Applied Biosystem). PCR amplification 
and endpoint plate read were carried out on a ViiA7TM Real-
Time PCR System (Applied Biosystem). All reactions were 
performed in duplicate in a final volume of 10 μL accordingly 
to the manufacturer’s recommendations. Mismatched 
genotypes, which constituted < 0.5% of the total number of 
duplicate genotypes performed, were discarded.
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