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About miRNAs, miRNA seeds, target genes and target pathways
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ABSTRACT

miRNAs are typically repressing gene expression by binding to the 3’ UTR, leading 
to degradation of the mRNA. This process is dominated by the eight-base seed region 
of the miRNA. Further, miRNAs are known not only to target genes but also to target 
significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) 
sequence target similar sets of genes and thus similar sets of pathways.

By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, 
we found that this pattern frequently holds, while we also observed exceptions. 
Respective results were obtained for both, predicted target genes as well as 
experimentally validated targets. We note that miRNAs target gene set similarity 
follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target 
genes with very high specificity. Further, we discuss miRNAs with different (seed) 
sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, 
we found miRNA pairs that regulate different gene sets but similar pathways such 
as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the 
MAPK signaling cascade.

The main goal of this study is to provide a general overview on the results, to 
highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and 
target pathways and to raise awareness for artifacts in respective comparisons. The 
full set of information that allows to infer detailed results on each miRNA has been 
included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.
uni-sb.de).

INTRODUCTION

miRNAs are small non-coding RNAs [1] that are 
well conserved between different organisms [2, 3]. Since 
the discovery of the first miRNAs, over 2,500 human and a 
total of 28,645 miRNAs have been stored in the miRBase 
[4, 5], which is now in its 21st version (last update in July 
2014). Recently, we published the miRCarta repository 
(https://mircarta.cs.uni-saarland.de/), hosting information 
on 43,699 miRNAs and miRNA candidates, 364,647 

target genes with experimental evidence and 11 million 
predicted target genes. Typically, miRNAs down-regulate 
genes, so called target genes, by binding to the 3’ UTR of 
the respective targets [6, 7]. The binding has however not 
to be perfect across the whole mature miRNA sequence: 
in mammals it is dominated by the so-called seed region 
[8]. This seed region at the 5’ end of the mature miRNA 
consists of eight nucleotides. Various other factors have 
been found to add to a strong seed binding. These include 
additional base pairs towards the 3’ end of the mature 
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miRNA sequence [9]. Also factors such as the total number 
of binding sites of a miRNA at the 3’ UTR, the proximity 
to the gene start or the local AU composition are known 
to impact the targeting of a gene [9]. These features have 
been incorporated in computational approaches to predict 
targets of miRNAs [10], including miRanda [11], mirSVR 
[12], DIANAmicroT [13], targetscan [14] and others.

Given approximately 2,500 human mature 
miRNAs and 22,500 human protein coding genes, 
50 million potential pair-wise interactions between 
miRNAs and genes are possible. Information on these, 
partially predicted by using the computational tools 
mentioned above, but also experimentally validated 
miRNA-gene target pairs are stored in target databases 
such as miRTarBase [15]. Especially the miRNA-
target interactions that have been validated by accurate 
low-throughput approaches such as luciferase reporter 
assays are enriched for miRNA-target pairs with well-
studied miRNAs and genes, predominantly known from 
oncological research. As a consequence, an unbiased 
comparison of these relationships is difficult. Nonetheless 
we performed our calculations for both, predicted 
and experimentally validated target genes. Beyond 
the targeting of single genes, miRNAs are known to 
specifically regulate pathways [16]. Information on 2,571 
human miRNAs targeting 2,565 biochemical categories 
(totaling around 20 Million interactions) has been stored in 
the miRPathDB (https://mpd.bioinf.uni-sb.de) [17]. This 
database does not only list target genes for each miRNA, 
but has been implemented as central repository for storing 
information on target pathways and related data on all 
human miRNAs.

When considering the miRNA biogenesis and how 
miRNAs regulate genes, a logical line of thoughts is that 
miRNAs with similar overall sequence also have similar 

seed sequences. Thus, they are expected to regulate similar 
sets of target genes and consequently the same set of target 
pathways. In this study, we investigated this hypothesis by 
analyzing the similarity of miRNA sequence, seed sequence, 
target gene sets and target pathways for all 3.25 million pairs 
of 2,550 miRNAs. We were especially interested in cases 
where the expected pattern is not observed, this includes 
among others: 1) miRNAs with high overall similarity, but 
rather low seed similarity and the opposite behavior. 2) 
miRNAs with low seed similarity, but similar target gene 
sets and target pathways and the opposite behavior and 3) 
miRNAs with different target gene sets, but nonetheless 
similar target pathways as well as the opposite behavior. 
Because of the bias in experimentally validated target 
genes mentioned above, we focus on the union of predicted 
miRNA target interactions extracted from miRPathDB. 
Nonetheless, selected results for experimentally validated 
miRNA target genes and target pathways have also been 
calculated and compared to the results obtained for 
predicted target genes and the respective pathways.

RESULTS

Distribution of miRNA, seed, target gene and 
target pathway similarity

As detailed in the Methods section, we calculated 
for all 3.25 million pairs of 2,550 miRNAs the similarity 
of the mature sequences, the seed sequences and the 
overlap in target genes as well as target pathways. Before 
comparing the results for the different similarity measures, 
we first investigated the distribution of the features. For all 
four measures, the distributions of the 3.25 million values 
for all miRNA pairs are presented in Figure 1A. While 
the distribution of the miRNA similarity and miRNA 

Figure 1: (A) For all 3. 25 Million pairs of miRNAs the similarity of the sequence, the seed sequence, target gene sets and target pathways 
is presented as histograms. Similarity scores (described in the Methods section) are in the range between 0 (no similarity) and 1 (identical). 
The bin width has been set to 0.01 (maximum of 100 bars per histogram). (B) Clustered correlation matrix. The correlation of the considered 
features are shown as heat map with dendrogram on the left side. Highest correlation was obtained for target pathway similarity compared 
to target gene set similarity followed by miRNA similarity to miRNA seed similarity.
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seed similarity approximated a normal distribution, we 
observed especially for the miRNA target gene sets a 
bimodal distribution. The left part of the distribution 
contains miRNAs that have overall low overlap in target 
gene sets to other miRNAs. These represent miRNAs that 
target genes in a rather specific manner. The right part of 
the distribution contains miRNAs with high similarity in 
target gene sets to many other miRNAs, pointing at lower 
specificity in the targeting process. By using a median 
Jaccard index (JI) of 0.1 as threshold, we observed 282 
miRNAs that are specific regulators. On the opposite 
end, the remaining 2,316 miRNAs had higher median JI, 
indicating that their target gene sets were less specific. 
The miRNA with overall highest median JI to all other 
miRNAs was hsa-miR-4668-5p (median JI of 0.3). While 
we did not observe a bias with respect to the discovery 
date for miRNAs in both groups, the decreased specificity 
for the 2,316 miRNAs can however be explained partially 
by larger sets of target genes for respective miRNAs.

A cluster heat map of all above features plus the 
genomic distance between the miRNA pairs is presented 
in Figure 1B. It shows that a high correlation between 
seed and miRNA similarity (Pearson correlation of 0.51) 
has been observed as well as a high similarity between 
target gene sets and target pathways (Pearson correlation 
of 0.6). On an overall scale, no correlation of these 
features with the genomic distance is found. Both, for 
the miRNA sequence and the seed sequence similarity, 
a slightly increased correlation to target pathways is 
computed (Pearson correlation of 0.08 and 0.1) compared 
to the target genes (Pearson correlation of 0.07 for both 
variables). Still, these correlation values were highly 
significant, also driven however by the large number of 
observations (p < 10-10).

Seed and miRNA similarity

Since the eight-base seed region of the miRNA 
determines around one third of the total average length of 

21-23 nucleotides it is evidential that similar seed regions 
have to correlate to a certain amount with similar miRNA 
sequences. As Figure 2 shows this expected correlation is 
indeed observed: the Pearson correlation coefficient for 
both variables is 0.51. While it is obvious that miRNAs 
with almost the same sequence usually also have similar 
seed sequences (data points in the upper right corner) and 
miRNAs with totally different sequences have mostly also 
different seeds (data points in the lower left corner), we 
specifically investigated extreme cases: miRNAs with 
fairly dissimilar mature sequences but still high seed 
similarity as well as miRNAs with overall quite high 
mature sequence similarity but different seed sequences. 
Two extreme examples for both cases are included in 
Figure 2A. The green sequences represent miRNAs with 
overall dissimilar sequences but similar seed while the 
blue miRNAs exhibit the opposite case. For all pairs of 
miRNAs located on the same chromosome we asked 
whether either seed or miRNAs similarity are correlated 
to the genomic distance. As Figure 2B details for both 
features no clear correlation with the distance between 
miRNAs can be observed. Nevertheless, especially for 
miRNAs with overall very high similarity a tendency for 
the expected genomic clustering is observed (highlighted 
in Figure 2B).

Seed similarity and target gene / pathway 
similarity

Next, we compared the influence of the seed 
similarity to the target gene and the target pathway 
similarity for all pairs of miRNAs. As mentioned in the 
first paragraph of the results section the seed sequence 
correlated with both, gene set and pathway similarity. 
The correlation with the target pathway similarity was 
even slightly higher as compared to the target gene set 
similarity. Scatter plots for both cases are presented in 
Figure 3A. Again, while the information on all 3.25 

Figure 2: (A) Scatter plot of miRNA sequence similarity score compared to miRNA seed similarity score. Since the plot contains 3.25 
million data points, the density distribution is also shown in red. The green and blue sequences represent extreme examples, i.e. miRNAs 
with high sequence similarity compared to the seed similarity (blue) and miRNAs with high seed sequence similarity compared to the 
overall lower sequence similarity (green). (B) Scatterplots for the sequence similarity and the seed similarity, each compared to the genomic 
distance. The blue ellipses highlight miRNAs with similar sequences and similar seeds, respectively, that also have close genomic proximity.
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Million pairs is available in miRPathDB we here pick 
extreme examples.

Similar to the previous consideration with respect to 
the similarity of mature miRNAs and their seeds, we also 
investigated the extreme cases not following the expected 
pattern, i.e. high seed similarity leads to high target gene 
set similarity. Given completely dissimilar seeds, the pair 
hsa-miR-5703 and hsa-miR-4753-3p for example yields a 
significant overlap of target genes (Jaccard index (JI) of 
0.4; green box in the lower left part of Figure 3A). In this 
and other such extreme cases we observed a bias towards 
larger miRNA target gene sets. In the concrete case, miR-
4753-3p is predicted to target 9,267 genes and miR-5703 
to target 8,100 genes. The overlap between both sets is 
4,975 genes. The opposite example is the pair hsa-miR-
892c-3p and hsa-miR-452-5p. The seeds of both miRNAs 
have a very high similarity score, but the JI between the 
target gene sets is only 0.12. In this case, the low JI is 
explained by the fact that the target gene set of the second 
miRNA is a very small subset of the target gene set of the 
first miRNA. Generally, we observed a bias for miRNA 
pairs where one miRNA has a large and the second 
miRNA a comparably small target gene set.

Comparing miRNA seed similarity to miRNA 
target pathway similarity (right part of Figure 3A), we 
observe that no miRNA pair with low seed similarity has 
a high target pathway similarity. Vice versa, miRNAs 
with high seed similarity partially had different miRNA 

target pathway sets. One example is presented below the 
corresponding scatter plot in Figure 3A: hsa-miR-6838-
5p and hsa-miR-195-5p have high seed similarity scores, 
still very similar overall sequences but the target pathways 
of the second miRNA are almost a subset of the targets 
of the first miRNA. Similar patterns were also observed 
for target genes (left part of Figure 3A). The results 
describing the similarity of mature miRNA sequences 
to target gene sets and target pathway sets were largely 
consistent with those for the miRNA seeds just described. 
They are included in the online version of miRPathDB 
and presented as scatter plots in Supplementary Figure 1.

Target gene sets and target pathways

Finally, we asked on the similarity of miRNA target 
gene sets and miRNA target pathways. The corresponding 
scatter plot on the 3.25 million pairs is presented in 
Figure 4A. In addition, we computed the overall strongest 
correlation among all possible comparisons for these two 
features (Pearson correlation of 0.77, see also Figure 
1B). Detailed inspection of the scatter plot highlights 
that, as expected, no miRNA pairs with similar target 
gene sets but different target pathway sets existed. Vice 
versa, we found a substantial number of miRNA pairs 
with divergent target gene sets but targeting the same 
pathways (highlighted in Figure 4A). The right panel of 
Figure 4A presents one such example: miR-6886-5p and 

Figure 3: (A) Scatter plots for the seed similarity compared to the target gene set similarity (left part) and the target pathway set similarity 
(right part). Again, extreme cases not following the expected pattern are highlighted. The area proportional Venn diagrams highlight the 
overlap in the gene set and the pathway set for the respective examples.
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miR-3529-5p. Both have low seed and miRNA sequence 
similarity scores and, also as expected, target different 
gene sets. Nonetheless we observed a substantial overlap 
in target pathway sets. The targeted KEGG pathways 
and chromosomes are shown in Supplementary Figure 
2. While a substantial overlap of the targeted KEGG 
pathways has been detected, different chromosomes are 
enriched with target genes of the two miRNAs. A detailed 
inspection of the targeted pathways highlights that the 
miRNAs jointly regulate different parts of the signaling 
cascades. Exemplarily, the MAPK signaling cascade 
is presented on the right panel of Figure 4B. While the 
MAPK signaling cascade is targeted nearly completely by 
these two miRNAs, only 6 target genes overlap between 
them.

We repeated the same calculations for 
experimentally validated miRNA target gene pairs. Here, 
we took both, targets with weak experimental evidence 
(e.g. microarrays) and strong experimental evidence (e.g. 
reporter assays) from miRTarBase into account. We also 
calculated the results for the joint set of experimental 
targets with strong and weak evidence. The three scatter 
plots are presented in Supplementary Figure 3. In these 
comparisons we again observed a substantial number of 
miRNA pairs with low target gene set similarity but high 
target pathway similarity, comparable to the predicted 
targets (highlighted in blue in Supplementary Figure 3). 
Especially for the strong evidence targets the positive 
correlation obtained for the predicted targets has been 
generally lost however. This may be due to the nature of 
the experiments: for one miRNA usually not the complete 
targetome is deciphered but only a subset of the most 
interesting targets. Respectively, the target gene sets per 
miRNA are typically less sensitive but more specific as 
compared to the predicted target gene sets. As an example 

of a miRNA pair with different targeted genes (9 genes and 
4 genes of which one gene overlaps) however located on 
the same pathway we selected let-7f-5p and miR-138-5p, 
jointly targeting the p53 signaling cascade (Supplementary 
Figure 4).

Most variable miRNA pairs

Our initial hypothesis was that miRNAs with similar 
seed and similar overall sequence have similar target gene 
sets and lead to similar target pathway sets. This means that 
either the four similarity scores of a miRNA pair should all 
be high or low. The interesting examples are those where 
the four similarity scores are differing, e.g. low miRNA 
and seed similarity but high target pathway similarity. We 
thus calculated the miRNA pairs having the overall highest 
heterogeneity in terms of their mature sequence similarity, 
seed sequence similarity, target gene set similarity and 
target pathway similarity by computing the variance of 
the four similarity scores. The 30 miRNA pairs with the 
highest variance are detailed in Table 1. All of these are 
characterized by a high seed sequence similarity, still an 
excellent overall mature sequence similarity, but already 
a decreased target gene set similarity and lowest target 
pathway similarity. For respective pairs, we observed 
one other key characteristics: a usually close genomic 
proximity. Indeed, this can already be well quantified by 
comparing the co-localization on the same chromosomes. 
While of the 3.25 million pairs we considered 0.167 
million were on the same chromosome (5.1%) and 3.082 
Million were on different chromosomes (94.9%), 12 of 
the 30 miRNAs shown in Table 1 are located on the same 
chromosome (40%). As the genomic distance in the fourth 
column reveals, most miRNA pairs were separated only by 
few thousand bases.

Figure 4: (A) Scatter plot for the target gene set and the target pathway similarity. The ellipse in the upper left part highlights miRNA 
pairs with overall low target gene similarity and high target pathway set similarity. The example on the right side presents two miRNAs 
(hsa-miR-3529-5p and hsa-miR-6886-5p) with low target gene similarity and significant target pathway similarity, as demonstrated by the 
area proportional Venn diagrams. (B) For the two miRNAs from Figure 4A the targeting of the KEGG MAPK signaling cascade is detailed. 
Targets of miR-3529-5p are highlighted in blue, targets of miR-6886-5p in red and joint targets of both miRNAs in purple. As the figure 
shows, both miRNAs target specific parts of the pathway such that overall a very large fraction of the path is targeted while the overlap 
between both miRNAs is small.
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Table 1: 30 miRNA paris with highest overall variance

miRNA pair mature 
similarity

seed 
similarity chr. Distance target gene 

similarity
target pathway 

similarity
shared 

pathways

hsa-miR-526b-3p hsa-miR-518c-3p 0,75 0,86 14332 0,08 0,018 5

hsa-miR-526b-3p hsa-miR-518f-3p 0,83 0,86 5603 0,07 0,004 1

hsa-miR-485-5p hsa-miR-6884-5p 0,68 1,00 NA 0,19 0,012 2

hsa-miR-215-5p hsa-miR-192-5p 0,86 1,00 NA 0,58 0,000 0

hsa-miR-3681-3p hsa-miR-216a-3p 0,56 1,00 NA 0,12 0,002 1

hsa-miR-487a-3p hsa-miR-487b-3p 0,86 0,86 5968 0,03 0,010 1

hsa-miR-6088 hsa-miR-4770 0,55 1,00 NA 0,10 0,000 0

hsa-miR-6088 hsa-miR-143-3p 0,54 1,00 NA 0,10 0,000 0

hsa-miR-7153-5p hsa-miR-146a-5p 0,63 1,00 NA 0,07 0,019 4

hsa-miR-7153-5p hsa-miR-146b-5p 0,63 1,00 NA 0,07 0,012 3

hsa-miR-892c-3p hsa-miR-4676-3p 0,56 1,00 NA 0,11 0,031 8

hsa-miR-892c-3p hsa-miR-452-5p 0,50 1,00 5966897 0,12 0,030 9

hsa-miR-181a-3p hsa-miR-181a-2-3p 0,83 0,75 NA 0,06 0,007 1

hsa-miR-518e-3p hsa-miR-520a-3p 0,71 0,86 38937 0,06 0,023 5

hsa-miR-3064-5p hsa-miR-6504-5p 0,71 1,00 NA 0,08 0,007 1

hsa-miR-4782-3p hsa-miR-6766-3p 0,54 1,00 NA 0,14 0,000 0

hsa-miR-128-3p hsa-miR-216a-3p 0,59 1,00 NA 0,12 0,003 1

hsa-miR-106a-5p hsa-miR-17-5p 0,92 1,00 NA 0,33 0,065 33

hsa-miR-524-3p hsa-miR-518d-3p 0,82 0,75 23855 0,05 0,017 1

hsa-miR-519d-3p hsa-miR-518c-3p 0,76 0,86 4582 0,08 0,015 7

hsa-miR-519d-3p hsa-miR-518b 0,79 0,86 10592 0,08 0,013 6

hsa-miR-519d-3p hsa-miR-518f-3p 0,71 0,86 13313 0,07 0,002 1

hsa-miR-6807-3p hsa-miR-217 0,57 1,00 NA 0,10 0,019 2

hsa-miR-1273c hsa-miR-187-5p 0,68 0,86 NA 0,05 0,000 0

hsa-miR-147b hsa-miR-147a 0,86 0,86 NA 0,11 0,050 15

hsa-miR-10a-5p hsa-miR-100-5p 0,80 0,75 NA 0,04 0,000 0

hsa-miR-6788-3p hsa-miR-197-3p 0,68 0,86 248956422 0,06 0,000 0

hsa-miR-20a-5p hsa-miR-17-5p 0,91 1,00 432 0,37 0,096 33

hsa-miR-370-5p hsa-miR-1193 0,50 1,00 118889 0,02 0,000 0

DISCUSSION

In the present study, we investigated the influence of 
seed similarity, miRNA similarity, target gene set similarity 
and target pathway similarity. In our consideration, we 
included all 3.25 million pairs of human miRNAs as 
annotated in the current miRBase version V21. One of 
the major strength of our study is at the same time one 
of the major drawbacks: since our ambition was to avoid 
the severe bias by restricting to miRNA – target gene 

pairs with experimental validation that are enriched for 
few central miRNAs and also target genes, known mostly 
from oncological research, we focused on predicted target 
genes. This avoids the aforementioned challenge of using 
validated target genes but also introduces bias by target 
predictors. We relied in our calculations on the union of 
the predicted targets that have been extracted from the 
latest implementation of miRPathDB.

One of the most important aspects in this work was 
to raise awareness of potential artifacts. We thus critically 
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asked which results may be due to bias. First, with respect 
to the bimodal distribution of pair-wise target gene set 
similarities we also found a correlation to the size of 
the target gene sets. Another example are miRNA pairs 
with high seed similarity but low target gene set or target 
pathway similarity. Such pairs are frequently observed 
if one miRNA has a broad target gene and / or target 
pathway set while the other miRNA has a smaller target 
gene or target pathway set, which is however almost 
completely a subset of the first miRNAs sets. Here, it 
is hard to distinguish without thorough experimental 
evidence whether corresponding effects are real or are 
due to the target prediction. Among the most interesting 
findings in our study were pairs of miRNAs with high 
seed and mature sequence similarity having however 
different target pathways. Such pairs were frequently 
closely co-localized in the genome. These results depend 
on the performance of target prediction programs. Usually, 
one would expect similar miRNAs to have nearly identical 
target gene sets and target pathways. One reason for 
considering genomic clusters of miRNAs targeting the 
same genes and pathways are evolutionary aspects [18].

Among the most important results of our analyses 
we also observed that miRNAs can generally have 
different target gene sets but at the same time regulate the 
same pathway. Here, usually different sub-networks of the 
same network are regulated. One of the most significant 
examples was the pair consisting of miR-6886-5p and 
miR-3529-5p. Both of them have different seed and 
miRNA sequences and, also as expected, target  different 
gene sets but both target the MAPK signaling cascade.

While we focused on predicted target genes of 
miRNAs we also included results on experimentally 
validated targets (both, strong and weak evidence targets). 
A direct comparison between validated and predicted 
pathways is however constrained by the nature of the 
validation experiments. Especially if low throughput 
reporter assays for single miRNAs are applied, usually not 
the complete targetome is deciphered but only a subset 
of the most interesting targets. Respectively, the target 
gene sets per miRNA are expected to be less sensitive but 
more specific as compared to the predicted target gene 
sets. Nonetheless, we detected examples where validated 
target gene sets are different but the target pathways are 
similar. Here, it has to be kept in mind that only positive 
miRNA target gene relations are taken into account. For 
respective pairs where miRNAs target different gene sets 
and different parts of the same pathway, experiments that 
also demonstrate that genes on this pathway are actually 
targeted only by one of the miRNAs and not by the other 
would further support the hypothesis.

Of course, it is impossible to describe all interesting 
details analyses of 3.25 million pairs of miRNAs in 
this manuscript. We thus restrict ourselves to selected 
examples. The full set of information is available through 
the miRNA pathway dictionary web repository: https://

mpd.bioinf.uni-sb.de/. Here, miRNAs with similar seed 
sequence, similar sequence, co-localized miRNAs, 
miRNAs with similar target gene sets or miRNAs with 
similar target pathway sets can be obtained with minimal 
effort. All data are available in CSV format but also as 
XLS files.

MATERIALS AND METHODS

Predicted miRNA targets

All miRNA target interactions (MTIs) were 
retrieved from predefined datasets provided by DIANA 
[13], miRDB [19] and TargetScan [14]. For consistency 
reasons, we mapped all miRNA identifier to miRBase 
[4, 20] version 21 and all target gene identifier to official 
gene symbols. We then combined the datasets of all three 
databases.

Validated miRNA targets

In total we analyzed 2598 miRNAs that together 
have 14773 experimentally validated target genes that 
have been extracted from the miRTarBase. Among them 
491 miRNAs with 2068 targets that are validated with 
strong experimental evidence and 2598 miRNAs with 
14773 targets that are validated with weak experimental 
experiments.

Similarity of mature miRNA and seed sequences

Mature miRNA sequences were retrieved from 
miRBase 21 [4, 20] and miRNA seed sequences were 
retrieved from TargetScan 7.1 [14]. The similarities 
between all pairwise sequences were calculated by 
aligning all sequence pairs using the edit-distance. For 
each alignment, we then computed the sequence similarity 
as fraction of matching bases and the length of the 
alignment.

Defining miRNA target gene set similarity and 
target pathway similarity

Similarities of target gene and target pathway sets 
between all miRNA pairs were defined using the pairwise 

Jaccard index JI M N M N
M N

, | |
| |

( ) = ∩
∪

.

Used resources for pathway enrichment analyses

All information about signaling pathways and 
functional categories in miRPathDB were extracted from 
the GeneTrail2 webserver [21], building on the GeneTrail 
framework [22]. In particular, we used the following 
databases: Biocarta, Chromosomes and Cytogenic 
bands, Gene Ontology [23], KEGG [24], NCI Pathway 
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interaction database (PID) [25], Pfam [26], Reactome [27] 
and WikiPathways [28].

Statistical analysis

To process all pairwise similarity measures for 
miRPathDB, we used the Python programming language 
(Version 2.7.6) and the biopython library (Version 1.69) 
[29]. For the statistical analysis, we used R programming 
environment (Version 3.0.2).
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