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Renal oncocytoma characterized by the defective complex I of 
the respiratory chain boosts the synthesis of the ROS scavenger 
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ABSTRACT

Renal oncocytomas are rare benign tumors of the kidney and characterized by a 
deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) 
system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known 
about the underlying molecular mechanisms and alterations of metabolic pathways 
in this tumor. We compared renal oncocytomas with adjacent matched normal 
kidney tissues on a global scale by multi-omics approaches, including whole exome 
sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. 
The abundance of proteins localized to mitochondria increased more than 2-fold, the 
only exception was a strong decrease in the abundance for CI subunits that revealed 
several pathogenic heteroplasmic mtDNA mutations by WES. We also observed 
renal oncocytomas to dysregulate main metabolic pathways, shunting away from 
gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier 
molecules such as NAD+, NADH, NADP, ATP, and ADP were significantly higher in renal 
oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species 
scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our 
findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate 
ATP consuming processes to ensure a sufficient energy supply for the tumor.
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INTRODUCTION

Renal oncocytomas classified as benign renal 
epithelial neoplasms [1, 2] that are derived from 
intercalated cells comprise only a small subset (3% to 
9%) of all primary renal neoplasms, and can be cured 
by nephrectomy. The hallmark of renal oncocytomas is 
the accumulation of mitochondria [3] and the highly 
diminished or complete loss of complex I (CI) enzyme 
activity within the electron transport chain [4, 5]. CI 
deficiency is mainly due to mutations in mitochondrial 
DNA (mtDNA), particularly, but not exclusively, in CI 
genes [4, 6]. Most mtDNA mutations detected in renal 
oncocytomas are well above the threshold for a pathogenic 
phenotype. The level of heteroplasmy can vary between 
cells in the same tissue or organ, and the proportion of 
mutant mtDNA determines the penetrance and severity of 
disease expression [7]. Nonetheless, why and how mutated 
mtDNA specifically accumulates in oncocytomas still 
remains unclear.

Most mtDNA mutations in renal oncocytomas occur 
in homopolymeric G-C and A-T stretches [4], and defects 
in mtDNA replication (or lack of an efficient repair system) 
may induce randomly such genetic lesions during cancer 
progression. Low-heteroplasmy mutations may confer a 
selection advantage due to an increase in reactive oxygen 
species (ROS) levels, but when shifted to homoplasmy, 
mtDNA mutations appear to reduce tumor growth due to 
their effect on respiratory complex assembly [8, 9]. This 
would lead to oncocytic transformation, conferring, in 
most cases, an indolent, low-proliferating, non-invasive 
behavior. Most notably, the main source of ROS are CI 
and CIII of the respiratory chain [10, 11]. CI-dependent 
increase of ROS levels was shown via the NDUFS1 
subunit, with the loss of NADH dehydrogenase activity 
as a caspase-3 target [12], or via a caspase independent 
pathway, where granzyme A (GZMA) cleaves the CI 
subunit NDUFS3 [13].

Hypoxia-inducible factor 1-alpha (HIF1A) is a 
master transcriptional regulator of the adaptive response 
to hypoxia, and more than 100 genes involved in 
glucose transporters, glycolytic enzymes, and vascular 
endothelial growth factor are known to be activated upon 
its stabilization [14]. Strikingly, however, oncocytic 
tumors are non-responsive to hypoxia due to HIF1A 
chronic destabilization [15]. Since mtDNA mutations 
in CI that cause deficient CI enzyme activity and 
increased mitochondrial mass are characteristics of renal 
oncocytomas. The latter serve as an ideal tool to study the 
relationship between mtDNA mutations of the oxidative 
phosphorylation (OXPHOS) system and an indolent 
cancer phenotype. Therefore, we attempted to investigate 
which metabolic pathways are altered in this chronic 
metabolic deficiency as a consequence of compromised 
mitochondrial respiration in renal oncocytomas on a 
global scale.

To fill in the aforesaid knowledge gaps, we 
undertook a multi-‘omics’ survey to compare renal 
oncocytomas and patient-matched adjacent healthy 
kidney tissues. Whole exome sequencing (WES) led to 
the identification of cancer-specific mtDNA mutations 
that affect protein function. The proteome survey 
identified increased mitochondrial mass, except for CI 
subunits in renal oncocytomas. This was in contrast to 
transcriptome data, where CI genes were increased [16], 
leading to the conclusion that the low level heteroplasmic 
mtDNA mutations are causative for disassembled and 
nonfunctional CI. Surprisingly, pathways which could 
compensate defective aerobic respiration, such as the 
pentose phosphate pathway was significantly diminished. 
Likewise, the gluconeogenetic enzyme fructose-1,6-
bisphosphatase 1 (FBP1), which was previously shown 
to oppose renal cell carcinoma (ccRCC) progression [17] 
was more than 200-fold decreased in renal oncocytomas. 
However, our most striking finding was the tremendous 
increase of the ROS scavenger glutathione (GSH) that 
could have been triggered due to the consequence of 
high ROS production owing to defective respiration, and 
can be regarded as a new metabolic hallmark in renal 
oncocytomas. Thus, stalled glycolytic flux with defective 
mitochondrial respiration and high GSH levels might 
determine the benign and dormant fate of this tumor and 
oppose progression to malignant states.

RESULTS

WES analysis indicates increased number of 
nuclear mutations in renal oncocytomas

To gain insight on the molecular cause of the CI 
enzyme activity decrease in renal oncocytomas [4, 5], we 
performed WES of renal oncocytomas and their matching 
healthy kidney tissues with the aim to isolate all somatic 
mutation signatures showing 200X minimum sequencing 
coverage across the targeted bases, and minimum read 
depths of 61.21X (Supplementary Table 1). In total, we 
identified 1597 nuclear sequence variations, of which 
799 were silent, 760 missense, 19 nonsense, 11 frame-
shift deletions, and 8 frame-shift insertion mutations. 
The number of tumor-specific nuclear mutations (except 
silent ones) in oncocytomas were in the range of 65 to 
329 (median of 78) per renal oncocytoma (Supplementary 
Table 2). Majority of the nuclear point mutation spectrum 
includes C>A (400), C>G (426), C>T (1696), T>A (259), 
T>C (1228), and T>G (274). With respect to previous 
observation [16], the frequency of transition in our 
European patient cohort with renal oncocytomas tested 
was 2-fold higher than that of transversions, whereas 
C>T (p = 1.03 x 10-6) and T>C (p = 2.02 x 10−2) were 
significantly enriched in oncocytomas (Supplementary 
Figure 1, Supplementary Table 3). While the “mutational 
signature” C>T has been found in all cancer types and is 
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the resultant of an endogenous mutational process initiated 
by spontaneous deamination of 5-methylcytosine [18], the 
correlation of C>T transitions with age [19] is indicative 
of a slow growth of renal oncocytoma.

Copy number variation (CNV) indicated several 
chromosomal losses (Supplementary Figure 2, 
Supplementary Table 4), similar to a previous report 
[16]. These include four male patients losing their X 
chromosome, while 2 out of 6 patient cases partially lost 
chromosome 1. Patient case 2 featured the highest number 
of losses on chromosomes 1, 14, 19, 21, and a partial loss 
of chromosome 7. The sex chromosome loss suggests an 
involvement of pseudo autosomal regions, which have been 
the prime candidates for harboring tumor suppressors [20].

We have identified recurring somatic mutations 
compared to the previous report on an American cohort 
[16] (Supplementary Figure 3). Insertions in the gene 
CRIPAK (c.76_77insCA p.S26fs; c.323_324insCA 
p.L108fs) and single nucleotide variation (SNV) mutations 
in the gene DRD5 (p.T297P) were identified in both 
European and American cohorts. As a negative regulator 
of PAK1 (p21-activated protein kinase 1), CRIPAK is 
hormone sensitive and was shown to have deleterious 
mutations in squamous cell- and adenocarcinoma [21] and 
was further confirmed in other cancer types (COSMIC: 
COSG57208). These recurring somatic mutations in 
European and American cohorts may provide potential 
candidates for the identification of renal oncocytoma 
diagnostic biomarkers.

To gain further insight on how mutated genes 
affecting the renal oncocytoma converge at the protein 
complex level, we employed a network based approach 
by mapping subunits of the human protein complexes that 
were previously reported [22] or predicted using Markov 
Clustering algorithm [23] from large-scale protein-
protein interactions conducted in human embryonic 
kidney 293 cells [24] to the somatic mutations (excluding 
799 silent mutations from the total 1597 nuclear 
mutations identified) occurring in renal oncocytomas 
(Figure 1; Supplementary Table 5). In total, we were 
able to identify 227 renal oncocytoma-associated 
mutations in 78 distinct human protein complexes, 
encompassing 182 genes encoding for mitochondrial, 
and 840  non-mitochondrial proteins. Among the 
putative complexes compiled, 37 complex subunits with 
mutations relevant to renal oncocytomas were currently 
functionally unannotated in CORUM (a manually curated 
repository of experimentally characterized human protein 
complexes), whereas the remaining macromolecular 
assemblies includes, for example, those implicated 
in cellular metabolism (e.g. Artemis/DNA-dependent 
protein kinase- [25], pyruvate dehydrogenase-, succinyl-
CoA synthetase complexes, and oncocytoma genesis 
(e.g. missense mutations in DCLRE1C and frame shift 
mutations in PRKAB1).

The gene artemis (DCLRE1C) is one of the 
subunits of Artemis/DNA-dependent protein kinase 
complex, whose mutations have been shown to cause 
hypersensitivity to DNA double-strand breaks [25], and 
interacts with protein kinase AMP-activated non-catalytic 
subunit ß1 PRKAB1 [24]. We have identified missense 
mutations in DCLRE1C and frame shift mutations 
in PRKAB1 from renal oncocytoma patient samples. 
Consistent with the previous studies [16], AMP-activated 
protein kinase (AMPK) plays crucial roles in oncocytoma 
genesis, and this complex along with the mutation in 
its non-catalytic subunit PRKAB1 could be involved in 
the progression of renal oncocytoma, as it governs the 
catabolic state upon stress by switching off many ATP-
consuming processes.

Identification of pathogenic low level 
heteroplasmic mtDNA mutations in renal 
oncocytomas

Since oncocytomas with mtDNA mutations feature 
respiratory defects [4], we examined the assembly of 
mitochondrial WES reads and found adequate coverage 
and quality for a reliable mtDNA reconstruction and 
variant calling (Supplementary Table 6). Comparison of 
mitochondrial WES reads between renal oncocytomas and 
healthy kidneys detected a 1.6-fold increase of mtDNA 
in renal oncocytomas, fitting well to our proteomics data 
(Figure 2A) with a 2.2-fold increase of proteins localized 
to mitochondria.

Comparison of healthy kidney tissues and matched 
renal oncocytomas also identified potentially inherited and 
tumor-specific mtDNA mutations. In total, 54 germline 
mutation events shared between matched healthy-tumor 
pairs recognized by the revised Cambridge Reference 
Sequence (NC_012920.1) [26], the Reconstructed Sapiens 
Reference Sequence [27], and by the Macro Haplogroup 
Consensus Sequence [28] (Supplementary Table 6, 
Germline_mutations). The Heteroplasmic Fractions (HFs) 
of germline mtDNA mutations were concordant between 
tumor and normal tissues, suggesting these events did not 
undergo changes during tumor development, following 
cell transformation. Among the 54 germline mutation 
events, 32 (59.26%) haplogroup defining variants were 
not considered in the subsequent annotation steps, 
whereas with the 22 remaining variants, 6 were non-
synonymous substitutions (36.4%) (Supplementary Table 
6, GM_NonSyn), 8 synonymous (27.2%), and 8 (36.4%) 
non-protein coding class (Supplementary Table 6, GM_
noncodingprotein). However, when considering the 
disease score and nucleotide variability thresholds [28], 
only 1 (7874A>G/MT-CO2) out of 6 non-synonymous 
variants were potentially pathogenic (Supplementary 
Table 6, GM_NonSyn sheet). This homoplasmic mutation, 
neither contributed in defining other haplogroups nor was 
annotated in MitoMAP [26], implying that it was novel, 
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Figure 1: Genes with renal oncocytoma somatic mutations were mapped to previously published protein complexes 
identified by two biochemical techniques: AP-MS (Affinity-Purification Mass Spectrometry) [24] and BM-MS (Bio 
Macromolecular-Mass Spectrometry) [22]. Protein complexes with non-silent mutations, including missense and frame-shift 
mutations were numbered and described in Supplementary Table 5. Within each complex, genes with renal oncocytoma somatic mutations 
were denoted in red, and nucleus encoded mitochondrial proteins were marked with squares. The thickness of edges between protein 
complexes indicate number of inter protein complex PPIs.
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and had very low nucleotide variability (0.00031) as 
estimated in the HmtDB database [29] and in the tracks 
of MSeqDR Mitochondrial Disease pathogenic mutation 
variant [30].

In the case of 8 variants with non-protein-
coding events, 7 mapped in the MT-DLOOP region 
(Supplementary Table 6, GM_noncodingproteins), which 
is a hot spot for mtDNA alterations as it contains two 
hypervariable regions (HV1 at positions 16024–16383 
and HV2 at positions 57–372), likely of little functional 
impact. The other variant mapped within the tRNA-Ala 
locus, i.e. the m.5628T>C highlighted in yellow in the 
GM_noncodingproteins sheet. This variant was considered 
as damaging by RNA pathogenicity scores provided by 
MToolBox, a scoring system normalized to a 0-1 range, 
derived from the literature and different databases. In 
this case, the variant m.5628T>C had a RNA prediction 

score equal to 0.65, greater than the fixed pathogenicity 
threshold 0.35 [31].

Additional examination of renal oncocytomas 
detected a total of 195 tumor-specific mutations 
(Supplementary Table 6, Somatic mutations) based on the 
three mitochondrial reference sets used (indicated above) 
and did not contribute to define haplogroups. Nearly 
one quarter (~17.9%, 35) of the 195 were synonymous, 
two-thirds (32.3%, 63) non-synonymous substitutions, 
and less than 10% (19) were non-sense mutations, 
causing a stop/gain mutation (Supplementary Table 6, 
SM_stopgain). Among the non-synonymous variants, 
most of them (54 out of 63; 85.7%) showed a disease 
score higher than threshold. Of these, 49 (77.8%) had a 
nucleotide variability lower than the threshold cut-off of 
0.026 defined by Santorsola et al. (26) (Supplementary 
Table 6, SM_NonSyn). Notably, among these, only one 

Figure 2: Evaluation of metabolome and proteome profiles by PCA and the distribution of mitochondrial- and non-
mitochondrial proteins in renal oncocytomas (RO) versus controls. Oncocytomas have a higher mtDNA content, as calculated 
from WES data (mean 1.79 ± 0.64 SD), a higher amount of mitochondrial protein abundances, (mean 2.22 ± 1.63 SD), and an unchanged 
non-mitochondrial protein abundance (mean 0.97 ± 0.06 SD) (A). Renal oncocytomas (O, orange, n=6) and kidney (K, blue, n=6) specimen 
are spatially separated on (B) the proteome profile and (C) the metabolome profile. The histogram (D) (70 bins) shows the number of 
protein counts versus the log2 fold changes of proteins comparing oncocytoma versus kidney samples. Proteins located in the mitochondria 
are indicated in orange (Human Mito Carta, 1158 entries), whereas non-mitochondrial proteins are shown in blue. A total of 1823 proteins 
are displayed. A normalized histogram is shown for non-mitochondrial (E) and mitochondrial proteins (F). Exceeding’s of one STD are 
indicated in blue and red for proteins considered down - and up-regulated, respectively.
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mutation was homoplasmic, namely the m.14568C>A/MT-
ND6 (Supplementary Table 6, SM_NonSyn highlighted in 
green). All the other somatic non-synonymous variants 
had very low HF values (range between 0.006 and 0.069). 
Concerning the stop/gain mutations, 8 occurred in CI 
subunit encoding genes (one in MT-ND2 and 7 in MT-
ND5), 8 in the cytochrome B (MT-CYB), 2 in cytochrome 
c oxidase subunits (one in MT-CO1 and one in MT-CO3) 
and one in complex V (MT-ATP6) (Supplementary Table 6, 
SM_stopgain). Strikingly, none of the stop/gain mutations 
was homoplasmic and the HF values did not exceed 0.063.

Furthermore, nearly half of the non-protein 
coding alterations (78 of 195; 40%) were found in renal 
oncocytomas, of which two-thirds (52 out of 78) mapped 
within the regulatory MT-DLOOP region. Of these, 48 
variants did not define other haplogroups and mostly 
occurred in conserved sites featuring very low nucleotide 
variability, ranging from 0 to 0.05 (Pesole and Saccone, 
2001) (Supplementary Table 6, SM_noncodingproteins). 
Moreover, three subjects harbored a mutation in tRNA 
genes, namely the m.4428G>A/MT-TM, m.1611G>A/MT-
TV and the m.15991C>T/MT-TP, showing null nucleotide 
variability. Noteworthy, the mutation m.15991C>T 
in tRNA-Pro (MT-TP) in the anticodon region of the 
secondary structure of the tRNA displayed a significant HF 
of 0.57 (Supplementary Table 6, SM_noncodingproteins).

Ribosomal RNA genes were also found to harbor 22 
substitutions. Ten of them were in the MT-RNR2 and 12 
in the MT-RNR1 gene. By taking into account the PhyloP 
[32] and PhastCons [33] RNA conservation scores, only 
6 rRNA variants resulted to be phylogenetically more 
conserved than the others (Supplementary Table 6, SM_

noncodingproteins). While no homoplasmic tumor specific 
mtDNA frame shift mutations in protein coding genes 
were observed, as reported previously [4, 5], a number of 
distinct pathogenic low level heteroplasmic mutations with 
cumulative effect was identified, leading to disassembled 
CI. Interestingly, no mutations in nuclear encoded CI 
subunits, composed of 46 proteins, were identified, hinting 
to mtDNA specific feature for renal oncocytomas.

Renal oncocytomas show increased 
mitochondrial mass distinct from healthy tissues

To elucidate the changes in the relative abundance 
of the proteome between renal oncocytomas and matched 
adjacent healthy kidney tissues, we employed a shotgun 
liquid-chromatography (LC)-MS/MS framework and 
identified a total of 6,097 human proteins and quantified 
nearly half (43%, 2,633) of them (Supplementary Table 7). 
The reproducibility of the biological replicates was tested 
by Pearson correlation and visualized in a multi-scatter 
plot (Supplementary Figure 4). The Pearson correlation 
(r = 0.7-0.9) was consistent between replicates, indicating 
the robustness of the data quality. Application of stringent 
cut-off (values present in at least 3 out of 6 samples in 
each renal oncocytoma patient tissue group) resulted in 
1823 quantified proteins relative to tissues from healthy 
subject controls. Among those proteins identified in 
renal oncocytomas, 141 showed significant differences 
in protein abundance (67 up- and 74 down- regulated; 
Supplementary Table 8A). In order to calculate ratios for 
the highest regulated proteins where the protein abundance 
was below the detection limit in one group, we replaced 

Table 1: Significant pathways of proteome data by Gene set enrichment analysis (GSEA): Collapsedlist of 
significantly regulated KEGG and Reactome pathways of oncocytoma and kidney samples

Up-regulated pathway in renal oncocytoma Size NES NOM p-value FDR q-value

Mitochondrial protein import 27 2.24 <0.0001 0.00

TCA cycle 17 1.80 0.0020 0.04

Pyruvate metabolism 8 1.72 0.0020 0.11

TCA cycle and respiratory electron transport 66 1.69 <0.0001 0.10

Down-regulated pathway in renal oncocytoma

Pentose phosphate pathway 8 -1.89 <0.0001 0.08

Cell cell communication 17 -1.84 0.0019 0.11

Fructose and mannose metabolism 7 -1.80 <0.0001 0.11

Glycine serine and threonine metabolism 6 -1.80 <0.0001 0.09

Biological oxidations 13 -1.76 0.0040 0.14

List was manually reduced based on multiple matching of same gene sets, the entire list is shown in Supplementary Table 9. 
Size, number of proteins in the pathway; NES, normalized enrichment score.
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these missing values from normal distribution, resulting in 
1462 protein groups (Supplementary Table 8B).

The proteome profiling further revealed renal 
oncocytomas and healthy adjacent kidney tissues 
as distinct groups in a principal component analysis 
(Figure 2B). Statistical analysis revealed a non-Gaussian 
distribution of the proteome. A shift to increased 
mitochondrial protein amount was observed, the hallmark 
of renal oncocytomas (Figure 2D). A normalized 
histogram is shown for non-mitochondrial (Figure 2E) 
and mitochondrial proteins (Figure 2F) individually. 
Based on the total abundance of mitochondrial and non-
mitochondrial proteins, we calculated a 2.2-fold increase 
of mitochondrial proteins, in line with the 1.8-fold increase 
in mtDNA amount identified in our WES data (Figure 
2A). Also, the protein abundance for proteins affected by 
CNV loss was significantly lower compared to random 
values (p= 0.011, Supplementary Figure 5), suggesting a 
proportional relation between gene dose and the protein 
abundance.

Renal oncocytomas feature a significant increase 
of metabolic processes localized in mitochondria, 
with the exception of CI activity

We then employed a gene set enrichment analysis 
(GSEA) [34] to assess, if a prior defined sets of proteins 
show statistically significant, concordant differences 
between renal oncocytomas and healthy kidney 
tissues. GSEA revealed four significantly up- and five 
significantly down-regulated KEGG and Reactome 
pathways in renal oncocytomas versus controls (p ≤0.01 
and FDR ≤ 0.15; Table 1, Supplementary Table 9). These 
include mitochondria related pathways, such as the TCA 
cycle, pyruvate metabolism, and protein import that 
were significantly up-regulated in renal oncocytomas 
(Table 1). Since GSEA recognizes pathways regulated in 
one direction to be significant, the respiratory chain with 
CI regulated in the opposite way compared to all other 
OXPHOS complexes was therefore not significantly 
altered in renal oncocytoma.

A PPI network of up-regulated proteins, defined 
by one standard deviation (SD) of the mean was created 
using the online platform http://string-db.org [35], and 
displayed once more the huge impact on mitochondrial 
protein abundances, such as proteins involved in the 
55S mitochondrial ribosome, TCA cycle, fatty acid 
metabolism, mitochondrial protein transport, and 
respiratory chain (Figure 3A), except CI (Figure 3B) in 
renal oncocytomas. To elucidate which mitochondrial 
proteins were regulated, the data were split into two 
sets, mitochondrial and non-mitochondrial proteins. 
Proteins were only defined as differentially regulated if 
exceeding a value of one SD from the mean within each 
data set. Mitochondrial proteins were therefore regarded 
as up-regulated if the log2 fold change was >2.041 and 

down-regulated if the change was <-0.6267. For non-
mitochondrial proteins, cut-offs were set to 0.9226 and 
-0.9868 for up- and down-regulation, respectively. These 
identified proteins were highlighted in a PPI network 
figure as up- (Figure 3A) and down-regulation (Figure 
3B).

A detailed analysis of OXPHOS complexes revealed 
a significant down-regulation of CI subunits and up-
regulation of all other complexes and the ATPase (Figure 
4), in agreement with our previously detected enzyme 
activities in renal oncocytomas [4]. In particular, all 
identified assembly proteins were up-regulated, including 
those of complex I (Figure 4), likely indicating an ongoing 
compensatory effort in oncocytic cells.

Up-regulation of anti-mitochondrial ROS 
defense in renal oncocytomas

Proteins involved in ROS detoxification were up- 
as well as down-regulated. For example, mitochondria-
localized glutathione peroxidase 1 (GPX1, 3-fold) 
and superoxide dismutase 2 (SOD2, 6-fold) were up-
regulated in renal oncocytomas, whereas cytoplasmic 
glutathione S-transferase P (GSTP1, 2.3-fold), 
glutathione peroxidase 3 (GPX3, 8-fold), superoxide 
dismutase (SOD1, 2-fold), and extracellular superoxide 
dismutase (SOD3, 35-fold) were down-regulated (Figure 
3A and 3B, Supplementary Table 8). These results 
suggest the occurrence of a ROS-mediated stress within 
mitochondria due to a respiratory dysfunction, and a 
consequent increase of detoxifying enzymes within 
the specific subcellular compartment. Furthermore, we 
identified a gap in the gamma-glutamyl cycle, a pathway 
for the synthesis and degradation of glutathione. All 
identified enzymes were basically unchanged, except 
gamma-glutamyl transpeptidase 1 and 5 (GGT1, 50-
fold; GGT5, 15-fold), which were significantly down-
regulated in renal oncocytomas. Betaine-homocysteine 
methyltransferase (BHMT, 200-fold), an enzyme 
that catalyze the remethylation from homocysteine 
to generate methionine was significantly decreased. 
Typically, homocysteine do not contribute to the 
conversion of dimethylglycine and methionine, instead, 
they can be used to fuel GSH synthesis [36, 37]. Thus, 
the breakdown of GSH is interrupted and the synthesis 
of GSH is augmented.

Renal oncocytomas decrease their glycolytic 
capacity

An interesting question was how renal oncocytomas 
regulate their glycolytic capacity in the light of 
compromised CI. GSEA revealed significant down-
regulated pathways such as the pentose phosphate 
pathway, fructose and mannose metabolism, glycine, 
serine and threonine metabolism, biological oxidations, 
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Figure 3: PPI network of proteins (A) up- and (B) down-regulated in renal oncocytoma. (A) The PPI network of 238 proteins with a 
high confidence level (0.7), which exceeded one STD from the median, shows 151, proteins with at least one connection (white lines). 
Unconnected entries have been removed. Significant (p-value < 0.01) protein differences are represented as a square node, others as a circle 
shape. Small nodes indicate proteins with a z-score < 1 in the mitochondrial data set (Figure 2E), which were therefore not considered as 
regulated. The density of each protein node resembles the log2 fold change of oncocytoma versus kidney tissue, ranging from very light 
(0.92) to very dark (5.84). Identified clusters are indicated in color. Reactome pathways: mitochondrial protein transport (blue), Fatty acid 
metabolism (ochre), TCA cycle (green) and OXPHOS (red). Manual cluster: mitochondrial ribosome (turquoise), ROS related proteins 
(pink) and V-ATPase (purple). (B) The PPI network of 222 proteins with a high confidence level (0.7), which exceeded one STD from the 
median, shows 122, proteins with at least one connection (white lines). Unconnected entries have been removed. Significant (p-value < 
0.01) protein differences are represented as a square node, others as a circle shape. The density of each protein node resembles the log2 fold 
change of oncocytoma versus kidney tissue, ranging from very light (-0.67) to very dark (-5.65). Identified clusters are indicated in color. 
Reactome pathways: cell cell communication (green), muscle contraction (purple) and OXPHOS (red). KEGG pathway: glycolysis (ochre). 
Manual cluster: ROS related proteins (pink) and collagen (blue).
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and cell communications (Table 1, Supplementary Table 
9). Fructose-1, 6-bisphosphatase (FBP1), a rate-limiting 
enzyme in gluconeogenesis was 200-fold down-regulated 
in renal oncocytoma. FBP1 was shown to exhibit dual 
tumor-suppressive functions, in gluconeogenesis as well 
as a HIF1A inhibitor. An intriguing regulatory relationship 
between FBP1 and hypoxic responses was shown in 
ccRCC to oppose carcinoma progression [17]. Consistent 
with this, fructose-bisphosphate aldolase B (ALDOB, 275-
fold) and sorbitol dehydrogenase (SORD, 32-fold) were 
down-regulated. The highest down-regulated enzymes 
of the “glycine serine and threonine metabolism” were: 
phosphoglycerate dehydrogenase (PHGDH, 22-fold), 
serine hydroxymethyltransferase 1 (SHMT1, 60-fold), 
betaine-homocysteine methyltransferase (BHMT, 200-
fold), glycine aminotransferase (GATM, 300-fold), and 
agmatinase (AGMAT, 175-fold). The down-regulation of 
these enzymes might explain the significant lower amount 
of several amino acids in renal oncocytomas.

Additionally, the glycolytic enzyme alpha-enolase 
(ENO1, 2-fold) which produces phosphoenolpyruvate was 

decreased in renal oncocytomas. Pyruvate carboxylase 
(PC, 40-fold), which transfers a carboxyl group to pyruvate 
to form oxaloacetate (OAA) and phosphoenol pyruvate 
carboxykinase (PCK1, 5-fold and PCK2, 9-fold), which 
catalyze the conversion of OAA to phosphoenolpyruvate 
(PEP), the rate-limiting step in the metabolic pathway 
that produces glucose from lactate were two of the most 
decreased enzymes abundant in renal oncocytomas. Thus, 
the metabolic flux shunts away from the TCA cycle, 
resulting in glycolysis and gluconeogenesis to entirely 
stall.

The pathway reductive carboxylation of glutamine-
derived α-ketoglutarate for de novo lipogenesis is active 
in most cell lines and depends on cytosolic isocitrate 
dehydrogenase 1 (IDH1) [38]. We found IDH1 to be 
25-fold decreased, whereas the mitochondrial encoded 
enzymes were all increased, IDH3B, 20-fold; IDH3G, 
6-fold; IDH3A, 3-fold; IDH2, 3-fold. This indicates 
that reductive carboxylation of glutamine does not play 
a role as energy source in renal oncocytomas. Likewise, 
transketolase (TKT) and transaldolase (TALDO) are two 

Figure 4: Abundancies of the OXPHOS protein complexes. Illustrated are schemes of the four OXPHOS complexes and the 
ATPase, embedded in the mitochondrial membrane with additional lists of identified subunits and assembly factors and the according log2 
fold change between renal oncocytoma versus kidney samples. The color gradient intensity in the subunit expresses the low (blue) or high 
(red) abundance of this protein in renal oncocytoma. The operators overlaying the OXPHOS indicate complexes II, III, IV and the ATPase 
being generally high abundant, whereas subunits of complex I are found in reduced amounts. Bold written genes refer to assembly factors, 
not part of the final complex, * are significantly regulated proteins. The OXPHOS scheme was adapted from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG).
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major enzymes for the non-oxidative branch of pentose 
phosphate pathway (PPP). In rapidly proliferating cancer 
cells, the non-oxidative PPP can be accelerated to meet 
the increased needs of ribonucleotides through elevated 
expressions of TKT and TALDO [39]. We found both 
enzymes not to be regulated, indicating that the level 
of ribonucleotides in renal oncocytoma is constant, 
which could be a barrier for the progression of renal 
oncocytomas.

Mitochondrial creatine kinase S-type (CKMT2, 57- 
fold) and U-type (CKMT1A, 18-fold) are responsible for 
the energy and metabolite transfer between mitochondria 
and cytoplasm (i.e. the creatine phosphate shuttle), and 
were increased in renal oncocytomas. Both are reversibly 
catalyzing the transfer of phosphate between ATP and 
various phosphogens, thus playing a central role in energy 
transduction in tissues with large, fluctuating energy 
demands. Their up-regulation can be a sign of imbalanced 
energy supply between mitochondria and cytosol. Most 
cancer cells predominantly produce energy by a high 
rate of glycolysis rather than by OXPHOS, known as the 
Warburg effect [40]. Thus, an opposite Warburg effect, as 
detected here, seems to be a beneficial feature of renal 
oncocytomas.

Renal oncocytomas have increased levels 
of V-ATPases, proteins involved in Ca2++ 
homeostasis and fewer cytoskeletal proteins

Vacuolar-type H+-ATPases (V-ATPase) acidify 
a wide array of intracellular organelles and pump via 
ATP hydrolysis protons across intracellular and plasma 
membranes. Six V-ATPases were found to be (2.5-fold) 
up-regulated in renal oncocytomas (Figure 3A). Acidity 
is one of the main features of tumors and V-ATPases 
control the microenvironment by proton extrusion to the 
extracellular medium [41].

The pathways “cell-cell communication” and 
“muscle contraction” were significantly down-regulated in 
renal oncocytomas (p-value ≤ 0.05; Table 1), consisting of 
protein members such as myosin, tropomyosin, collagens, 
vinculin, talin, caldesmon, and vimentin, the latter serving 
as a marker to differentiate renal oncocytomas from 
renal cell carcinoma [42]. For example, alpha-actinin-1 
(ACT1), a F-actin cross-linking protein was 15-fold 
reduced, junction plakoglobin (JUP) which influences the 
arrangement and function of both the cytoskeleton and the 
cells within the tissue was 3-fold decreased. The pathway 
“glycosaminoglycan metabolism” plays a structural role 
in connective tissue, cartilage, bone, and blood vessels 
[43] and was decreased as well. The lack of a strong 
cytoskeleton and connective intracellular proteins fits well 
to the squashy like texture of oncocytomas. Furthermore, 
cytoskeleton alterations were linked previously to mtDNA 
mutations and OXPHOS status [44].

Significant up-regulation of calcium signaling 
proteins were identified in renal oncocytomas. Calcium 
signaling by 1-phosphatidylinositol 4,5-bisphosphate 
phosphodiesterase gamma-2 (PLCG2, 45-fold), producing 
the secondary messenger inositol 1,4,5-trisphosphate (IP3) 
that release calcium ions from the ER into the cytosol 
activates stromal interaction molecule 1 (STIM1, 5-fold), 
resulting in an influx of extracellular calcium ions [45–
47]. While the intracellular Ca2+ homeostasis is frequently 
altered in cancer cells [48], the consequences in renal 
oncocytomas still have to be elucidated.

Renal oncocytomas display an altered 
metabolome to stress response, amino acids, and 
“energy carrier” levels

To quantify the relative difference in metabolite 
changes and to elucidate key metabolic switches between 
renal oncocytomas and patient matched kidney tissues, 
we applied a targeted LC-MS/MS based on multiple 
reaction monitoring (MRM). In total, 159 metabolites 
were relatively quantified (Supplementary Table 10). 
The Pearson correlation coefficients were highly similar, 
ranging from 0.845 to 0.977 in oncocytomas and 0.839 
to 0.977 in kidney tissues (Supplementary Figure 4), 
suggesting overall consistency in the quality of metabolite 
data sets. Statistical analysis by a two sample t-test with 
Benjamini-Hochberg (BH, FDR of 0.05) correction for 
multiple testing revealed 29 significantly (p-value <0.01) 
regulated metabolites (13 down, 16 up) in oncocytomas 
vs. kidney tissues (Figure 5; Table 2).

As with our proteomics analysis (Figure 2B), the 
metabolite profiling revealed renal oncocytomas and 
healthy adjacent kidney tissues as distinct groups in a 
principal component analysis (Figure 2C). The most 
striking difference was found for the ROS scavenger 
reduced glutathione (GSH, >5000-fold in renal 
oncocytomas) and its oxidized version glutathione 
disulfide (GSSG, >250-fold; Figure 5, Table 2). GSH 
levels were very low in several normal kidney tissue 
samples then background levels were taken in to account 
to build a ratio. With respect to the defective respiratory 
electron chain, the metabolites entering or exiting the 
OXPHOS system, such as NAD+, NADP, ADP and ATP 
were significantly (p-value <0.01, 2-fold) more abundant 
in oncocytomas. NADH (Benjamini-Hochberg corrected 
p- value of 0.012) was 4-fold increased. Consistent with 
non-functional CI, lacking the ability to oxidize NADH, 
we saw increased levels of NADH in renal oncocytomas.

Several amino acids and intermediates were 
significantly less abundant in renal oncocytomas 
(p ≤ 0.05), including glutamine, serine, alanine, ß-alanine, 
threonine, N-acetyl-glutamic acid and guanidoacetic 
acid. The sugars sucrose (p-value = 0.0766) and trehalose 
(p-value = 0.0605) were not significantly deregulated, 
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but were both 3-fold less abundant in oncocytomas. 
However, the level of lactic acid, the endpoint of 
anaerobic breakdown of glucose, was unchanged. Five 
sphingomyelins and three acyl-carnitines of different 
chain lengths were significantly (p ≤ 0.05) up-regulated 
in oncocytomas (Table 2). The metabolite with the lowest 
p-value (0.00001) was N-acetylneuraminic acid with 
a 10-fold increase, commonly known as sialic acid and 
regarded as a tumor marker. Thus, our screen revealed 
distinct metabolite profiles between benign oncocytomas 
and healthy kidney tissues and identified an increase in 
OXPHOS metabolites and high levels of glutathione in 
renal oncocytomas.

Computational assessment of metabolic 
processes indicated a low metabolism in renal 
oncocytomas

In order to identify differences in metabolic fluxes 
between kidney and renal oncocytomas, we applied a 
kinetic model to unravel the functional implications of 
protein abundance changes of metabolic enzymes. This 
model was originally created to monitor changes in the 
liver metabolism (personnel communication). Three 
different blood glucose levels were considered for the 
simulations: low, normal, and high glucose levels (4 mM, 
7.36 mM, and 10 mM).

The simulations revealed remarkable differences 
between the metabolic profiles of kidney and renal 
oncocytomas (Figure 6). The lipid metabolism was 
reduced in renal oncocytomas (e.g. lower rates of fatty 
acid synthesis, cholesterol synthesis, triglycerides). 
Free fatty acids uptake was decreased at low glucose 
conditions and increased at high glucose conditions. 
ß-oxidation was almost absent as NADH cannot be 
oxidized in CI. This lead to a severe energy depletion 
(ATP/ADP ratio) of the tumor under fasting conditions. 
The oxygen consumption rate was decreased at low 
glucose conditions, but almost normal at high glucose 
conditions. In these conditions, CI was bypassed 
and electrons were directly transferred to ubichinon 
by the glycerol-phosphate shuttle. The tumor was 
more glycolytic than the kidney, but this was not a 
consequence of increased glycolysis, but rather due to 
severely decreased gluconeogenesis. At high glucose 
concentration when gluconeogenesis was not operating, 
glycolytic rates were comparable. Glycogen was slightly 
reduced, less glutamate and glutamine were exported in 
renal oncocytomas.

Altogether, these simulations revealed that renal 
oncocytomas have higher ATP and NADH levels under 
normal glucose levels, consistent with our metabolomics 
data. This is achieved by a severe reduction of ATP 
consuming processes, rather than an increased energy 
metabolism in renal oncocytomas.

Figure 5: Volcano plot of log2 abundance ratios of oncocytoma versus kidney tissues against the -log10 (p-value) of 
the metabolome. Indicated are following metabolites: ROS scavengers in red (circle); OXPHOS related metabolites in purple (filled 
triangle); amino acids and intermediates of their pathways in green (circle); acyl-carnitines in orange (star); sphingomyelins in brown 
(dash); ceramides in blue (cross) and others in black (rectangle). Metabolites above the horizontal line are significant after considering the 
Benjamini-Hochberg correction (FDR of 0.05) for multiple testing and are additionally listed in Table 2.
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Table 2: List of significantly regulated metabolites between renal oncocytomas and healthy kidney tissues

metabolite t-test p-value Fold change oncocytoma vs kidney Group

Reduced glutathione 0.0001 5413 amino acids, peptides, and 
analogues

Oxidized glutathione 0.0005 267 amino acids, peptides, and 
analogues

N-Acetylneuraminic acid <0.0001 10.44 sugar acids and derivatives
Glutaryl-carnitine 0.0020 4.64 acyl-carnitines
Cervonyl-carnitine 0.0052 3.87 acyl-carnitines
Arachidyl-carnitine 0.0083 3.76 acyl-carnitines
Sphingomyelin 
(d16:1/24:1(15Z)) 0.0002 2.88 phosphosphingolipids

Sphingomyelin (d18:0/22:0) 0.0002 2.79 phosphosphingolipids
Sphingomyelin (d18:1/26:0) 0.0070 2.60 phosphosphingolipids
ADP 0.0074 2.53 nucleotides
Ceramide (d18:1/14:0) 0.0080 2.43 ceramides
Sphingomyelin (d18:1/22:0) 0.0049 2.37 phosphosphingolipids
Sphingomyelin 
(d18:1/26:1(17Z)) 0.0052 2.26 phosphosphingolipids

ATP 0.0012 2.19 nucleotides
NAD+ 0.0002 2.18 nucleotides
NADP 0.0041 2.16 nucleotides

L-Threonine 0.0090 -2.02 amino acids, peptides, and 
analogues

Ceramide (d18:1/26:1) 0.0029 -2.28 ceramides

L-Serine 0.0032 -2.32 amino acids, peptides, and 
analogues

Ceramide (d18:1/25:1) 0.0016 -2.46 ceramides

L-Alanine 0.0075 -2.51 amino acids, peptides, and 
analogues

Beta-Alanine 0.0055 -3.08 amino acids, peptides, and 
analogues

Creatinine 0.0003 -5.91 imidazolines
Isovaleryl-carnitine 0.0026 -6.34 acyl-carnitines

N-Acetyl-L-glutamic acid 0.0060 -9.62 amino acids, peptides, and 
analogues

L-Glutamine 0.0047 -12.22 amino acids, peptides, and 
analogues

Kynurenic acid 0.0008 -13.27 quinoline carboxylic acids
Hippuric acid 0.0074 -18.53 benzamides

Guanidoacetic acid 0.0001 -28.46 amino acids, peptides, and 
analogues

Metabolites with p-values ≤ 0.01 after Benjamini-Hochberg correction for multiple testing with a FDR of 0.05, were 
regarded as significant.
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DISCUSSION

In this study, we specifically asked which molecular 
pathways are reprogrammed in renal oncocytomas to 
sustain growth and prevent progression to malignant 
forms. The main characteristics of renal oncocytomas are 
mutations within the respiratory chain, especially in CI 
[4, 6]. Despite the general shift to higher mitochondrial 
protein abundance in renal oncocytoma, nearly all CI 
subunits showed a significant (p ≤ 0.05) lower abundance 
in our data set. Interestingly, assembly factors of all 
OXPHOS complexes, were found to be up-regulated, 
including those of CI. Consistent with this, genes involved 
in the OXPHOS and CI were shown to be up-regulated in 
the transcriptome of 11 renal oncocytomas [16]. MtDNA 
mutations in complex I genes were the cause of a failed 
assembly, and as a consequence the enzymatic activity 
was lost [4]. Crucial core subunits were entirely missing, 
as shown by single up to 100% homoplasmic frame shift 
mutations, leading to short truncated subunits [4]. As well, 
multiple low level pathogenic heteroplasmic mtDNA 
mutations resulted in a dramatic decrease of CI protein 
abundancies, leading to incorrectly assembled or non-
functional complex, which may become highly unstable 
and degrade fast, as previously shown in oncocytic cells 
bearing ND1 mutations [4, 5].

Surprisingly, the abundance of glycolytic enzymes 
or metabolites was not increased as one might suspect. 
Such a phenomenon was observed previously with ADP/
ATP translocase 1 (SLC25A4 -/-) [49], an enzyme which 
exports mitochondrial ATP to the cytosol in exchange for 
ADP. SLC25A4 -/- mice featured a dramatic proliferation 
of mitochondria and increased abundance of genes 
involved in OXPHOS, at the same time, a decrease of 
glycolytic genes. This was explained by the hyperoxic 
state, as O2 is not consumed and cytosolic ATP decreased, 
resulting in uncontrolled proliferation of mitochondria 
to compensate for the cytosolic ATP deficiency [50]. An 
induction of mitochondrial OXPHOS should be associated 
with the reciprocal down-regulation of glycolysis, which 
was observed in SLC25A4-/- [49] as well as in our study. 
In agreement with this, CI-deficient cells acquiring 
oncocytic phenotype in mouse xenografts were shown to 
be incapable of gaining a Warburg-like glycolytic profile, 
despite their severe respiratory damage, in association 
with a chronic HIF1a destabilization, whereby down-
regulation of glycolytic genes occurs [51].

Furthermore, HIF1A can inhibit mitochondrial 
biogenesis via peroxisome proliferator-activated receptor 
gamma coactivator 1-ß (PPARGC1B) [52]. As oncocytic 
tumors have less HIF1A, this can explain the increased 
number of mitochondria in oncocytomas. One of the key 
enzymes in gluconeogenesis and hypoxia, FBP1, was the 
dramatic reduction in ccRCC [17], which we found as well 
to oppose tumor progression. Increased creatine kinases 
can be a sign of imbalanced energy supply between 

compartments, but as “energy shuttle”, they do not 
recruit new energy sources for renal oncocytoma either. 
Alternatively, Golgi disassembly to block trafficking 
and secretion to conserve energy resulting in a defective 
autophagy and increased defective mitochondrial mass 
is discussed as a potential cause of renal oncocytoma 
[16]. However, no indications of altered autophagy or 
Golgi pathways were found in our proteome survey. 
An impairment of the respiratory chain due to mtDNA 
mutations was recently shown to alter the cytoskeleton 
structure, accompanied by mis-orientation of the Golgi 
body [44].

We identified several V-ATPases to be increased 
in renal oncocytomas; they hydrolyze ATP for the 
regulation of protons being pumped from the cytoplasm 
into the lumen of intracellular acidic compartments and 
play a key role in urinary acidification [53]. As renal 
oncocytomas are not fulfilling any kidney function, one 
explanation could be a role in lactic acid removal to avoid 
cytosolic acidosis. Most notably, our metabolome data 
show for the first time that renal oncocytomas do not 
appear to suffer from an “energy crisis”. Instead, they 
feature even higher levels of metabolites such as NAD+, 
NADH and ADP and ATP. As we measured whole cell 
lysates, we cannot distinguish between cytosolic and 
organellar metabolite concentrations, but the latter have 
shown to differ considerably between compartments 
[54]. Therefore, a lower ATP concentration solely in the 
mitochondrial matrix is plausible (as indicated by creatine 
kinases), even if the total concentration was higher. The 
metabolome comparison of human renal oncocytomas 
and patient-matched healthy kidney tissues revealed a 
striking up-regulation of the antioxidant glutathione, 
leading to the hypothesis that oncocytomas depend 
on normal ROS levels to sustain survival and growth. 
Glutathione prevents ROS damage to important cellular 
components by donating reducing equivalents for free 
radicals, peroxides, lipid peroxides and heavy metals [55], 
as well as maintenance of the intracellular redox balance 
and the essential thiol status of proteins [56]. Indeed, 
measurement of free glutathione can be used to evaluate 
the redox and detoxification status of cells in relation 
to its protective role against ROS. The high antioxidant 
level can therefore be linked to the high production of 
ROS by deficient CI or CIII. In support of our hypothesis, 
ROS levels in thyroid oncocytoma derived XTC.UC1 
cells showed no alterations. This was explained by the 
differential expression of ROS detoxifying enzymes [15, 
57]. In this regard, the gamma-glutamyltranspeptidase 
1 and 5 (GGT1, GGT5), and the betaine homocysteine 
S-methyltransferase (BHMT), contributing to intracellular 
GSH and homocysteine maintenance were significantly 
down-regulated in renal oncocytomas, indicating a 
degradation brake in the gamma-glutamyl cycle, which 
might be the molecular reason for the high GSH levels. 
These observations may also support the hypothesis 
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that oncocytic cells must keep low levels of ROS as 
they appear to have impaired mitophagy/autophagy, as 
previously observed [58]. If ROS damages were to become 
consistent, there would be no way of eliminating damaged 
cell components, ultimately leading to cell death. It is 
therefore plausible that in the ever-changing cancer 
population, oncocytic cells with a higher detoxifying 
capacity be positively selected. At least in yeast, high 
levels of GSH have been shown to prevent mitophagy, 
not related to its scavenging properties, but rather to the 
fueling effect of the glutathione pool [59, 60].

It was proposed that at least two distinct mutations 
are necessary for oncocytic tumor development. One leads 
to uncontrolled proliferation and the second to specific 
impairment of the OXPHOS system [61]. It remained 
unclear why progression to malignant forms of cancers 
is not observed, especially regarding the high mutagenic 
potential of an elevated ROS production. We conclude 
that excess levels of mitochondrial-derived radicals are 
instantly decomposed by GSH, resulting in normal ROS 
levels, which prevent any further malignant transformations 
in oncocytomas, but promote survival and growth (Figure 
7), along with the lack of HIF1a stabilization and a stall of 
glycolytic pathways, which would contribute to increased 
mitochondrial mass (via PPARGC1B) and prevent 
malignancy. But it still remains a chicken or egg causality 
dilemma, if mtDNA mutations were the cause or the 
consequence of high ROS levels. It was shown previously 
in cybride cells that only specific mtDNA mutations, such 
as LOHN mutations increase ROS, thus there is a direct link 
between mtDNA mutations and ROS levels [62].

Comparing our GSH levels to ccRCC, less dramatic 
elevated levels were found. In malignant ccRCC, 
glutathione levels were 2.6 to 2.8-fold increased [63], up 
to 20% elevated in RCC [64], about 5 to 7-fold raised in 
another RCC study [65], and 145-fold in ccRCC [17]. 
Increased GSH levels have also been shown to be directly 
correlated with cellular proliferation and metastatic 
activity [66]. Hence, a balance of ROS and antioxidant 
levels is key factor for tumor survival and growth.

Several clinical approaches are aiming to manipulate 
GSH levels in several tumor types to reduce or even stop 
the survival and proliferation advantages, e.g. inducing 
apoptosis. For example, irradiation is more effective on 
cancer cell lines containing low GSH levels [67] and 
drug resistance correlates with increased GSH levels 
in ovarian cancer [68] and RCC [69]. The therapeutic 
strategy to reduce GSH levels in cancer is hampered by 
the fact that GSH depletion leads to up-regulation of 
antioxidant genes, as shown by the transcription activator 
NFE2L2 in response to oxidative stress [70]. Other ROS 
scavenging agents for therapeutic purposes have also been 
investigated (reviews: [71–73]).

Additionally, the NAD+/NADH balance impacts the 
shift from respiration to glycolysis in cancer [8]. NADH 
is a well-known inhibitor of several TCA cycle enzymes, 
such as pyruvate dehydrogenase complex (PDC), citrate 
synthase, and oxoglutarate dehydrogenase complex 
(OGDC). Therefore, 4-fold elevated NADH level observed 
is likely to hinder this metabolic pathway. A number of 
studies have demonstrated that malignant transformation, 
which is not the case in renal oncocytomas, is associated 

Figure 6: Simulated metabolic levels at three different glucose concentrations (low, 4 mM; normal, 7. 36 mM; high, 10 
mM) in healthy kidney (blue) and renal oncocytomas (red).
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with an increase in glycolytic flux and anaerobic cellular 
lactate excretion [74]. Our observed down-regulation of 
detected amino acids including the pathway intermediates, 
such as guanidoacetic acid, hippuric acid, and N-acetyl-
L-glutamic acid indicates that the entire amino acid 
pathways were down-regulated. On one hand, amino acids 
are utilized to attenuate oxidative stress. This has been 
shown for glutamine in RCC and goes along with the up-
regulation of glutathione, made of glycine, cysteine, and 
glutamine [65]. On the other hand, they serve as substrates 
to fuel anaerobic ATP synthesis.

One of the most important carbon and nitrogen 
sources for a number of cancers is glutamine [75]. 
The conversion of glutamine and serine to lactate via 
glutaminolysis and serinolysis complements glycolysis. 
Reductive glutamine metabolism was shown to be highly 
dependent on cytosolic isocitrate dehydrogenase-1 
(IDH1) [38]. As IDH1 was significantly reduced and 
metabolic simulation indicated that the lipid metabolism 
was stalled in renal oncocytomas, it is unlikely that 
glutamine will be converted via citrate to lipids during 
reductive carboxylation and this alternative pathway 
can therefore be excluded to be a main energy source. 
Macropinocytosis-mediated internalization of extracellular 
protein and its subsequent intracellular degradation, for 
example, was shown as a mechanism for amino acid 
supply in Ras-transformed cancer cells [76]. Another 
correlation to the speed of cancer-cell division is glycine 
consumption. Fast replicating tumors are consumers, 
slowly dividing cells even release small amounts of 
glycine. Glycine metabolism may therefore represent a 
metabolic vulnerability in rapidly proliferating cancer 
cells [77]. Furthermore the serine synthesis pathway was 
shown to be essential in breast cancer [78], and murine 

embryonic stem cell proliferation has a dependence on 
threonine catabolism [79]. Hippuric acid, an important 
metabolite of the phenylalanine metabolism, was found 
to be the most down-regulated (35 -fold) metabolite in 
RCC [80], correlating well with our 18-fold decrease in 
renal oncocytomas. We initially assumed that anaerobic 
pathways such as glycolysis, glutaminolysis and 
serinolysis will be up-regulated, as the only alternative 
to compensate for the defective OXPHOS system. The 
down-regulation of amino acids as well as the sugars 
(e.g. sucrose and trehalose) indicates that they are indeed 
metabolized. However, we detected significantly increased 
metabolites of the energy machinery, for example, ATP, 
NADH and NADP and unchanged levels of lactic acid. 
Lactate dehydrogenase B levels were even decreased in 
renal oncocytomas [81]. The lack of elevated lactic acid 
levels can, at least in part, be explained by its instant 
secretion into the plasma by our detected increased 
abundance of V-ATPases in renal oncocytomas, where 
it serves as standard tumor marker for cancer and in the 
acidification of the environment, adding to the consistency 
and architecture of oncocytomas. Our simulations also 
revealed a severe reduction of ATP consuming processes. 
Thus, the need for activating alternate energy pathways is 
not required. Most important questions such as how much 
biomass is build up by renal oncocytomas, and at what 
proportion oncocytomas use up the energy compared to 
normal metabolic functions still remains unclear.

Additional metabolites, like increased sialic acid 
(N-acetylneuraminic acid), a tumor marker for most 
cancer cells matched well to 10-fold up-regulation in 
renal oncocytomas. Also consistent with our results, acyl-
carnitines found to be increased in RCC in all grades 
[65] as well as in human urine [82]. It was suggested that 

Figure 7: Model by which ROS and GSH levels govern a stable balance sustaining survival and growth, avoiding high 
mutation rates and apoptosis, which prevents malignant tumor progression and cell death. One mutation for uncontrolled 
proliferation and a second mutation specifically affecting the OXPHOS system are necessary for the unique features of oncocytomas. High 
ROS levels by a defect CI or CIII are instantly eliminated by high GSH levels to avoid any further damage to the cell, which supports stable, 
but uncontrolled growth.
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the elevated acyl-carnitine levels were utilized by other 
processes not directly related to energy metabolism, as the 
majority of fatty acid β-oxidation enzymes were down-
regulated in proportion to RCC grade [65].

Whether renal oncocytomas can progress to more 
aggressive forms, such as the chromophobe RCC type 
is still an unanswered question. There are no literature 
reports indicating such events, except one reporting a 
metastasis originating from renal oncocytomas [83]. Thus, 
it seems to be a very rare event, supporting our hypothesis 
of a stable balance between ROS and GSH levels to 
sustain survival and growth.

EXPERIMENTAL PROCEDURES

Tissue dissection and verification of renal 
oncocytoma

Six nephrectomy specimens were collected in liquid 
nitrogen immediately after surgery and preserved at -80°C. 
From the collected tissue samples, frozen histologic 
sections were performed, and stained with hematoxylin 
and eosin. The diagnosis of renal oncocytoma and the 
corresponding matched tumor-free kidney tissue were 
made under consideration of macroscopic and histologic 
features according to the WHO classification criteria. If 
necessary, immunohistochemistry with at least staining of 
CK7, CK20 and S100A1 were performed. Only cases with 
a clear diagnosis of an oncocytoma were regarded for the 
study.

Exome sequencing

DNA was isolated from remaining pellets from 
the metabolite extraction using a DNA purification kit 
following the manufacture’s protocol (QIAmp DNA Mini 
Kit for Tissues, QIAGEN, Hilden, Germany). In brief, 
samples were digested by proteinase K at 56°C, overnight 
and RNAse A treated at 70°C, before subjection for exome 
sequencing.

The library preparation was performed according to 
Agilent’s SureSelect protocol (SureSelectXT Human All 
Exon V5, protocol version B4 August 2015) for Illumina 
paired end sequencing. In brief, 200 ng of genomic DNA 
(in 50 µl low TE) were sheared for 6*60 sec on a Covaris™ 
S2 (duty factor 10%, intensity 5, 200 cycles per burst).

The fragmented DNA (150-200 bp) was purified 
using AMPure XP beads and subjected to an end-repair 
reaction. Following another purification step the DNA 
was 3’adenylated and furthermore purified. Paired-end 
adaptors were ligated and the afterwards purified library 
was amplified with 10 amplification cycles. The amplified 
library was purified, quantified and hybridized to the 
probe library for exome capturing. Captured fragments 
were purified using streptavidin-coated beads and eluted 
with 30 μl NFW. Using Herculase-enzyme, the enriched 

libraries were amplified and indexed with barcoded 
primers followed by cleanup and quantification.

The resulting libraries were pooled and subjected to 
Illumina NextSeq500 paired end sequencing (6 libraries/
FC; 2 x 150 bp) and yielded about 120 million reads (150 
bp) per sample.

Quantification of the SureSelect captured library: 
Before sequencing, the samples were re-quantified 
with two methods. First, the size and concentration 
was checked on the Agilent 2100 Bioanalyzer and in a 
second step the enrichment efficiency was estimated 
by qPCR (Applied Biosystems) using a primer set for 
an enriched exon (fw: ATCCCGGTTGTTCTTCTGTG 
and rv: TTCTGGCTCTGCTGTAGGAAG) and a 
primerset in an intron region as a negative control 
(fw: AGGTTTGCTGAGGAACCTTGA and rv: 
ACCGAAACATCCTGGCTACAG). In general, the CT-
values of target and control fragments differed by 6 to 
10, thus confirming a very good enrichment of our target 
regions.

After diluting the captured libraries to 10 nM, 
Genome Analyzer single read flow cells were prepared 
on the supplied Illumina cluster station and 36 bp single 
end reads on the Illumina Genome Analyzer IIx platform 
were generated following the manufacturer’s protocol. 
Images from the instrument were processed using the 
manufacturer’s software to generate FASTQ sequence 
files.

Bioinformatic mt and nuclear DNA analysis

The FASTQ files were used as input of the 
MToolBox pipeline [84], in order to extract mitochondrial 
DNA sequences and quantify each variant allele 
heteroplasmy and related confidence interval. The 
same pipeline allows haplogroup prediction of mtDNA 
sequences, detection of mismatches, insertions and 
deletions and the functional annotation of the identified 
variants already implemented in MToolBox [84]. The in 
silico prioritization criteria here adopted and published 
in Santorsola et al. (2016) [28] are intended to easily 
target the mitochondrial DNA variants of clinical interest, 
by prioritizing those variants recognized against the 
mitochondrial reference sequences (rCRS, RSRS and 
MHCS), which occurred in non haplogroup-defining 
sites, featuring nucleotide variability lower than nucleotide 
variability cutoff (0.0026) and having a disease score 
above the disease score threshold (0.43, 0.35 and 0.60 
for non synonimous coding for proteins, tRNA and rRNA 
variants respectively).

The analysis-ready bam files were prepared based 
on the guidelines suggested by the “best practice pipeline” 
[85, 86]. Briefly, the raw reads were aligned to the human 
reference genome (GRCh37) with bwa algorithms. The 
PCR duplicates were marked and removed by Picard 
software (https://broadinstitute.github.io/picard/). The 
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base recalibration and indel realignment were processed 
using the GATK [87] (Version 3.6) package. Somatic 
point mutations were called with Vardict [88] algorithms. 
Copy Number Variations (CNVs) were detected with 
CNVkit [89]. The exome sequencing data analysis was 
implemented by bcbio_nextgen (https://github.com/
chapmanb/bcbio-nextgen) pipeline. The annotation of the 
somatic mutations was implemented using ANNOVAR 
[90].

Sample preparation for proteomics

About 10 mg frozen tissue per sample was 
homogenized under denaturing conditions with a FastPrep 
(three times for 60 s, 6.5 m x s-1) in a buffer containing 
4% SDS, 0.1 M DTT, 0.1 M Tris pH 7.8, followed by 
sonication for 10 min, boiled at 95°C for 5 min and 
precipitated with acetone at -20°C overnight. Lyophilized 
proteins were dissolved in 6 M GdmCL, 10 mM TCEP, 
40 mM CAA, and 100 mM Tris pH 8.5. Samples were 
boiled for 5 min at 95 °C and sonicated for 15 min in a 
water sonicator. The lysates were diluted 1:10 with nine 
times volume of 10% ACN and 25 mM Tris, 8.5 pH, 
followed by a trypsin digestion (1:100) at 37 °C overnight. 
Subsequent, the peptides were purified with C18 columns 
and further fractionated by strong cation exchange (SCX) 
chromatography. Five μg of each SCX fraction and a non-
fractioned sample were used for proteome profiling and 
analyzed by MaxQuant (v1.5.3.30).

LC-MS instrument settings for shotgun 
proteome profiling and data analysis

LC−MS/MS was carried out by nanoflow reverse 
phase liquid chromatography (Dionex Ultimate 3000, 
Thermo Scientific, Waltham, MA) coupled online to a 
Q-Exactive HF Orbitrap mass spectrometer (Thermo 
Scientific, Waltham, MA). Briefly, the LC separation was 
performed using a PicoFrit analytical column (75 μm ID 
× 55 cm long, 15 μm Tip ID (New Objectives, Woburn, 
MA) in-house packed with 3-μm C18 resin (Reprosil-
AQ Pur, Dr. Maisch, Ammerbuch-Entringen, Germany). 
Peptides were eluted using a gradient from 3.8 to 40% 
solvent B in solvent A over 100 min at 266 nL per minute 
flow rate. Solvent A was 0.1% formic acid and solvent 
B was 79.9% acetonitrile, 20% H2O, 0.1% formic acid). 
Nanoelectrospray was generated by applying 3.5 kV. 
A cycle of one full Fourier transformation scan mass 
spectrum (300−1750 m/z, resolution of 60,000 at m/z 200, 
AGC target 1e6) was followed by 12 data-dependent MS/
MS scans (resolution of 30,000, AGC target 5e5) with a 
normalized collision energy of 25 eV. In order to avoid 
repeated sequencing of the same peptides a dynamic 
exclusion window of 15 sec was used. In addition, only 
the peptide charge states between two to eight were 
sequenced.

Raw MS data were processed with MaxQuant 
software (v1.5.3.30) [91] with the Andromeda search engine 
[92], and the UniProtKB with 70,228 entries,  released in 
02/2016. A false discovery rate (FDR) of 0.01 for proteins 
and peptides, a minimum peptide length of 7 amino acids, 
a mass tolerance of 4.5 ppm for precursor and 20 ppm 
for fragment ions were required. A minimum Andromeda 
score of 0 and 40 (delta score 0 and 9) for unmodified 
peptides and modified peptides was applied, respectively. 
A maximum of two missed cleavages was allowed for 
the tryptic digest. Cysteine carbamidomethylation was set 
as fixed modification, while N-terminal acetylation and 
methionine oxidation were set as variable modifications. 
The label-free software MaxLFQ [93], integrated in 
MaxQuant, was used for quantification. MaxQuant 
processed output files can be found in Supplementary 
Table 7, showing peptide and protein identification, 
accession numbers, % sequence coverage of the protein, 
q-values and LFQ intensities. Contaminants as well as 
proteins identified by site modification and proteins 
derived from the reversed part of the decoy database 
were strictly excluded from further analysis. The mass 
spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the Pride [94] partner 
repository with the dataset identifier PXD007633.

Metabolite extraction and profiling by targeted 
LC-MS

About 23-38 mg of six unrelated and frozen 
renal oncocytoma and corresponding healthy kidney 
tissues were used for metabolite profiling. Metabolite 
extraction and tandem LC-MS measurements were done 
as previously reported by us [95]. In brief, methyl-tert-
butyl ester (MTBE), methanol, ammonium acetate and 
water were used for metabolite extraction. Subsequent 
separation was performed on a LC instrument (1290 
series UHPLC; Agilent, Santa Clara, CA), online coupled 
to a triple quadrupole hybrid ion trap mass spectrometer 
QTrap 6500 (Sciex, Foster City, CA), as reported 
previously [96]. Transition settings for multiple reaction 
monitoring (MRM) are provided in Supplementary Table 
11. The mass spectrometry data have been deposited to 
the publically available repository PeptideAtlas with the 
identifier PASS00831. All original LC-MS generated 
QTrap wiff- files as well as MuliQuant processed peak 
integration q.session- files can be downloaded via http://
www.peptideatlas.org/PASS/PASS00831.

The metabolite identification was based on three 
levels: (i) the correct retention time, (ii) up to three 
MRM’s (iii) and a matching MRM ion ratio of tuned pure 
metabolites as a reference [94]. Relative quantification 
was performed using MultiQuantTM software v.2.1.1 
(Sciex, Foster City, CA). The integration setting was a 
peak splitting factor of 2 and all peaks were reviewed 
manually. Only the average peak area of the first transition 
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was used for calculations. Normalization was done 
according to used amounts of tissues and subsequently by 
internal standards, as indicated in Supplementary Table 11.

Experimental design and statistical rationale, 
pathway-, and PPI network analyses

For proteome and metabolome data sets, a two-
sample t-test was performed. Multiple test correction was 
done by Benjamini-Hochberg with a FDR of 0.05 by using 
Perseus (v1.5.0.8) [97]. Significantly regulated proteins 
and metabolites were marked by a plus sign in according 
Supplementary Tables (Supplementary Tables 8 and 10).

For comprehensive proteome data analyses, gene 
set enrichment analysis (GSEA, v2.2.3) [34] was applied 
in order to see, if priori defined sets of proteins show 
statistically significant, concordant differences between 
renal oncocytoma and kidney tissues. Only proteins 
with valid values in at least three samples in each tissue 
group were averaged and used for GSEA analysis and 
log2 transformation (Supplementary Table 8A), or six 
valid values in at least one group with replacing missing 
values from normal distribution for the other group 
(Supplementary Table 8B) to rescue the most regulated 
proteins. GSEA default settings were used, except the 
minimum size exclusion was set to 5, KEGG v5.2 and 
Reactome v5.2 were used as gene set database. The cut off 
for significantly regulated pathways was set to a p-value 
≤ 0.01 and FDR ≤ 0.25. For protein-protein interaction (PPI) 
network analyses, the software tool String v.10 has been 
used to visualize networks of significantly down-regulated 
proteins with a confidence level of 0.7 [35]. Protein nodes 
which were not integrated into a network were removed.

Computational assessment of metabolic 
processes indicated a low metabolism in renal 
oncocytomas

In order to identify differences in metabolic fluxes 
between kidney and renal oncocytomas, we applied a 
mathematical kinetic model of central metabolism to 
unravel the functional implications of protein abundance 
changes of metabolic enzymes. This model, comprising 
central energy metabolism, as well as carbohydrate, 
lipid and amino acid metabolism, as well as the key 
electrophysiological processes at the inner mitochondrial 
membrane including the mitochondrial membrane 
potential and the generation and utilization of the proton 
motive force, was originally created to monitor changes 
in the liver metabolism (Berndt et al. in review). The 
model takes into account the regulation in the activity 
of metabolic enzymes through substrate concentration, 
allosteric effectors, reversible phosphorylation and protein 
abundances. In order to compare healthy and tumor cells, 

the experimentally determined protein abundance changes 
between the two cell types were used to scale the Vmax 
values of the corresponding enzymes. The defect of 
complex I was explicitly taken into account by setting the 
Vmax value to 10% of its normal value, corresponding 
to the CI subunit with the lowest abundance in renal 
oncocytoma.

To assess metabolic changes under different 
physiological conditions, three different blood glucose 
levels corresponding to low, normal, and high glucose 
levels (4 mM, 7.36 mM, and 10 mM) were considered for 
the simulations.

CONCLUSIONS

In summary, cancer-specific pathogenic mtDNA 
mutations lead to a decreased CI abundance and defective 
respiratory chain in renal oncocytomas. The Warburg 
effect is antagonized by FBP1 and the metabolic switch 
to glycolytic pathways, PPP, and reductive glutaminolysis 
cannot be made; thus were dramatically decreased as 
well. As a consequence, renal oncocytomas reduced 
ATP consuming pathways to reach sufficient energy 
supplies. The main metabolic feature and new hallmark 
of OXPHOS deficient renal oncocytomas is the increase 
of GSH. Extremely elevated GSH levels counteract 
high ROS levels originating from defective CI, thereby 
probably prohibiting apoptosis, tumor transformation and 
progression to malignant forms, but at the same time, 
sustaining survival and growth as benign tumor.
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