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NMR-based metabolomic techniques identify potential urinary 
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ABSTRACT

Better early detection methods are needed to improve the outcomes of patients 
with colorectal cancer (CRC). Proton nuclear magnetic resonance spectroscopy 
(1H-NMR), a potential non-invasive early tumor detection method, was used to 
profile urine metabolites from 55 CRC patients and 40 healthy controls (HCs). Pattern 
recognition through orthogonal partial least squares-discriminant analysis (OPLS-DA) 
was applied to 1H-NMR processed data. Model specificity was confirmed by comparison 
with esophageal cancers (EC, n=18). Unique metabolomic profiles distinguished all 
CRC stages from HC urine samples. A total of 16 potential biomarker metabolites were 
identified in stage I/II CRC, indicating amino acid metabolism, glycolysis, tricarboxylic 
acid (TCA) cycle, urea cycle, choline metabolism, and gut microflora metabolism 
pathway disruptions. Metabolite profiles from early stage CRC and EC patients were 
also clearly distinguishable, suggesting that upper and lower gastrointestinal cancers 
have different metabolomic profiles. Our study assessed important metabolomic 
variations in CRC patient urine samples, provided information complementary to that 
collected from other biofluid-based metabolomics analyses, and elucidated potential 
underlying metabolic mechanisms driving CRC. Our results support the utility of NMR-
based urinary metabolomics fingerprinting in early diagnosis of CRC.

INTRODUCTION

Colorectal cancer (CRC) is a major cause of mortality 
in developing countries, and is the third most commonly 
diagnosed cancer in men and the second in women [1]. 
Early stage CRC patients have higher 5-year survival rates 
than those diagnosed at later stages [2]. Improved early 
CRC detection methods could reduce patient mortality and 
improve therapeutic responses and prognoses. Although 

colonoscopy remains the gold standard for diagnosing 
precancerous lesions and CRC, this approach is invasive, 
expensive, and uncomfortable [3], precluding it as a 
cost effective population-based screening test. Tumor 
biomarkers, including carcinoembryonic antigen (CEA) 
and fecal occult blood testing (FOBT), are used clinically, 
but have relatively low sensitivities and specificities [4-6]. 
These limitations highlight the need for effective, non-
invasive screening tools to facilitate early diagnosis of CRC.
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Metabolomics, which investigates global 
changes in small molecular weight metabolites within 
a given biological specimen [7-9], is the omics cascade 
endpoint before phenotype [10]. Metabolomics can be 
used to assess direct correlations between metabolite 
and biological phenotype changes. Nuclear magnetic 
resonance (1H-NMR) spectroscopy-based metabolomics 
methods used in high-throughput studies require only 
minimal sample preparation to profile a wide range of 
metabolites [8, 11]. Profiling of metabolic variations in 
CRC patient tissues has revealed changes in lactate, amino 
acids, carboxylic acids, fatty acids, and the urea cycle as 
compared to normal tissues [9, 12]. CRC patient serum 
metabolite profiles showed abnormal, tumor-associated 
proline metabolism, glycolysis, fatty acid metabolism, 
arginine, and oleamide metabolism regulation [13]. 
Our recent fecal metabolomic study showed nutrient 
malabsorption, disrupted bacterial ecology, and increased 
glycolysis and glutaminolysis in CRC patients [14].

Urine is a biofluid commonly used by 
metabolomics researchers [15], because it is easy to 
collect in large volumes and may provide diagnostic 
information for many cancer types [16, 17], including 
CRC [18]. Biomarkers in urine may be derived from 
cell apoptosis, glomerular filtration of blood plasma, 
cell sloughing, epithelial cell secretion of exosomes, and 
other processes [19]. Diet-derived metabolic markers 
may also provide important diagnostic clues [20, 21]. 
Several studies demonstrated a correlation between CRC 
and perturbed urinary metabolomic profiles [18, 22-
24], but none described cancer stage-specific changes. 
Our study investigated metabolomic profiles in CRC 
patients at different stages compared to healthy controls 
(HC), and attempted to identify patients with early stage 
disease (stage I/II). CRC-specific urinary profiles were 
confirmed through comparison with an esophageal 
cancer (EC) cohort.

RESULTS

CRC patient urine metabolic profiles

Representative 1D 1H-NMR spectra, which 
provide an overview of all metabolites present in CRC 
patient and HC urine samples, are shown in Figure 1. 
Major metabolites were assigned according to previous 
studies [7, 15] and the Human Metabolome Database 
(http://www.hmdb.ca/). The aliphatic region at 0.8–4.5 
ppm in all spectra included strong signals from water-
soluble metabolites, such as lactate, isobutyrate, alanine, 
glutamate, glutamine, acetone, acetoacetate, creatinine, 
creatine, cysteine, dimethyl sulfone, malonate, and 
choline. Isocitrate, hippurate, cysteine, and phenylalanine 
overlap at 3.96–3.99ppm and are therefore characterized 
as isocitrate/hippurate/cysteine/phenylalanine in this 
manuscript.

Pattern recognition (PR) analyses between 
disease groups and HCs

High inter-individual variabilities and complexities 
in urinary profiles made visual comparisons of these 
spectra impractical. Instead, we used multivariate 
analysis to determine consistent variations between 
data sets [7]. Unsupervised PR was initially carried out 
using preliminary principal component analysis (PCA) 
to generate an overview of variations between HCs and 
CRC patients. Clustering based on disease status was 
not observed on the scores plot of the first two principal 
components (Figure 2A). A clear separation between CRC 
patients and HCs was achieved by supervised orthogonal 
partial least-squares discriminant analysis (OPLS-
DA) scores plot (Figure 2B). The internal validation 
was perfomed to assess the predictive ability of the 
corresponding OPLS-DA model (R2Y=0.819, Q2=0.599, 
CV-ANOVA p<0.01), suggesting that the model was a 
good fit. To futher evaluate the validity of this model, 
a random permutation test (200 times) was performed, 
indicating no overfitting (Figure 2C). To assess the 
predictive ability of the model using unknown samples, 
80% of samples (“training set”, HC=32, CRC=45) were 
randomly selected to construct an OPLS-DA model, which 
was then used to predict the remaining 20% (“testing set”, 
HC=8, CRC=10). Testing set HCs were correctly localized 
to the training set HC region, and equivalent results were 
obtained using the CRC testing set (Figure 2D).

Urine profiles from HCs and CRC patients at 
different stages could be clearly separated using the 
OPLS-DA scores plot (Figure 3A). Model parameters of 
the permutation analysis of the different groups were as 
follows: stage I/II vs HC: R2Y=0.910, Q2=0.534; stage 
III/IV vs HC: R2Y=0.912, Q2=0.561 (Figure 3B). Urine 
metabolite differences between early and advanced 
stage CRC were less pronounced (two components with 
R2Y=0.414, Q2=-0.454). Model specificity was confirmed 
via comparison with the EC cohort. The OPLS-DA scores 
plot revealed clear distinctions between early stage CRC, 
EC, and HC (Figure 4).

Urinary metabolites contributing to CRC early 
detection

We used the following conditions to classify urine 
metabolites as candidate biomarkers for CRC early 
detection: (1) metabolites with variable importance in the 
projection (VIP)>1, and (2) metabolites with differing 
levels (p<0.05 via Mann-Whitney U test) in stage I/II CRC 
patients vs. HCs. Sixteen of the most significant urine 
metabolites contributing to patient separation are displayed 
in Table 1. Among these metabolites, acetoacetate, 
glutamine, guanidoacetate, cis-aconitate, trans-aconitate, 
and homocycteine were increased, while creatinine, choline, 
dimethyl sulfone, asparagine, alanine, methylamine, and 
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Figure 2: PR of urine metabolomic profiles analyzed using 1H-NMR Spectroscopy. (A) PCA scatter plot of HC (green dots) 
and CRC patient (blue squares) urine samples. (B) OPLS-DA scatter plot based on the same samples. (C) Statistical validation of the 
corresponding OPLS-DA model by permutation analysis (200 times). (D) Scores plots of the OPLS-DA prediction model.

Figure 1: 400 MHz representative urine 1H NMR spectra from one CRC patient (A) and one HC (B), referenced to TSP (0. 0 ppm).
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Figure 3: PR analysis of 1H-NMR urine spectra from HCs and different CRC stages. (A) OPLS-DA scatter plot based on 
HCs and different CRC stages. (B) Statistical validation of the corresponding OPLS-DA model by permutation analysis (200 times).

Figure 4: (A) OPLS-DA scatter plot based on EC, HC, and stage-I/II CRC samples. (B) Statistical validation of the corresponding OPLS-
DA model by permutation analysis (200 times).
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isocitrate/hippurate/cysteine/phenylalanine were decreased 
in the urine of stage I/II CRC patients compared to HCs 
(p<0.01). Optimal cut-off values, sensitivities, specificities, 
and AUROC values of these metabolites were shown 
in Figure 5. Acetoacetate, glutamine, asparagine, and 
cysteine had relatively high AUC values, sensitivities, and 
specificities in distinguishing early stage CRC patients from 
HCs. Alanine, glutamine, aspartic acid, and acetoacetate 
combined had better diagnostic capabilities than any single 

metabolite alone in discriminating between early stage CRC 
patients and HCs, with sensitivity, specificity, and AUC 
values of 87.5%, 91.3%, and 0.933, respectively (Figure 6).

Colorectal cancer-specific metabolomic profiles

Important metabolites for distinguishing CRC 
from EC patients included the TCA cycle intermediates 
(fumarate and cis-aconitate), amino acid metabolism 

Table 1: Marker metabolites found in OPLS-DA models of 1H NMR-based urine metabolic profiling between I/II 
stage of CRC and healthy controls

Top 16 most 
significant in order

Chemical shift 
(ppm)

I/II stage of CRC vs healthy controls Related metabolomic 
pathway

VIPa p-valueb Variations vs HC

Choline 3.19(s) 2.25 0.000 ↓ Choline metabolism, Lipid 
metabolism

Phenylalanine 3.19(m)
3.98(dd)

2.25
1.43

0.000
0.004

↓
↓

Amino acid metabolism, 
Phenylalanine metabolism

Asparagine 2.80(dd) 1.90 0.000 ↓ Urea metabolism, Amino 
acid metabolism

Isocitrate 3.98(d) 1.84 0.005 ↓ TCA cycle

Cysteine 3.97(dd)
3.06(m)

1.84
1.70

0.003
0.000

↓
↓

Amino acid metabolism, 
Glutamate Metabolism, 
Glutathione Metabolism

Hippurate 3.96(d) 1.84 0.005 ↓ Gut microflora metabolism

Dimethyl sulfone 3.138(s) 1.72 0.000 ↓ Gut microflora metabolism, 
Endogenous methanethiol 

metabolism

Creatinine 3.03(s)
4.05(s)

1.70
1.43

0.007
0.003

↓
↓

Urea metabolism, 
Creatinine metabolism

Alanine 1.46(d) 1.67 0.017 ↓ Amino acid metabolism, 
Gluconeogenesis

Methylamine 2.59(s) 1.12 0.018 ↓ Gut microflora metabolism, 
Disulfiram Pathway

Homocysteine 2.14(m) 1.76 0.014 ↑ Amino acid metabolism, 
Methionine metabolism

Glutamine 2.12(m)
3.76(t)

1.76
1.53

0.001
0.017

↑
↑

Glutaminolysis, TCA cycle

cis-Aconitate 3.43(d) 1.64 0.043 ↑ TCA cycle, Glyoxylate, 
Dicarboxylate metabolism

Acetoacetate 2.27(s)
3.43(s)

1.59
1.64

0.009
0.043

↑
↑

Fatty acid metabolism, TCA 
cycle

trans-Aconitate 3.74(s) 1.54 0.019 ↑ TCA cycle

Guanidoacetate 3.78(s) 1.53 0.017 ↑ Urea metabolism

a: Variable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0.
b: p value was calculated from Mann-Whitney U test.
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(homogentisic acid, indoleacetate), urea metabolism 
(creatinine, creatine and urea), nucleotide metabolism 
(thymidine and uracil), gut microflora-derived metabolites 
(hippurate), glutaminolysis metabolites (glutamine), and 
others (pyridoxic acid, cinnamic acid, oxypurinol, and 
trigonelline) (Table 2).

DISCUSSION

Apart from genomic and proteomic alterations, 
CRC development and progression are associated with 
cellular metabolic changes that may provide insight into 
disease pathogenesis [8, 9, 12, 14]. Our 1H-NMR-based 
metabolomic findings identified distinct disturbances 
to CRC patient urine metabolites, even at stage I/II, 
compared with HCs, including elevated acetoacetate, 

guanidoacetate, cis-aconitate, trans-aconitate, 
glutamine, and homocycteine, and reduced creatinine, 
phosphorylcholine, dimethyl sulfone, asparagine, 
alanine, isocitrate, hippurate, methylamine, cysteine, 
and phenylalanine (Table 1). Altered urine metabolite 
levels could indicate perturbed amino acid metabolism, 
glycolysis, TCA cycle, urea cycle, choline metabolism, 
and gut microflora metabolism. OPLS-DA differentiated 
metabolic profiles from stage I/II CRC, EC, and HC, 
indicating that upper and lower gastrointestinal cancers 
have different metabolomic profiles [25]. Our study 
assessed important metabolomic variations in CRC 
patient vs. EC patient and HC urine samples, providing 
information complementary to that derived from other 
biofluid-based metabolomics studies, and adding to our 
understanding of the metabolic mechanisms driving CRC.

Figure 5: ROC curve of urine metabolites for distinguishing stage I/II CRC patients from HCs.
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While many metabolites that differ between cancer 
patients and HCs have diagnostic potential, only those 
with potential biological relevance are of practical use. 
Choline was the most significantly altered metabolite, 
with lower levels and higher VIP values in cancer 
patients. Lower urinary choline levels in CRC are most 
likely related to increased demand for choline in tumors. 
Choline contributes to tumor cell phospholipid synthesis, 
and is integrated into lecithin, a major cell membrane 
phospholipid component [26]. Consistent with a previous 
report, as choline demand increases in tumor tissues, blood 
choline levels drop, leading to decreased urinary choline 
in CRC patients [27]. Another plausible explanation for 
decreased urinary choline levels might be its utilization as 
an alternative methyl group donor for DNA methylation 
and synthesis in tumor cells [28]. Additionally, levels of 
the choline precursor, creatinine, were decreased in CRC 
patient urine samples [29]. Our findings suggest that 
choline could be a viable biomarker associated with tumor 
promotion.

Another key altered metabolite is isocitrate, an 
important intermediate in the TCA cycle (Figure 7). 
Isocitrate levels were reduced in CRC patient urine 
compared to that of HCs, suggesting TCA cycle 
deregulation and increased energy metabolism due 
to tumor cell activation [30, 31]. Isocitrate can be 
converted to citrate and α-ketoglutarate, and this process 
is balanced to allow generation of both ATP and cellular 
macromolecules to sustain cell growth. Since glucose 
is the main carbohydrate source for glycolysis and the 
TCA cycle, increased glycolysis, as previously reported 
in CRC patient tissue, serum, and fecal metabolomic 
studies, may also lead to reduced TCA intermediates 
in urine [12, 14, 32]. However, we observed slightly 
higher levels of cis-aconitate, a TCA cycle intermediate 
produced by the dehydration of citrate, in CRC patient 
urine. This could result from elevation of trans-aconitate, 
which is then converted into cis-aconitate (Figure 7). 
Acetoacetate, a catabolite of fatty acids metabolism 
during calorie restriction, was upregulated in CRC 

Figure 6: Comparision of single metabolite and combined metabolites ROC curves for distinguishing early stage CRC 
patients from HCs.
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Table 2: Marker metabolites found in OPLS-DA models of 1H NMR-based urine metabolic profiling between stage I/
II CRC patients and EC patients

Metabolites Chemical shift (ppm) I/II stage of CRC vs EC Related metabolomic pathway

VIPa p-valueb Variations vs EC

Thymidine 6.28(t)
7.63(s)

1.82
1.36

0.000
0.033

↑
↑

Nucleotide metabolism

Fumarate 6.51(s) 1.71 0.000 ↑ TCA cycle, Arginine and Proline 
metabolism, Aspartate metabolism

Hippurate 7.54(m)
7.62(tt)

1.47
1.52

0.036
0.019

↑
↑

Gut microflora metabolism

cis-Aconitate 6.58(s) 1.69 0.000 ↑ TCA cycle, Glyoxylate, 
Dicarboxylate metabolism

Pyridoxic acid 7.53(s)
4.51(s)

1.62
1.50

0.003
0.000

↑
↑

Vitamin B6 metabolism

Cinnamic acid 6.51(d)
7.39(d)
7.44(m)
7.61(dd)

1.71
1.31
1.62
1.53

0.000
0.022
0.001
0.019

↑
↑
↑
↑

unknown

Homogentisic acid 6.71(m) 1.23 0.000 ↑ Phenylalanine and tyrosine 
metabolism, Disulfiram pathway

Indoleacetate 7.24(m)
7.50(d)
7.62(d)

1.23
1.47
1.18

0.002
0.009
0.004

↑
↑

Amino acid metabolism, Tryptophan 
metabolism

Trigonelline 8.83(m) 1.42 0.043 ↑ Vitamin metabolism
Creatinine 3.03(s)

4.05(s)
1.67
1.25

0.000
0.008

↓
↓

Urea metabolism, Creatinine 
metabolism

Creatine 3.02(s) 1.67 0.000 ↓ Urea metabolism, Creatine 
metabolism

Uracil 5.79(d) 1.47 0.003 ↓ Pyrimidine metabolism
Urea 5.78(br, s) 1.41 0.003 ↓ Urea metabolism

a: Variable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0.
b: p value was calculated from Mann-Whitney U test.

Figure 7: Metabolic pathways that include the most promising potential CRC metabolite biomarkers identified in this 
study. Red represents metabolites upregulated in CRC, blue represents those downregulated.
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Table 3: Summary of clinical and demographic features for study subjects and tumor characteristics

CRC (55) EC (18) HC (40)

Stage-I/II Stage-III/IV p value

Age (median, range) 61, 27-84 59, 38-81 61, 32-77 59, 28-78

Sex 0.944

 Male 11 15 8 19

 Female 12 17 10 21

Cancer site

 Colon 10 23 0.034 -

 Rectum 13 9 -

Cervical 2 -

 Upper Thoracic 3 -

 Middle Thoracic 5 -

 Lower Thoracic 8 -

FOBT 0.767

 Positive 9 14 N/A N/A

 Negative 1 3 N/A N/A

 Not check 13 15

CEA (ng/mL) 0.029

 Positive 5 18 5 N/A

 Negative 15 11 3 N/A

 Not check 3 3

CA199(U/mL) 0.563

 Positive 3 8 3 N/A

 Negative 15 17 4 N/A

 Not check 5 7

Tumor size (cm, Mean 
± SD)

 Major diameter 5.14±3.28 5.38±1.71 0.756

 Width diameter 3.90±2.08 4.21±1.52 0.573

 Thick diameter 1.92±1.14 2.38±1.21 0.119

Symptoms 0.184

 Change of stool 
character

10 18

 Hematochezia 12 10

 Abdominal pain 8 9

 Bowel obstruction 3 2

Weight 0.779

 <50kg 5 8

 ≥50kg 18 24
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patient urine compared with that of HCs, consistent 
with increased energy consumption by the tumor. 
Acetoacetate upregulation leads to increased production 
of acetyl-CoA, an intermediary that promotes TCA cycle 
alternative energy utilization in cancers when glucose and 
TCA intermediates (such as isocitrate) are insufficient 
[33]. Increased glutamine levels were also observed in 
early stage CRC urine samples, suggesting augmented 
glutaminalysis. Glutamine is lysed to glutamate, which 
can be converted to α-ketoglutarate to increase transit 
through the citric acid cycle, providing sustainable energy 
required for rapid cell proliferation [34, 35]. Decreased 
asparagine with an equivalent increase in guanidoacetate 
levels observed in CRC urine samples might result 
from increased urea cycle activity to maintain urea 
detoxification. Compared to HCs, increased homocysteine 
and decreased alanine, cysteine, and phenylalanine 
were measured in CRC patient urine. This could be 
accounted for by disrupted amino acid metabolism due to 
epithelium inflammation and injury resulting from bowel 
disease in CRC patients [36]. The observed depletion of 
methylamine and hippurate in urine suggests a disruption 
in the intestinal epithelium and diffusion of gut microbes 
associated with colorectal tumourigenesis [37]. Among 
the potential urinary biomarkers, acetoacetate, glutamine, 
asparagine, and cysteine had relatively high AUC, 
sensitivity, and specificity values for distinguishing early 
stage CRC patients from HCs. However, the diagnostic 
performance of analine, glutamine, aspartic acid, and 
acetoacetate combined improved discrimination between 
early stage CRC patients and HCs compared to any single 
metabolite alone.

To determine whether the urinary metabolic 
alterations observed here were specific to CRC or 
reflective of common metabolic changes associated 
with malignancy, we compared the metabolomic 
profiles of patients with CRC and EC. We identified 
key discriminatory metabolites through VIP analysis, 
which revealed several distinguishing patterns. We also 
observed overlapping metabolites between CRC and EC, 
which could reflect metabolic changes associated with 
shared tumorigenesis pathways, including disturbed gut 
microflora metabolism and urea metabolism associated 
with tumor cell proliferation and growth.

Overall, our findings revealed that CRC patient 
urinary metabolic profiles can be distinguished from 
those of HCs, even in early stages of disease (stage I/II), 
supporting the utility of NMR-based urinary metabolomics 
fingerprinting in early diagnosis of CRC. Our results 
demonstrate the potential of this noninvasive urinary 
metabolomic strategy as a complementary diagnostic 
tool to screen for early CRC tumor-associated metabolic 
pathway perturbations. While our preliminary results 
are encouraging, the presence of a given metabolite in 
urine is the result of complex production, utilization, 
and glomerular filtration pathways. Therefore, further 

investigations must be undertaken to assess and validate 
each metabolite with biomarker potential identified in our 
study.

MATERIALS AND METHODS

Patient recruitment and sample collection

This study was approved by the Ethics Committee 
of Shantou University Medical College. Written 
informed consent was obtained from each subject prior 
to participation in the study. Preoperative, early-morning 
midstream urine samples were collected from patients 
with CRC (n=55) or EC (n=18), and from HCs (n=40), 
between January and July 2015 at the Second Affiliated 
Hospital of Shantou University Medical College. Patients 
did not receive any neoadjuvant chemotherapy or radiation 
therapy prior to sample collection. Patient samples were 
categorized according to histopathological features. For all 
cases, histologic findings were obtained and follow-up data 
were available to ensure accurate disease classification. 
No cancer patients had complicating diseases. Exclusion 
criteria were: breastfeeding, pregnancy, inflammatory 
conditions, gastrointestinal tract disorder, mental disorder, 
hypertension, diabetes mellitus, other metabolic diseases, 
and urinary tract involvement, such as uncontrolled 
bacterial, viral, or fungal infection,. Healthy controls were 
age- and gender-matched patients, and had no declared 
history of cancer or gastrointestinal symptoms. Patient 
demographic and clinical characteristics are summarized 
in Table 3.

Urine sample preparation

The preservative, sodium azide (50 μL), was added 
to each urine sample before storing at -80°C. Frozen urine 
samples were thawed at room temperature and mixed to 
suspend any settled precipitate. Then, 300 μl PB/D2O 
buffer (0.1 M, pH=7.4) was added to 600 μl of each 
sample, and the mixture was vortexed and then centrifuged 
at 8,000 rpm for 10 min. Finally, a stock solution of 
sodium (3-trimethylsilyl)-2,2,3,3-tetradeuteriopropionate 
(TSP)/D2O (50 μL) was added to each supernatant prior to 
analysis via 1H NMR spectroscopy.

1H NMR spectroscopy

Urine 1H NMR spectra were obtained on a Bruker 
AVII 400.13 MHz 1H-NMR spectrometer (Bruker 
Biospin, Germany) using a one-dimensional NOESY 
(nuclear overhauser enhancement spectroscopy) pulse 
sequence [RD-90°-t1-90°-tm-90°-ACQ] with the following 
acquisition parameters: recycle delay, RD=1.5 s; t1=3 μs; 
mixing time, tm=100 ms; 90° pulse width=7.3 μs; number 
of scans, NS=256; number of points, TD=32768; spectral 
width, SW=8012.82 Hz; acquisition time, AQ=2.04 s. 
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Water suppression was achieved via irradiation of the 
water peak during RD and tm.

1H NMR spectral data processing

All 1H NMR spectra were multiplied by a 
0.3 Hz exponential line broadening prior to Fourier 
Transformation, and then were corrected for phase 
and baseline distortion and calibrated to TSP at 0.0 
ppm. 1H-NMR data complexity was reduced through 
segmentation of the spectral range from 0.5–9.0 ppm with 
the equal width of 0.004 ppm. The imperfect water signal 
from 5.5–4.5 ppm was discarded, and each bucket was 
internally normalized to the total integral of the spectrum 
prior to pattern recognition.

Pattern recognition (PR) analysis and cross 
validation

To establish a global overview of differences 
between CRC and EC patients and between CRC patients 
and HCs, a multivariate analysis was applied to 1H NMR 
spectra data as previously described [14]. Normalized 1H 
NMR spectral data sets were unit variance scaled, and then 
analyzed using the SIMCA-P+ program (version 14.1, 
Umetrics AB; Umeå, Sweden). A PCA model was applied 
to the mean-centered, normalized 1H NMR spectra to 
detect general trends and outliers, followed by OPLS-DA. 
Model quality was evaluated using R2Y and Q2 values, 
which reflect the explained fraction of variance and 
model predictability. VIP values of all peaks from OPLS-
DA models were taken as a coefficient for peak selection. 
VIP was represented by a unitless number; the higher 
the value, the greater the discriminatory power of the 
metabolite. Those variables with VIP>1 were considered 
potential biomarker candidates for group discrimination.

Statistical analysis

Relative concentrations of those metabolites with 
VIP>1 were calculated by integrating the signals in the 
spectra. Differences between stage I/II CRC patients and 
HCs were assessed using the Mann-Whitney U test and, 
p<0.05 was considered statistically significant. Receiver 
operating characteristic (ROC) analysis was performed 
in SPSS 16.0 to further evaluate the diagnostic power 
of potential biomarkers. The area under the ROC curve 
(AUROC), specificity, sensitivity, and accuracy of the 
metabolites were calculated, where AUROC>0.8 indicated 
excellent diagnostic performance.
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