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ABSTRACT

Background: Diabetic nephropathy (DN) seriously threatens the lives of 
patients, and the mechanism of DN remains largely unknown because of the complex 
regulation between long non-coding RNA (lncRNA) and protein-coding genes. In early 
development of diabetic nephropathy (DN), pathogenesis remains largely unknown.

Results: We used RNA-sequencing to profile protein-coding and lncRNA gene 
transcriptome of mouse kidney proximal tubular cells during early stage of DN at 
various time points. Over 7000 protein-coding and lncRNA genes were differentially 
expressed, and most of them were time-specific. Nearly 40% of lncRNA genes 
overlapped with functional element signals using CHIP-Seq data from ENCODE 
database. Disease progression was characterized by lncRNA expression patterns, 
rather than protein-coding genes, indicating that the lncRNA genes are potential 
biomarkers for DN. For gene ontologies related to kidney, enrichment was observed 
in protein-coding genes co-expressed with neighboring lncRNA genes. Based on 
protein-coding and lncRNA gene profiles, clustering analysis reveals dynamic 
expression patterns for kidney, suggesting that they are highly correlated during 
disease progression. To evaluate translation of mouse model to human conditions, 
we experimentally validated orthologous genes in human cells in vitro diabetic model. 
In mouse model, most gene expression patterns were repeated in human cell lines.

Conclusions: These results define dynamic transcriptome and novel functional 
roles for lncRNAs in diabetic kidney cells; these roles may result in lncRNA-based 
diagnosis and therapies for DN.

INTRODUCTION

Diabetic nephropathy (DN) is major serious 
complication of diabetes and is the most common cause 
of end-stage renal disease with poor prognosis and high 
cost for therapy [1]. However, considering incomplete 
understanding of DN pathogenesis, early efficacious 
diagnosis and treatment are still unresolved issues. 
Emerging evidence show that proximal tubular cells 

(PTCs) play critical role in onset and progression of DN. 
Dimensions and function of proximal tubule increase in 
response to higher glucose reabsorption, which is caused 
by increased glomerular filtration of glucose [2], inducing 
glomerular hyperfiltration through tubuloglomerular 
feedback [3]. In response to hyperglycemia, PTCs exhibit, 
early behaviors, such as cell cycle arrest, hypertrophy, 
and senescence phonotype [4], which are linked to late 
inflammation, fibrosis, and apoptosis [5]. Kidney injuries 
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are worsened by underlying pathogenic mechanisms 
for PTC metabolic disorder and abnormal response 
involving numerous genes and their precise transcriptional 
regulation networks. However, available information is 
insufficient to describe changes in genes and regulation 
during progress of DN.

Long non-coding RNAs (lncRNAs) are novel class 
of functional RNAs; these transcripts measure more than 
200 nt and do not code for proteins. lncRNAs and protein-
coding transcripts exhibit many similarities, which are as 
follows: a) presence of 5′ cap and 3′ poly adenosine tail 
structures; b) transcribed by RNA-polymerase (Pol) II; 
c) can be spliced at canonical splicing sites [6]. Growing 
knowledge suggests that lncRNA may play critical role 
in growth, development, senescence, and disease [7, 8]. 
And many computational tools has been developed [9-11]. 
lncRNAs have the following primary functions on gene 
expression: as regulators of transcription via chromatin 
modulation [12] and epigenetic modification [13], as 
regulators of mRNA processing via influence splicing 
patterns of mRNAs [14], and as modulators of post-
transcriptional control [15]. Complex functions of lncRNA 
are far beyond current understanding and require further 
characterization.

Strong correlation between LncRNA and diabetes 
was reported in recent literature. Morán et al. identified 
more than 1100 lncRNAs in human islets and several 
lncRNAs, which were dysregulated in islets from type 
2 diabetes patients [16]. Data from study by Xu et al. 
showed that silencing lncRNA-nc021972 alleviated 
activation of P2X7 receptor and subsequent tumor 
necrosis factor-α and interleukin-6 release in in vitro DN 
models [17]. In recent studies, evidence also demonstrated 
involvement of lncRNAs in regulation of pathologic genes 
associated with DN. Surveys by Alvarez et al. showed 
that in mesangial cells, lncRNA plasmacytoma variant 
translocation 1 increases plasminogen activator inhibitor 
1 and transforming growth factor beta 1, which are two 
primary contributors to extracellular matrix accumulation 
in glomeruli under hyperglycemic conditions [18]. Long et 
al. reported that peroxisome proliferator-activated receptor 
gamma coactivator alpha (PGC-1α) is functionally 
regulated by lncRNA taurine-upregulated gene 1 (Tug1). 
Direct interaction between PGC-1α and Tug1 can 
modulate mitochondrial bioenergetics in podocytes in 
DN models [19]. Wang et al. discovered that lncRNA 
CYP4B1-PS1-001 and ENSMUST00000147869 were 
significantly downregulated in response to early DN in 
db/db mice, whereas overexpression of two lncRNAs 
inhibited proliferation and fibrosis of mesangial cells [20, 
21].

However, above sporadic studies provided 
insufficient information in genomic changes of lncRNA 
profiles for specific kidney cells during DN progression. 
Therefore, genome-wide discovery of lncRNA is needed 
to identify new concepts and opportunities for profoundly 

understanding pathogenesis and novel treatment of 
DN. Next-generation sequencing (NGS) technologies 
provide edge-cutting method for gene expression 
research, especially those including lncRNAs under 
pathophysiological conditions [22]. Thus, aim of this study 
was threefold. First, to discover genome-wide mRNA 
and lncRNA profiles of fresh isolated PTCs in animal 
model during dynamic progression of DN by using NGS. 
Second, to identify novel lncRNAs, evaluate importance 
of LncRNA and predict relationship between mRNA and 
lncRNA during dynamic disease progression by using 
algorithms. Third, to validate the identified novel RNAs 
may also play role in pathogenesis of human DN. Our first 
exploration of genome-wide lncRNAs in DN progression 
may drive discovery of new early biomarkers and novel 
therapeutic strategies.

RESULTS

Experiments workflow and animal models

The workflow was shown in Figure 1-A and the 
purity of sorted cells was shown in Supplementary Figure 
1. All mice in model group developed remarkably high 
blood glucose (>300 mg/dl) two weeks after first STZ 
injection (Figure 1-B), indicating successful establishment 
of mouse diabetes models for subsequent experiments. 
Urine albumin–to–urine creatinine ratio (ACR) level was 
also gradient-increased two weeks after STZ injection 
and peaked at week 8 (Figure 1-C), indicating that 
kidney injury appeared in early stage of mouse diabetes 
models. In PAS staining at 2, 4, and 8 weeks of our study, 
tubular tissue exhibited enlarged lumen, bared cells, and 
reduced or lost microvilli at different degrees. Statistical 
difference of TDI with value obtained of 0 w has reached 
(Figure 1-D), indicating existence of tubular injury in 
DN development [23]. Tubulointerstitium fibrosis is late-
stage character lesion of DN. Masson trichrome–staining 
showed absence of fibrosis of tubulointerstitium (Figure 
1-E). Results indicated that DN was in early stage.

Systematic profiling of mRNAs during early 
development of DN

We performed factorial RNA-Seq study to monitor 
transcriptome for mouse kidney PTCs during early 
development of DN. Specifically, we monitored disease 
progression at four time points after inducing DN: 0, 2, 
4, and 8 weeks (denoted by W0/W2/W4/W8). For each 
time point, two biological replicate RNA-Seq data were 
generated.

Using unique mapped reads to estimate expression 
levels of mRNA genes, we identified 21,599 mRNA genes, 
of which 9,625 were expressed at FPKM value≥ 1 in at 
least one sample. Quantification results are consistent with 
strong correlation of gene expression between replicate 
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samples (mean correlation coefficient = 0.98; mean 
standard deviation = 0.006; Supplementary Figure 2).

Taking W0 as control, we identified differentially 
expressed protein-coding genes (Materials). We observed 
largest number of differentially expressed genes in 

W8 versus W0 comparison (N=3068, FDR <0.05) 
followed by W4 (W2) versus W0 comparison (N=1068 
and 1516) (Figure 2-A), suggesting that more disturbed 
transcriptome of mRNAs is associated with progression 
of kidney disease. Then, we checked overlapping among 

Figure 1: Workflow and phenotypes of animal models. (A) Workflow of experiments. a. Construction of animal models; b. examination 
of phenotype; c. PTC isolation; d. libraries for preparation of RNA-sequencing; e. next-generation sequencing; f. bio-information analysis. 
(B) Fasting blood sugar over time. Data are represented as mean ±SEM. *p < 0.05 by t-test versus control at 0 week. #p < 0.05 by t-test 
versus control at the same week. n = 6 for each group. (C) ACR over time. Data are represented as mean ±SEM. *p < 0.05 by t-test versus 
control at 0 week. #p < 0.05 by t-test versus control at the same week. n = 6 for each group. (D) Left: PAS-stained sections in each group. 
Images display kidney sections of each group at 200× magnification. White arrow indicates normal tubule, and black arrow indicates 
injured tubule. Views with high magnification are shown at lower left. Time course are labeled as a, b, c, and d; letters correspond to 0, 2, 
4, and 8 weeks. Right: Tubule injuries were evaluated for widened lumen, atrophy, or thickened basement membranes. Tubular injuries 
are indicated with arrows. Bar graph shows TDI for each group. Data are represented as mean ±SEM. *p < 0.05 by t-test versus control in 
0 week. n = 6 for each group. (E) Left: Masson-trichrome-stained kidney sections in each group. Images display kidney sections of each 
group at 200× magnification. White arrow indicates normal tubule, and black arrow indicates injured tubule. Views with high magnification 
are shown at lower left. Time courses are labeled as a, b, c, and d, corresponding to 0, 2, 4, and 8 weeks. Right: Bar graph shows relative 
interstitial volume for each group. Data are represented as mean ±SEM. n = 6 for each group.
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differentially expressed genes at different time points 
(Figure 2-B). W2 and W4 have time-specific genes of 186 
and 94, respectively. By contrast, W8 has 1761 specific 
differentially expressed genes. This result suggests very 
modest disturbance to transcriptome between W2 and W4.

To further characterize differentially expressed 
genes obtained from RNA-Seq analysis, we manually 
curated gene list associated with kidney by literature 
research, where 262 protein-coding genes were 
included (Supplementary Table 3). And, 76 of them are 
differentially expressed based on our analysis (Figure 
2-C). For example, Angpt1, Stat1, Agtr1a, Cdc42, Nox4, 
and Shc1 are differentially expressed in at least one time 
point (Figure 2-E). Nox4 was reported to be upgraded 
in several kinds of DN models and played key factor in 
reactive oxygen species-related signal pathway [24-26].

To assess functions of differentially expressed genes, 
we performed gene ontology analysis for time-specific 
protein-coding genes (Figure 2-D, Materials). W4-specific 
gene functions are involved in phosphorylation, peptidyl-
serine modification, and enzyme-linked receptor protein 
signaling pathway, whereas those for W8-specific genes 
are transmembrane transport, programmed cell death, 
oxidation reduction, and cell cycle.

To assess application of the mouse DN model, 
we validated differentially expressed genes by using 
human cell line in vitro diabetic model. We selected six 
differentially expressed genes with mono decreasing 
(increasing) gene expression and obtained their 
orthologous genes in human from Mouse Genome 
Informatics database. Figure 2-F shows expression 
levels of orthologous genes in vitro diabetic model by 
using qPCR. Surprisingly, all genes were differentially 
expressed after high-glucose stimulation and presented 
similar tendency (up- or downregulation) as that in mouse 
RNA-seq. These results indicated that mRNA data from 
RNA-seq in mouse DN model may provide similar 
evidence for human DN.

Systematic profiling of lncRNAs during early 
development of DN

We identified 29,273 lncRNA genes, of which 
15,138 were expressed at FPKM value of ≥ 0.5 in at 
least one sample. Hierarchical clustering revealed that 
transcriptome profiles of kidneys were well separated 
during disease progression, and samples were clustered 
into three groups: W0, W2 and W4, and W8 (Figure 3-A). 
Figure 3-B indicated the largest number of differentially 
expressed lncRNA genes in W8 versus W0 comparison 
(N=3426, FDR<0.05) followed by W4 (W2) (N=875, 
1199, FDR<0.05) (Figure 3-B). Figure 3-C shows 
overlapping of differentially expressed lncRNA genes, and 
the pattern is consistent with that for mRNA genes.

Neighbored protein-coding genes were used to 
analyze gene-ontology of time-specific differentially 

expressed lncRNA genes (Figure 3-D). Compared with 
protein- coding genes, lncRNA genes presented similar 
functions in gene ontology. However, comparison 
indicated that programmed cell death was at W2 for 
lncRNA genes, whereas function was enriched at W8 for 
protein-coding genes. Results suggested that dysfunction 
of pathways for kidney is initialized by disturbing 
regulators, such as lncRNA genes, beforehand.

To assess expression of orthologous lncRNA genes 
in humans, we used BLAST Software [27] to obtain 
orthologous lncRNA genes between mice and humans. We 
validated the expression of orthologous lncRNA genes in 
human cell line using qPCR (Figure 3-E). We validated 
the expression of orthologous lncRNA genes in human 
cell line. glucose stimulation and had similar expression 
pattern with orthologous genes of mouse. Considering 
these results, we concluded that lncRNA data from mouse 
diabetic model was also partly applicable to human DN.

Orthologous lncRNA genes in humans underwent 
motif searching (Figure 3-F). Motifs searching were 
calculated using TOMTOM software [28]. Surprisingly, 
some lncRNA has several possible motif sites for 
specific transcriptional factor binding. For instance, 
lncRNA NONHSAG053901 has four possible sites in its 
transcriptome for transcription factor (TF) early growth 
response protein 1 (EGR1)-binding. EGR1 was found to 
be responsible for activation of heparanase promoter under 
diabetic conditions [29]. Results implied that lncRNAs 
possibly directly interact with transcriptional factor and 
play important role in regulation of gene transcription or 
cell signal pathway.

Differentially expressed lncRNAs are enriched 
by functional signals of ChIP-Seq

lncRNA genes are acknowledged as key regulators 
for diseases [30, 31]. To further characterize lncRNA 
signatures, we analyzed TSS of differentially expressed 
lncRNA genes for presence of histone modifications. 
Actively transcribed lncRNA genes were associated with 
promoter-associated histone modification (trimethylation 
of histone 3 at Lys4, H3K4me3) or enhancer-associated 
histone modification (monomethylation of histone 3 at 
Lys4, H3K4me1). Therefore, we used publicly available 
H3K4me1 and H3K4me3 ChIP-Seq data for kidney 
information from ENCODE database.

Over one third of TSSs of differentially expressed 
lncRNA genes showed overlapping with significant 
peaks (39.7%, Methods and Materials) for at least one 
type of histone modifications, a proportion similar to 
that of previously annotated lncRNA genes associated 
with such histone modifications (37.5% [32], 37% [31]). 
H3K4me1 modifications showed distribution of broader 
density around TSSs than that of H3K4me3 modifications 
(Figure 4-A). Figure 4-B summarizes density functions 
of corresponding histone modifications. These results 
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Figure 2: Transcriptome profiles of mRNAs associated with disease progression. (A) Number of differentially expressed mRNA 
genes at various time points compared with control (W0). P-value cutoff is 0.05. (B) Venn diagram of differentially expressed mRNA 
genes at different times. (C) Overlapping between differentially expressed mRNA genes and reported mRNA genes associated with kidney 
disease progression. (D) Gene ontology enrichment for week-specific and common differentially expressed mRNA genes, presented as 
-log10 hypergeometric P-value for enrichment. (E) Gene expression of some key genes that are highly related to kidney. y-axis denotes 
FPKM value, x-axis is for four time points, and error bar is standard deviation, * indicates p-value < 0.05 by comparison with W0. (F) 
Validation for differentially expressed mRNAs in human PTCs (HK2)Left portion: Results from RNA-seq in mouse DN models (*p<0.05 
versus W0). Right portion: Results from qPCR in vitro diabetic models. NG, cultured with normal glucose; HG, cultured with 30 mM 
glucose for 48 h.*p<0.05 versus NG, n=3.
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Figure 3: Transcriptome profiles of lncRNA genes associated with disease progression. (A) Hierarchical clustering of lncRNA genes 
that are differentially expressed in at least one time point by comparison with that at W0; rows and columns correspond to samples and 
lncRNA genes, respectively. (B) Number of differentially expressed lncRNA genes at various time points compared with control (W0) 
with corrected P-value cutoff of 0.05. (C) Venn diagram of differentially expressed lncRNA genes at different times. (D) Gene ontology 
enrichment for week-specific and common differentially expressed lncRNA genes, presented as −log10 hypergeometric P-value for 
enrichment. (E) Validation for differentially expressed lncRNAs in PTCs (HK2)Left portion: Results from RNA-seq in mouse DN models 
(*p<0.05 versus W0). Right portion: Results from qPCR in vitro diabetic models. NG, cultured with normal glucose; HG, cultured with 30 
mM glucose for 48 h. *p<0.05 versus NG, n=3. (F) Motifs searched for validated lncRNAs in PTCs (HK2). TF, transcriptional factor. Sites, 
number of possible motifs in one LncRNA sequence.
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demonstrated that differentially expressed lncRNA genes 
enriched functional DNA elements.

We then determined difference among differentially 
expressed genes, non-differentially expressed genes, non-
expressed genes, random transcripts for both protein-
coding genes, and lncRNA genes for each time point; 
results are shown in Figure 4-C. In case of protein-coding 
genes, differentially expressed genes were associated with 
broader distributions of density of histone modification 
than non-differentially expressed genes at all time points. 
In case of lncRNA genes, similar tendency was observed 
at all time points. Comparison between protein-coding 
genes and lncRNAs indicated that differentially expressed 
lncRNAs had highest level of H3K4me3 modification 
among all lncRNA genes, where same observation was not 
observed in differentially expressed protein-coding genes 
(Figure 4-C).

In summary, our results indicate that transcriptional 
landscapes of mouse kidney were characterized by 
lncRNA genes.

Expression signature of lncRNAs, but not 
mRNAs, characterizes DN progression

Figure 3A suggests that lncRNA genes may serve 
as biomarkers in discriminating disease progression. 
Therefore, we clustered samples on the basis of both 
protein-coding genes and lncRNA genes (Figure 5-A). 
Branch containing samples of W0 and W2 were also 
well segregated, whereas W4 and W8 samples cannot be 
divided correctly.

We next constructed samples on the basis of 
differentially expressed protein-coding and lncRNA genes 
(Figure 5-B). Samples at all time points were correctly 
segregated when we cut the dendrogram at dashed line. 
Although samples were correctly classified, W2 and 
W4 samples were separated; this observation cannot be 
explained because disease progressed from W2 to W4.

To determine inaccuracy, we next constructed 
samples based on protein-coding genes that were 
differentially expressed in at least one time point (Figure 

Figure 4: TSSs of differentially expressed lncRNA genes are enriched by active chromatin signal. (A) ChiP-Seq analysis of histone-
modification profiles (H3K4me1 and H3K4me3) at TSSs of lncRNA genes, which are differentially expressed in at least one time point. (B) 
Density functions for lncRNA genes of H3K4me1 and H3K4me3. (C) ChIP-Seq “metaplots” of histone-mark density at TSSs of protein-
coding and lncRNA genes, which are stratified by gene expressions: differentially expressed genes, non-expressed genes, week-specific 
differentially expressed genes, expressed but not differentially expressed genes, and random genes.
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5-C). W0 and W8 samples were correctly classified, 
whereas W2 and W4 samples were mixed. Results 
indicated that protein-coding genes were inadequate for 
characterizing disease progression. We hypothesized 
that lncRNA genes can be used to characterize disease 
progression. To investigate inaccuracy factor, we next 
constructed samples based on the differentially expressed 
lncRNA genes (Figure 5-D). All samples were correctly 
classified when dendrogam was cut at the dashed line. W2 
and W4 samples were also successfully segregated.

Overall, these data demonstrated that lncRNA 
expression can be used to define developmental 
relationships, while protein-coding genes are not.

Correlation of lncRNA and protein-coding gene 
expression

To investigate co-expression patterns of lncRNA 
and protein-coding genes, we computed pairwise 
expression correlations across all RNA-Seq samples. 
We first analyzed trans correlations of expression (genes 

separated by distance of > 1M base or located on various 
chromosomes). Expression of lncRNA genes was more 
closely correlated than protein-coding genes in trans. In 
all cases, bias toward correlations was significantly higher 
than that obtained for control set of trans correlations, in 
which expression of lncRNA and protein-coding genes 
was randomly shuffled (Figure 6-A). We then analyzed 
cis correlations of expression (gene pair located within 
genomic window of 100K bases). We observed higher 
proportion of correlations among cis correlations than 
among trans correlation for both lncRNA-gene–protein-
coding gene pairs and protein-coding gene–protein-
coding gene pairs (Figure 6-A). These results indicate that 
lncRNA genes possibly perform functions via combination 
of multiple lncRNA genes.

Gene ontology enrichment analysis focused on 
protein-coding genes with strong cis correlations with 
protein-coding genes, and results revealed that enrichment 
for gene-encoding products involved oxidation and 
linoleic acid metabolic process. By contrast, genes with 
cis correlations with lncRNA genes were significantly 

Figure 5: Disease progression is characterized by global expression patterns of lncRNA genes rather than mRNA 
genes. Sample clustering analysis based on gene expression of various combination of protein-coding and lncRNA genes, where dashed 
line is cut line for dendrogram, and samples surrounded by dashed circles are misclassified. (A) Protein-coding and lncRNA genes. (B) 
Differentially expressed protein-coding and lncRNA genes in at least one time point. (C) Differentially expressed protein-coding genes. 
(D) Differentially expressed lncRNA genes.
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associated with these functional annotations, such as 
response to cytokine stimulus, protein kinase cascade, and 
transmembrane transport (Figure 6-B).

To further investigate co-expression signature 
of genes, we delineated expression profiles of protein-
coding genes and differentially expressed lncRNA genes 
in at least one time point (FDR<0.05). We used model-
based gene clustering to obtain patterns for expression 
profiles [33], which are presented in Figure 6-C. In total, 
we discovered 21 modules, which were classified into 
six groups. Four specific profiles showed significant 
enrichment for lncRNA genes (p-value<0.05, proportion 
test) compared with proportion of lncRNA genes among 
all differentially expressed genes. These profiles were 
upregulated at W8 (profile 9, 10, 13, and 14), suggesting 
that more lncRNA genes became dysfunctional as disease 
progressed. Differentially expressed lncRNA genes 
showed significant enrichment (P < 0.05; relative to all 
lncRNA genes) for loci neighboring protein-coding genes, 
whose products were involved in transmembrane transport 
(p-value=9.7E-5, hypergeometric test), programmed cell 
death (p-value=8.4E-3), nitrogen compound biosynthetic 
process (p-value=5.6E-4), and cell cycle (p-value=1.0E-7). 
In summary, global co-expression analysis and gene-
expression profiling suggested notable and previously 
unappreciated role for lncRNAs in early development of 
DN.

To assess correlation of lncRNA and protein-coding 
genes, we validated gene expression of orthologous genes 
in humans using qPCR (Figure 6-D). We showed that three 
typical pairs of lncRNAs and protein-coding genes were 
consistent with those trends in mice.

Co-expression network analysis reveals modules 
of lncRNA and protein-coding genes

Correlation-based approaches are widely used 
to infer function of lncRNAs. Thus, we used network 
analysis by using WGCNA algorithm [34], which 
identified modules of genes with strong co-expression. 
Eigengene measures expression profile of co-expression 
module, and such profiles can be used to rank individual 
genes within modules. Screening for genes with high 
module membership is useful strategy for identification 
of genes of interest.

Of 102 modules discovered by WGCNA, four 
modules were selected for further analysis. Figure 
7-A shows heatmap of protein-coding and lncRNA 
co-expression network. As shown in Figure 7-B, in 
eigengenes of four selected co-expressed modules, 
expression level of modules mono-decreased (increasing), 
indicating disease progression. These modules contained 
protein-coding genes associated with cell functions, 
including transmembrane transport (p-value=0.01), lipid 
biosynthetic process (p-value=7.2E-4), oxidation reduction 
(p-value=0.01), and cell division (p-value=8.7E-3). Figure 

7-C provides two schematic examples of co-expression 
module consisting of protein-coding and lncRNA genes, 
and functions of lncRNAs can be inferred from protein-
coding genes within modules based on topology. Overall, 
these results provide information for identification of 
lncRNA candidates and formulation of hypotheses for 
functional studies to elucidate role of lncRNAs in DN.

DISCUSSION

Discovering new biomarkers and therapy targets 
is crucial for diagnosis and treatment of DN. Progress, 
however, is slow. Recently, research on lncRNAs 
illuminated understanding of DN. Few lncRNAs have 
close relationship with DN progression; these lncRNAs 
include lncRNA PVT1 [18], lnc-MGC [35], and Tug1 [19], 
etc.. Difficulty arises from exposing complete structure of 
lncRNAs in DN process these dispersive studies, and our 
understanding is presently in its infancy. Thus, large-scale 
data on lncRNAs and mRNAs in DN need to be gathered 
for better understanding of this disease. Recently, Ding 
et al [36] investigate lncRNA expression in DN using the 
microarray data. However, they use the mixed cells from 
kidney, rather than the PTCs. Hence, we revealed genome-
wide profiles of lncRNAs and mRNAs from isolated 
fresh PTCs using NGS in DN process for the first time. 
Transcriptome information from fresh isolated tissues can 
represent actual appearance of disease to maximum extent 
[37]. Therefore, this study is novel and pioneering on 
global views about lncRNAs and mRNAs in DN research.

To our knowledge, this report represents first 
investigation of protein-coding and lncRNA elements 
in mouse kidney PTCs during early development of 
DN. And, we discovered more than 3,502 differentially 
expressed protein-coding genes, in which 76 genes are 
reported in previous studies. We also identified 3,818 
differentially expressed lncRNA genes. Interestingly, 390 
(556) lncRNA genes exhibited mono-decreasing (mono-
increasing) expression levels. Patterns indicate dynamics 
of genes during disease progression, suggesting important 
role of lncRNAs during initial stages of diabetes. 
Functions of lncRNA genes include cell proliferation and 
cell death, and they are closely associated with diabetes.

Prior information was used to annotate lncRNA 
genes. Recently, Orom et al. [38] used GENCODE 
annotation of human genome to characterize over a 
thousand lncRNAs, and discovered that significant portion 
of lncRNAs have cis-regulatory enhancer properties. To 
characterize the differentially expressed lncRNA genes, 
we analyzed TSSs of lncRNAs for presence of histone 
modifications. By using ChiP-Seq data (H3K4me1, 
H3K4me3) from ENCODE database for kidney [39]. And, 
we discovered that nearly 40% of differentially expressed 
lncRNA genes overlap with histone modification signals. 
Result demonstrates that obtained lncRNA genes are 
key regulators for kidney disease. Moreover, we showed 
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that lncRNA genes are more accurate than mRNA genes 
in discriminating disease progression. These results are 
consistent with previous study [31], where lncRNAs 

discriminate cell development. Functions of lncRNA 
genes are cell proliferation, cell death, oxidation reduction, 
and phosphorylation, and these are closely associated with 

Figure 6: lncRNA genes are co-expressed with protein-coding genes during disease progression. (A) Boxplot of pairwise 
Spearman expression correlations between genes of different classes in trans (left) and cis (right): lncRNA–to–lncRNA, lncRNA–mRNA, 
mRNA–mRNA, and random mRNA–lncRNA. (B) Gene ontology enrichment for protein-coding genes in trans and correlated with lncRNAs 
(first column, mRNA–lncRNA), and nearest protein-coding genes in trans and correlated with lncRNA genes (lncRNA–lncRNA) presented 
as −log10 hypergeometric P value for enrichment. (C) Model-based expression profiles (Profiles 1–22; Groups I–VI) of protein-coding 
and lncRNA genes expressed differentially during disease progression. Numbers above plots indicate profile number plus total genes and 
lncRNA genes in profile (in parentheses: total lncRNA). y-axis is Z-score of gene expression, and x-axis is time point. In each plot, gray 
line is expression level of gene in module, and red line is average expression level of genes within module. Red asterisks indicate profiles 
showing enrichment for lncRNA genes (P < 0.05 versus proportion of lncRNAs among all differentially expressed genes). (D) Validation 
for predicted mRNA–lncRNA pairs in PTCs (HK2) Mouse: Predicted mRNA–lncRNA pairs from RNA-seq in mouse DN models. Left 
portion: mRNA results (all differential expressions are significant). Middle portion: lncRNA results. Right portion: Correlation coefficient 
between mRNA and lncRNA. All P values < 0.01. Human: Validation for predicted mRNA–lncRNA pairs in PTCs (HK2) down-regulated 
lncRNAs by qPCR. NG, cultured with normal glucose; HG, cultured with 30 mM glucose for 48 h. *p<0.05 versus NG, n=3.
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DN. In addition, current study indicates that lncRNA genes 
exhibited earlier symptoms of disease compared with that 
of mRNA genes, which may provide novel evidence for 
early diagnosis and therapy of DN.

To further investigate application values of mouse 
model, we validated several that human orthologous 
lncRNAs in vitro diabetes model. And, they had similar 

differential expression pattern as their orthologous 
lncRNA in mouse. Interestingly, the lncRNAs have 
not been reported in DN before. Poor conservation of 
lncRNAs across different species challenges application 
of animal sequencing data to human disease [6, 40]. 
However, in clinical practice, in patients with early DN, 
conditions prevent obtaining sufficient kidney samples 

Figure 7: Network analysis identifies co-expression modules of lncRNA and protein-coding genes. (A) Heatmap of 
WGCNA topological overlap matrix, where each row (column) corresponds to a gene, and bar color indicates genes clustered as module. 
(B) Eigengene of selected modules represents gene expression level of genes within a module. (C-D) Screening strategies for identification 
of candidate lncRNA genes and lncRNA-gene–protein-coding gene co-expression associations in specific modules for further functional 
studies presented as Circos plots from analysis of HSPC module (broken lines in circumference indicate individual chromosomes).
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for deep sequencing. Our study demonstrates that 
validation of orthologous lncRNAs from animal data is 
still an efficacious way to discover novel biomarkers in 
human DN.

lncRNAs exert their effect by direct interaction with 
specific TFs [41, 42]. In recent report, hypoxia-regulated 
lncRNA linc-p21 was shown to physically interact with 
HIF-1-alpha TFs to control metabolism in tumor cells 
[43]. We discovered several enriched important TF motifs 
for lncRNAs. These TFs were previously reported as key 
regulation factors that closely related to cell proliferation, 
apoptosis, inflammation, fibrosis, and other signaling 
pathways in DN [29, 44-46]. In our study, some of 
predicted potential lncRNAs–mRNA pairs have also been 
validated in in human cells in vitro diabetic model. Results 
imply that orthologous lncRNAs may play similar roles in 
DN even across different species.

MATERIALS AND METHODS

Animals

Eight weeks old male DBA/2J mice were purchased 
from Jackson Laboratory (Bar Harbor, ME) and were 
housed in barrier facility under National Institutes of 
Health guidelines. The mice were divided randomly 
into four groups of 48: 0 week group(Control, twelve 
mice); 2 week group(Diabetes, twelve mice); 4 week 
group(Diabetes, twelve mice) and 8 week group(Diabetes, 
twelve mice). In each group, mixed PTCs from every 
six mice were used for producing one RNA-sequencing 
dataset. Thus, each group produced two independent 
RNA-sequencing datasets. Diabetes was induced with 
intraperitoneal injections of streptomycin (STZ) based 
on protocol of Animal Models of Diabetic Complications 
Consortium [47]. In brief, STZ (Sigma) was dissolved in 
0.05 M citrate monosodium (ACROS) buffer immediately 
before injection. Mice received injections of 50 mg/kg/day 
STZ for five consecutive days after fasting for 4 h. Low 
doses of STZ has been previously demonstrated to induce 
durable hyperglycemia without obvious kidney damage 
[48, 49]. All mice were fed the same diet and water. Insulin 
was not given to any of the animals. All animal procedures 
were approved by the Institutional Animal Care and Use 
Committee of Sichuan University.

Blood glucose and urinary albumin/creatine 
ratio measurements

Mice blood glucose levels were measured per week 
after initial STZ injection using ReliOn Ultima glucose 
reader (Walmart) for 10 weeks. At each time point before 
sacrifices, spot urine collections were obtained from mice 
as previously described [50]. Urinary concentrations 
of albumin and creatine were determined using mouse-
specific microalbuminuria enzyme-linked immunosorbent 

assay kit (Albuwell M, Exocell) and creatinine 
companion kit (Exocell), respectively, per manufacturer’s 
instructions [51].

Histology

Kidney tissues of mice were first placed in 4% 
paraformaldehyde and then embedded in paraffin. 
Paraffin-embedded tissues were then sectioned at 3 μm to 5 
μm, stained with hematoxylin-eosin, periodic acid–Schiff 
(PAS), and Masson’s trichrome, successively. Digital 
images were obtained using Leica DM5000B Microscope 
System. For each mouse, 10 randomly selected cortical 
areas were evaluated under 200× magnification. Relative 
interstitial volume was evaluated by morphometric 
analysis, and tubules were evaluated as tubules damage 
index (TDI) to estimate percentage of damaged tubules in 
blinded manner as previously described [23].

Fluorescence-activated cell sorting (FACS)

The cortical region of mice kidneys was minced 
into small pieces. Cortical pieces were softly grinded on 
250 μm steel sieve, washed with 1×PBS, and spun down. 
Precipitation was resuspended in solution of 0.5 mg/ml 
collagenase I, 0.5 mg/ml dispase II, and 0.1% trypsin 
(Worthington Bio Co., Lakewood, NJ) in complete RPMI-
1640 medium (Gibco) and incubated at 37 °C for 15 min. 
After digestion, mixture was filtered through 100 and 40 
μm cell strainer (BD Biosciences) sequentially. Single cell 
suspension was treated with ACK lysing buffer (Lonza), 
then resuspended in 1×PBS to 2×107 cells/ml. Suspension 
was first incubated with anti-CD16/32 antibody (3 μl/1× 
108 cells) (Biolegend) at 4 °C for 10 min. Then cells were 
washed and resuspended. Kidney cells were incubated 
with PE-conjugated CD13 antibody (BD Biosciences), 
which is specific against aminopeptidase N on PTC 
microvilli (20 μg/ml) at 4 °C in dark for 30 min. A647 
conjugated nephrin antibody (Bioss) was added to prevent 
podocyte contamination. After labeling, cells were washed 
and resuspended in 1×PBS supplemented with 2% bovine 
serum albumin to 1×107 cells/ml. Fluorescent-labeled 
PTCs were isolated by BD FACSAria™ II flow cytometry 
cell sorting system (BD Biosciences). [52].

RNA-seq

Sorted PTCs were lysed with Trizol-LS immediately 
(Ambion), and total RNA was prepared using RNeasy 
Plus Mini Kit (Qiagen) per manufacturers’ instructions. 
Total RNA concentration was measured by Qubit 2.0 
Fluorometer (Invitrogen), and RNA quality was evaluated 
using Agilent 2100 Bioanalyzer (Agilent). RNA-seq 
libraries were prepared with Ovation RNA-Seq System 
V2 Kit (NuGEN) per manufacturer’s instruction. RNA-
seq libraries were analyzed by Bioanalyzer (Agilent) 
and quantified by quantitative PCR (qPCR) (KAPA). 
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High-throughput sequencing was performed using 
Illumina HiSeq 2500 Genome Sequencers [53]. The data 
is available at GEO database with accession number 
GSE95367.

Cell culture

Human kidney epithelial cells (HK2) of proximal 
tubular origin were purchased from American Type 
Culture Collection (Manassas) and cultured in RPMI 
1640 medium (Gibco) supplemented with 10% fetal 
bovine serum (Gibco) at 37 °C under 5% CO2. Cells were 
cultured in complete medium with different concentrations 
of glucose for further validation experiments at 80% 
confluence after synchronization.

Real-time qPCR for mRNA and lncRNA 
expression

Total RNA was purified from HK-2 cells using 
RNeasy Plus Mini Kit (Qiagen) as described ahead. cDNA 
was obtained by reverse transcription using iScript cDNA 
Synthesis Kit (Bio-Rad). Then, cDNA was amplified with 
specific primers (shown in Supplementary Tables 1&2) 
and detected using SYBR Green Supermix (Bio-Rad) 
with BIO-RAD CFX-96 Real Time PCR System (Bio-
Rad) under the following conditions: 95 °C for 3 min 
followed by 40 cycles of 95 °C for 10 s and 52 °C for 30 
s. Amount of relative expression of cDNA was calculated 
using 2−△△Ct method. Expression levels were normalized 
to glyceralde-hyde-3-phosphate dehydrogenase mRNA as 
internal control.

Data analysis

Transcriptome assembly and expression level estimate 
from sequencing reads

Paired-end reads were mapped to mouse genome 
(mm9) using Tophat [54]. Downstream analyses only included 
uniquely mapped reads with fewer than two mismatches. 
Transcripts were assembled using Cufflinks [55] and Refseq 
(mm9) as source of annotated transcripts. Normalized transcript 
abundance was calculated using Cufflinks. Fragments Per 
Kilobase of transcripts per Million mapped reads (FPKM) 
was used to quantify expression (The procedure for the RNA-
sequencing analysis is depicted in Supplementary Figure 3). 
Gene-level FPKM values were computed by summing up 
FPKM values of their corresponding transcripts. For lncRNA 
gene expression, same procedure was repeated by using 
annotation file of NONCODE 4.0 [56] (FPKM values for 
mRNA are presented in Supplementary 3, and FPKM values 
for lncRNA are shown in Supplementary 4).
Statistical significance of differential gene expression

With normalized gene level read counts, edgeR [57] 
was adopted to calculate p-values of differential gene 

expression. For calling differentially expressed gene, 
we used false discovery rate (FDR) cutoff of 0.05, and 
minimum FPKM is greater or equal to 1 in at least one 
sample.
Gene ontology enrichment analysis

To evaluate functional relevance of genes, we 
performed gene ontology enrichment analysis on groups of 
genes using hyper-geometric test. p-values were corrected 
through BH test [58] with cutoff value of 0.05.
Chip-sequence data analysis

We downloaded Chip-Seq datasets (Encyclopedia 
of DNA Elements at UCSC [39]) of H3K4me1 and 
H3K4me3 histone modifications in kidney from eight-
week old adult mouse. We used peak information from 
bigWig files. For various genes, significant peaks and 
transcription start sites (TSS) overlapped under conditions 
of strict overlap (TSS was contained in peak region as 
defined by MACS [59]). Data for read density heatmaps 
were obtained for window sizes ±3 kb.
Expression correlation analysis

We calculated correlations for mRNA–mRNA, 
mRNA–lncRNA, and lncRNA–lncRNA pairs. For each 
pair of genes with non-null expression, non-parametric 
Spearman correlation was computed using FPKM 
expression. Both trans (pairs consisting of genes located 
at distance of > 1 Mb from each other or in different 
chromosomes) and cis (pairs consisting of genes located 
within genomic window of 1Mb) correlations were 
computed. Controls used were correlations of lncRNAs 
and mRNAs with randomly shuffled expression vectors.
Co-expression network analysis

The protein-coding and lncRNA genes differentially 
expressed at least on one condition were selected for 
co-expression network analysis (protein-coding: 3884; 
lncRNA: 3997). Weighted gene co-expression network 
analysis algorithm (WGCNA) was adopted with default 
parameters [34].

Pair-wise co-expression matrix (Topological 
Overlap Matrix) was generated and clustered to retrieve 
modules of highly correlated genes (The dendrogram 
is illustrated in Supplementary Figure 4). Each module 
obtained by WGCNA was characterized by expression 
of representative gene (eigengene, Figure 7-B). For 
each gene, WGCNA also provides summary statistics 
and module membership (quantifying how strongly 
expression profile of gene correlates with that of module) 
information, which can be used to screen for biologically 
interesting candidate genes for functional studies.

CONCLUSIONS

Overall, novel findings in this study unveiled 
largely unknown field of lncRNAs in early stage of 



Oncotarget105845www.impactjournals.com/oncotarget

DN. At least four light spots were revealed in current 
study. First, we used NGS for transcriptome deep 
sequencing of fresh isolated kidney cells from dynamic 
process in early DN for the first time. Thus, research 
methods are advanced and groundbreaking. Second, 
algorithms of big data are adequately scientific and 
reliable. Third, data acquired from mouse were proven 
to be applicable by validation in human cells. Fourth, 
deep bioinformatics analysis for validated lncRNAs 
is the pilot for future concrete mechanism research. 
In conclusion, present resource paves new way for 
aiming at lncRNAs in early diagnostic and intervention 
strategies of DN.
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