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F-box proteins in epigenetic regulation of cancer
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ABSTRACT
Epigenetic abnormalities are now realized as important as genetic alterations in 

contributing to the initiation and progression of cancer. Recent advancements in the 
cancer epigenetics field have identified extensive alterations of the epigenetic network 
in human cancers, including histone modifications and DNA methylation. F-box 
proteins, the substrate receptors of SCF (SKP1-Cullin1-F-box protein) E3 ubiquitin 
ligases, can directly and indirectly affect the balance of epigenetic regulation. In 
this brief review, we discuss our current understanding of F-box proteins in cellular 
epigenetic regulation and how dysregulation of these processes contribute to cancer 
development.

INTRODUCTION

Cancer poses a rising threat to human health, with 
the estimated number of Americans with a history of 
cancer predicted to surpass 20 million within the next 
10 years [1–3]. Cancer cells harbor global epigenetic 
alterations, which cooperate with genetic mutations in 
tumor development [4, 5]. Epigenetic abnormalities 
include global changes in DNA methylation, histone 
modification patterns, and altered expression profiles of 
chromatin-modifying enzymes. These changes contribute 
to the inappropriate activation or inhibition of various 
signaling pathways, which participate in cancer initiation, 
progression, invasion, and metastasis [6–8].

It is well documented that F-box proteins function 
as substrate receptors for the SCF-type E3 ubiquitin 
ligase, which plays important roles in regulation of 
cell proliferation [9, 10], migration and invasion [11–
13], metabolism [14, 15], angiogenesis [16, 17], cell 
death [18–20], and DNA damage response [21–23]. In 
addition, recent studies have reported putative roles for 
several F-box proteins in cellular epigenetic regulation, 
and dysregulation of these F-box proteins and their 
associated functions could contribute to tumorigenesis. In 
this review, we provide an overview, based on our current 
knowledge, of F-box proteins in the regulation of cancer 
epigenetics.

Classification: the F-box protein families

In mammals, the largest family of E3 ubiquitin 
ligases is the Cullin-RING ligases (CRLs), of which 
SCF ligases are the best characterized. Humans express 
69 different F-box proteins, which are categorized into 
three sub-families based on the presence of defined 
domains (Figure 1): FBXW- WD40 repeats, FBXL- 
leucine-rich repeats, and FBXO- undefined domains 
[24]. The FBXW subfamily is composed of 10 proteins, 
all of which contain WD40 repeat domains, including 
the well-studied β-TRCP1 (also known as FBXW1), 
FBXW7 (hCDC4) and β-TRCP2 (FBXW11). This 
subclass of F-box proteins mainly targets substrates 
involved in cell cycle regulation and tumorigenesis. 
The FBXL proteins, including SKP2 (also known as 
FBXL1), contain an F-box motif and a C-terminal Leu-
rich repeat domain. This subgroup has 22 members 
that could be tumor suppressors or oncoproteins. The 
remaining 37 F-box proteins are designated as FBXO 
proteins and make up the largest subfamily of F-box 
proteins. FBXO proteins contain the F-box motif and 
different uncharacterized functional domains. The 
protein-protein interaction domains of F-box proteins 
mediate substrate recognition, with each F-box protein 
targeting a unique set of substrates, each harboring 
unique ‘degron’ motifs.
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Functions: F-box proteins in regulation of cancer 
epigenetics

Epigenetic alterations promote altered gene function, 
contributing to malignant cellular transformation. F-box 
proteins have been shown to directly and indirectly affect 
cellular epigenetics. FBXL10 (also known as Ndy1 or 
KDM2B), an F-box protein that binds CpG-rich promoters 
in the mammalian genome, has been shown to exert both 
histone ubiquitylation and histone demethylase activities 
[25, 26]. FBXL10 contains an N-terminal Jumonji C 
(JmjC) domain, followed by a CXXC zinc finger, a 
plant homeodomain finger (PHD), an F-box domain, 
and 8 leucine-rich repeats. Several lines of evidence 
have shown FBXL10 is overexpressed in many human 
cancers including acute myeloid leukemia (AML) [27], 
seminomas [28] and pancreatic ductal adenocarcinomas 
[29]. Kottakis et al. [30] showed knockdown of FBXL10 
expression in a panel of human tumor-derived cell lines 
induced G1 phase delay and senescence and/or apoptosis. 
In addition, forced overexpression of FBXL10 in 
hematopoietic stem cells caused an acceleration of the 
G0/G1 to S phase transition and development of myeloid 
or B-lymphoid leukemia [31]. FBXL10 was shown to 
directly bind to CpG islands throughout the genome via 
its CXXC motif, and interact with Ring1B and Nspc1 to 
form a non-canonical Polycomb Repressive Complex 1 
(PRC1), which lead to the gene repressive modification 
H2AK119 mono-ubiquitination (H2AK119ub1) [25, 
32]. H2AK119ub1 is significantly correlated with 
poorer prognosis in patients with pancreatic ductal 
adenocarcinoma [25, 32]. PRC1-dependent H2AK119ub1 
also leads to recruitment of PRC2 and trimethylation of 
histone H3 on lysine 27 (H3K27me3) [33], which is a 
pivotal mark in the establishment of repressive chromatin. 
FBXL10 expression promotes cell proliferation and 
bypass of the senescence barrier in primary cells, in part by 
counteracting the senescence-associated down-regulation 
of EZH2, a PRC2 component, leading to global and Ink4a/
Arf locus-specific up-regulation of histone H3K27me3 
[34–36]. On the other hand, depletion of FBXL10 was 
shown to cause upregulation of Arf in MEFs, which 
suggests FBXL10 might accelerate cell proliferation 
by inhibiting the Arf tumor-suppressor pathway. In 
addition, FBXL10 was found to demethylate histone H3 
dimethylated at lysine 36 (H3K36me2), which is required 
for initiation and maintenance of acute myeloid leukemia. 
He et al. [37] found FBXL10 decreases transcription of 
the tumor suppressor p15Ink4b through demethylation 
of H3K36me2 near the gene promoter. Tzatsos et al. 
[29] demonstrated another potential mechanism by 
which FBXL10 could drive tumorigenesis. Utilizing 
gene expression arrays and ChIP assays, they showed 
FBXL10 repressed developmental genes by interacting 
with Polycomb Group (PcG) proteins at transcriptional 
start sites, and activated mediators of protein synthesis and 

mitochondrial function genes by interacting with the MYC 
oncogene and another histone demethylase FBXL11 (also 
known as KDM2B and JHDM1A).

FBXL11 and FBXL10 share conserved JmjC 
and CXXC domains, both of which can catalyze the 
demethylation of H3K36me2. Like FBXL10, FBXL11 can 
also bind CpG islands, though it preferentially recognizes 
non-methylated CpG DNA, and binding is interrupted 
by CpG methylation [38]. In addition, FBXL11 does 
not associate with PcG proteins so its function appears 
different from that of FBXL10. FBXL11 is frequently 
overexpressed in non-small cell lung cancers (NSCLCs) 
and this is correlated with poor prognosis [39]. FBXL11 
was also shown to be indispensable for tumorigenicity and 
invasiveness of FBXL11-overexpressing NSCLC cells, 
and knockdown of FBXL11 expression decreased the 
growth and invasive capabilities of NSCLC cells in mouse 
xenograft models. Mechanistically, FBXL11 was shown 
to activate ERK1/2 through epigenetic repression of dual-
specificity phosphatase 3 (DUSP3) via demethylation 
of H3K36me2 [39]. Another study showed FBXL11 
transcriptionally repressed histone deacetylase 3 (HDAC3) 
through demethylation of H3K36me2 in FBXL11-
overexpressing NSCLC cells [40]. Additionally, analysis 
of FBXL11 knockout mice showed its depletion resulted 
in significant loss of H2A ubiquitylation, indicating an 
important role in regulation of histone ubiquitination [41]. 
However, it is unclear how the ubiquitylation functions of 
FBXL10 and FBXL11 coordinate with their demethylase 
activities, though they are the only F-box proteins known 
to exhibit demethylase activity [42].

In addition to directly binding chromatin to 
regulate epigenetic modifications, F-box proteins can 
also indirectly influence cancer epigenetics through the 
direct targeting of epigenetic regulators for ubiquitin-
dependent proteolysis. KDM4A (also known as JMJD2A) 
is a demethylase that targets histone H3K9me2/3 and 
H3K36me2/3 leading to transcriptional activation. 
KDM4A has been shown to play an important role in 
gene expression [43], cellular differentiation [44, 45] 
and cancer [46]. Tan et al. [47] and Van Rechem et al. 
[48] showed that FBXO22 and FBXL4 independently 
regulate KDM4A proteolysis. FBXO22 regulates cellular 
histone H3 marks and KDM4A target gene transcription 
by controlling KDM4A protein levels. FBXO22 depletion 
was shown to stabilize KDM4A resulting in a significant 
reduction in the abundance of H3K9me3 and H3K36me3 
on promoters of KDM4A’s target genes. Since KDM4A 
plays a role in cancer development, FBXO22 seems to 
be a tumor suppressor. Furthermore, the F-box protein 
β-TrCP1 (FBXW1A) mediates the ubiquitin-dependent 
proteolysis of UHRF1, which plays a critical role in 
maintaining DNA methylation patterns during DNA 
replication and its deregulated expression correlates with 
cancer development. In this case, β-TrCP1 exerts its tumor 
suppressor function to maintain genomic stability by 
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targeting UHRF1 degradation in response to UV-induced 
DNA damage [49].

DISCUSSION AND CONCLUSIONS

Our current knowledge demonstrates F-box 
proteins play pivotal roles in the epigenetic regulation of 
cancer, mediated through E3 ubiquitylation-dependent or 
-independent mechanisms (Table 1). Since only a handful of 
epigenetic regulator F-box proteins have been functionally 
characterized, research in this field is limited and many key 
questions remain unaddressed. For example: Do additional 

F-box proteins also regulate cancer epigenetic regulation? 
What are the upstream signaling pathways that control the 
functions of F-box proteins involved in regulation of cancer 
epigenetics? How do the epigenetic regulatory functions 
of F-box proteins coordinate with their ubiquitylation 
functions? More importantly, the growing understanding 
of how F-box proteins target epigenetic regulators will 
facilitate the development of cancer therapeutics that target 
this protein family. Although challenging, pharmacological 
inhibitors of few F-box proteins have been developed, and 
show significant promise. For example, inactivation of the 
SCFSKP2 ligase by small molecule inhibitors has been shown 

Figure 1: The family of F-box proteins. The human F-box proteins have been classified into three subgroups according to specific 
substrate recognition domains.

Table 1: F-box proteins in regulation of cancer epigenetics
F-box proteins Targets Functions References 
FBXL10 CpG islands

and histone 
Histone H2A ubiquitylation and histone H3 
demethylation 

[25, 26, 32, 37] 

FBXL11 CpG islands
and histone 

Histone H2A ubiquitylation and histone H3 
demethylation 

[39, 40, 41] 

FBXO22 KDM4A Regulation of KDM4A stability and target gene 
transcription

[47] 

FBXL4 KDM4A Regulation of KDM4A stability [48] 
β-TrCP1 UHRF1 Maintenance of DNA methylation patterns under 

DNA damage 
[49] 
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to have therapeutic potential. This should serve to instigate 
researchers to search for small molecules that target 
oncogenic F-box proteins involved in cancer epigenetics.
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