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ABSTRACT
The increased availability of data and recent advancements in artificial 

intelligence present the unprecedented opportunities in healthcare and major 
challenges for the patients, developers, providers and regulators. The novel deep 
learning and transfer learning techniques are turning any data about the person into 
medical data transforming simple facial pictures and videos into powerful sources 
of data for predictive analytics. Presently, the patients do not have control over the 
access privileges to their medical records and remain unaware of the true value of 
the data they have. In this paper, we provide an overview of the next-generation 
artificial intelligence and blockchain technologies and present innovative solutions 
that may be used to accelerate the biomedical research and enable patients with 
new tools to control and profit from their personal data as well with the incentives 
to undergo constant health monitoring. We introduce new concepts to appraise and 
evaluate personal records, including the combination-, time- and relationship-value of 
the data. We also present a roadmap for a blockchain-enabled decentralized personal 
health data ecosystem to enable novel approaches for drug discovery, biomarker 
development, and preventative healthcare. A secure and transparent distributed 
personal data marketplace utilizing blockchain and deep learning technologies may 
be able to resolve the challenges faced by the regulators and return the control over 
personal data including medical records back to the individuals.

INTRODUCTION

The digital revolution in medicine produced a 
paradigm shift in the healthcare industry. One of the 
major benefits of the digital healthcare system and 
electronic medical records is the improved access to 
the healthcare records both for health professionals and 

patients. The success of initiatives that provides patients 
with the access to their electronic healthcare records, such 
as OpenNotes, suggests their potential to improve the 
quality and efficiency of medical care [1, 2]. At the same 
time, biomedical data is not limited to the clinical records 
created by physicians, the substantial amount of data is 
retrieved from biomedical imaging, laboratory testing such 
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as basic blood tests, and omics data. Notably, the amount 
of genomic data alone is projected to surpass the amount 
of data generated by other data-intensive fields such as 
social networks and online video-sharing platforms [3]. 
National healthcare programs such as the UK Biobank 
(supported by the National Health Service (NHS)) [4] 
or global programmes such as the LINCS consortium 
(http://www.lincsproject.org/) and the ENCODE project 
(https://www.encodeproject.org/), provide scientists with 
tens of thousands of high-quality samples. However, 
while increased data volume and complexity offers new 
exciting perspectives in healthcare industry development, 
it also introduces new challenges in data analysis and 
interpretation, and of course, privacy and security. Due to 
huge demand for the treatments and prevention of chronic 
diseases, mainly driven by aging of the population, there 
is a clear need for the new global integrative healthcare 
approaches [5]. Majority of the recent approaches to 
personalized medicine in oncology and other diseases 
relied on the various data types including the multiple 
types of genomic [6-10], transcriptomic [11-13], 
microRNA [14], proteomic [15], antigen [16], methylation 
[17], imaging [18, 19], metagenomic [20], mitochondrial 
[21], metabolic [22], physiological [23] and other data. 
And while several attempts were made to evaluate the 
clinical benefit of the different methods [24] and multiple 
data types were used for evaluating the health status of the 
individual patients [25] including the widely popularized 
“Snyderome” project [26], none of these approaches are 
truly integrative on the population scale and compare the 
predictive nature and value of the various data types in the 
context of biomedicine. Introduction of new technologies, 
such as an artificial intelligence and blockchain, may 
enhance and scale up the progress in health care sciences 
and lead to effective and cost-efficient healthcare 
ecosystems. 

In this article we first review one of the recent 
achievements in next-generation artificial intelligence, 
deep learning, that holds the great promise as a biomedical 
research tool with many applications. We then discuss 
basic concepts of highly distributed storage systems 
(HDSS) as one of the advantageous solutions for data 
storage, introduce the open-source blockchain framework 
Exonum and review the application of blockchain for 
healthcare marketplace. For the first time we introduce 
half-life period of analysis significance, models of data 
value for single and group of users and cost of buying 
data in the context of biomedical applications. WHere we 
also present a blockchain-based platform for empowering 
patients to ensure that they havetake a control over their 
personal data, manage the access priviledges and to protect 
their data privacy, as well to allow patients to benefit from 
their data receiving a crypto tokesscurrency as a reward 
for their data or for healthy behaviorand to contribute to 
the overall biomedical progress. We speculate that such 
systems may be used by the governments on the national 

scale to increase participation of the general public in 
preventative medicine and even provide the universal 
basic income to the their citizens willing to participate 
in such programs that will greatly decrease the burden 
of disease on the healthcare systems. Finally, we cover 
important aspects of data quality control using the recent 
advances in deep learning and other machine learning 
methods. 

ADVANCES IN ARTIFICIAL INTELLIGENCE

While the amount of health-associated data and 
the number of large scales global projects increases, 
integrative analysis of this data is proving to be 
problematic [27]. Even high-quality biomedical data is 
usually highly heterogeneous and complex and requires 
special approaches for preprocessing and analysis. 
Computational biology methods are routinely used 
in various fields of healthcare and are incorporated in 
pipelines of pharmaceutical companies. Machine learning 
techniques are among the leading and the most promising 
tools of computational analysis. 

Increased computer processing power and 
algorithmic advances have led to the significant 
improvement in the field machine learning. Although 
machine learning methods are now routinely used in 
various research fields, including biomarker development 
and drug discovery [28-31], the machine learning 
techniques utilizing the Deep Neural Networks (DNNs) 
are able to capture high-level dependencies in the 
healthcare data [32]. The feedforward DNNs were 
recently successfully applied to prediction the various 
drug properties, such as pharmacological action [33, 
34], and toxicity [35]. Biomarker development, a design 
or search for distinctive characteristics of healthy or 
pathological conditions, is another area where the 
application of DNNs has led to significant achievements. 
For example, an ensemble of neural networks was applied 
to predict age and sex of patients based on their common 
blood test profiles [36]. Convolutional neural networks 
(CNNs) were trained to classify cancer patients using 
immunohistochemistry of tumour tissues [37]. And in 
early 2017, first neural network based platform, called 
Arterys Cardio DL, was officially approved by US Food 
and Drug Administration (FDA) [38] and is currently used 
in the clinic. 

While the DNNs are able to extract features from 
the data automatically and usually outperform the other 
machine learning approaches in feature extraction tasks, 
one of the good practices is to select a set of relevant 
features before training the deep model, especially when 
the dataset is comparatively small. Algorithms such as 
the principal component analysis or clustering methods 
are widely used in bioinformatics [39]. However, these 
first-choice approaches transform the data into a set of 
components and features that may be difficult hard to 
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interpret from the perspective of biology. Supervised 
knowledge-based approaches such as pathway or 
network analysis, on the other hand, provide an attractive 
alternative, allowing for reduction of a number of input 
elements and preserving the biological relevance at the 
same time, which is crucial for the claimed to be hard 
to interpret “black box” methods such as DNNs. For 
example, Aliper and colleagues used signaling pathway 
analysis to reduce the dimensionality of drug-induced gene 
expression profiles and to train a DNN based predictor 
of pharmacological properties of drugs [33]. Selected 
pathway activation scores were compared to expression 
changes of over 1000 most representative, landmark 
genes. DNN trained on the pathway scores outperformed 
DNN trained on the set of landmark genes and achieved 
the F1 score, the weighted average of precision and recall, 
of 0.701 for the three drug pharmacological classes. 
In addition, signaling pathway-based dimensionality 
reduction allowed for the more robust performance on the 
validation set, while classifiers trained on gene expression 
data demonstrated a significant decrease in predictive 
accuracy on the validation set compared to the training 
set performance. 

There are many promising machine learning 
techniques in practice and in development including 
the upcoming capsule networks and recursive cortical 
networks and many advances are being made in symbolic 
learning and natural language processing. However, the 
recurrent neural networks, generative adversarial networks 
and transfer learning techniques are gaining popularity 
in the healthcare applications and can be applied to the 
blockchain-enabled personal data marketplaces. 

Generative adversarial networks

Generative adversarial networks (GANs) are among 
the most promising recent developments in deep learning. 
GAN architecture was first introduced by Goodfellow 
et al. in 2014 [40] and already demonstrated compelling 
results in image and text generation. Similar concepts 
were applied for molecule generation by Kadurin and 
colleagues [41]. A dataset of molecules with the different 
tumor growth inhibition (TGI) activity was used to train 
an adversarial Autoencoder (AAE), which combines the 
properties of both the discriminator and the generator. The 
trained model then was used to generate the fingerprints 
of molecules with desired properties. Further analysis 
of the generated molecules showed that new molecular 
fingerprints are matched closely to already known highly 
effective anticancer drugs such as anthracyclines. As a 
continuation of this work, authors proposed an enhanced 
architecture that also included additional molecular 
parameters such as solubility and enabled the generation 
of more chemically diverse molecules [42]. New model 
clearly showed the improvement in the training and 
generation processes, suggesting a great potential in drug 

discovery.

Recurrent neural networks

Electronic health records contain the clinical history 
of patients and could be used to identify the individual 
risk of developing cardiovascular diseases, diabetes and 
other chronic conditions [43]. Recurrent neural networks 
(RNNs), which are naturally suited for sequence analysis, 
are one of the most promising tools for text or time-series 
analysis. And one of the most advantageous applications 
of RNNs in healthcare is electronic medical record 
analysis. Recently, RNNs were used to predict heart 
failure of patients based on clinical events in their records 
[44]. Models trained on 12 month period of clinical history 
and tested on 6 months demonstrated an Area Under the 
Curve (AUC) of 0.883 and outperformed shallow models. 
Interestingly, analysis of cases that were predicted 
incorrectly, showed that networks tend to predict heart 
failure based on a patient history of heart diseases, for 
example hypertension. At the same time, most of the false 
negative heart failure predictions are made for cases of 
acute heart failure with little or no symptoms. Along with 
cardiovascular disease risk prediction, RNNs were also 
applied to predict blood glucose level of Type I diabetic 
patients (up to one hour) using data from continuous 
glucose monitoring devices [45]. The proposed system 
operates fully automatically and could be integrated with 
blood glucose and insulin monitoring systems.

While mobile health is an attractive and promising 
field that emerged recently, another exciting area of RNNs 
application is human activity prediction based on data 
from wearable devices. For example, RNN model called 
DeepConvLSTM, a model that combine convolutional 
networks and recurrent networks with Long Short-Term 
Memory (LSTM) architecture was applied on recordings 
from on-body sensors to predict movements and gestures 
[46]. Those technologies hold the most potential in 
distance chronic disease monitoring such as Parkinson’s 
[47] and cardiovascular diseases [48].

Transfer learning

Being exceptionally data hungry, most of deep 
learning algorithms require a lot of data to train and test 
the system. Many approaches have been proposed to 
address this problem, including transfer learning. Transfer 
learning focuses on translating information learned on 
one domain or larger dataset to another domain, smaller 
in size. Transfer learning techniques are commonly used 
in image recognition when the large data sets required to 
train the deep neural networks to achieve high accuracy 
are not available. The architecture of CNNs allows 
transferring fitted parameters of a trained neural network 
to another network. Biomedical image datasets are usually 
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limited by the size of samples, so larger non-biological 
image collections, such ImageNet, could be used to fine-
tune a network first. A CNN pre-trained on the ImageNet 
was further trained on magnetic resonance images (MRIs) 
of heart to outline the organ structure [49]. With an 
average F1 score of 97.66%, the proposed model achieved 
state-of-the-art cardiac structure recognition. Similarly, 
CNNs fined-tuned on the ImageNet were applied for 
glioblastoma brain tumour prediction [50].

One and zero-shot learning

One and zero-shot learning are some of the transfer 
learning techniques that allow to deal with restricted 
datasets. Taking into account that real-world data is usually 
imbalanced, one shot learning is aimed to recognise new 
data points based on only a few examples in the training 
sets. Going further, zero-shot learning intents to recognise 
new object without seeing the examples of those instances 
in the training set. Both one and zero-shot learning are 
concepts of the transfer learning. 

Medical chemistry is one of the fields where data 
is scarce, therefore, to address this problem Altae-Tran 
and colleagues proposed a one-shot learning approach 
for the prediction of molecule toxic potential [51]. In this 
work, authors use a graph representation of molecules 
linked to the labels from Tox21 and SIDER databases 
to train and test models. One-shot networks as siamese 
networks, LSTMs with attention and novel Iterative 
Refinement LSTMs, were compared with each other, with 
graph convolutional neural networks and with random 
forest with 100 trees as a conventional model. Iterative 
Refinement LSTMs outperformed other models on most 
of the Tox21 assays and SIDER side effect. In addition, 
to evaluate the translational potential of the one-shot 
architecture, networks trained on Tox21 data were tested 
on SIDER, however none of the one-shot networks 
achieved any predictive power, highlighting the potential 
limitation in translation from toxic in vitro assays into the 
human clinic. 

HIGHLY DISTRIBUTED STORAGE SYSTEMS

The recent explosion in generation and need for 
data has made it very necessary to find better systems 
for data storage. Among other requirements, the data 
storage systems should be better in terms of reliability, 
accessibility, scalability and affordability, all of which 
would translate into improved availability. While there 
could be many options for optimizing these requirements, 
HDSS has been found to be a very useful and viable 
option. Traditionally, a lot of technologies and techniques 
have been employed to store data since the development of 
computer systems, however, with the exponential increase 
in data demands and computing power, solutions like 

HDSS has become very important.
Basically, HDSS involves storing data in multiple 

nodes, which could simply be databases or host computers. 
Data stored in these nodes are usually replicated or 
redundant and HDSS makes a quick access to data 
over this large number of nodes possible. It is usually 
specifically used to refer to either a distributed database 
where users store information on a number of nodes, or a 
computer network in which users store information on a 
number of peer network nodes. 

In recent years, storage failures have been one of 
the data handling challenges of higher importance, making 
reliability one of the important requirements for storage 
systems. HDSS, which allows data to be replicated in a 
number of different nodes or storage units and makes it 
protected from failures, has become very popular. 

Advances in HDSS

There have been a significant amount of progress 
both in the applications and the optimization of 
HDSS. However, some of the key challenges in HDSS 
applications are ensuring consistency of data across 
various storage nodes and affordability of the systems. 
These challenges have been addressed by many recent 
HDSS solutions, including distributed non-relational 
databases and peer network node data stores. This is 
for example, a case of peer-to-peer node data store 
implemented in blockchain. 

Blockchain could be described as a distributed 
database that is used to maintain a continuously growing 
list of records. These records are composed into blocks, 
which are locked together using certain cryptographic 
mechanisms to maintain consistency of the data. Normally 
a blockchain is maintained by a peer-to-peer network of 
users who collectively adhere to agreed rules (which are 
insured by the software) for accepting new blocks. Each 
record in the block contains a timestamp or signature 
and a link to a previous block in the chain. By design, 
blockchain is made to ensure immutability of the data. 
So once recorded, the data in any given block cannot 
be modified afterwards without the alteration of all 
subsequent blocks and the agreement of the members of 
the network. Because of its integrity and immutability, 
blockchain could be used as an open, distributed ledger 
and can record transactions between different parties or 
networked database systems in an efficient, verifiable 
and permanent manner. It is also flexible enough to allow 
adding arbitrary logic to process, validate and access the 
data, which is implemented via so called smart contracts 
(components of business logic shared and synchronized 
across all nodes). This makes blockchain very suitable 
for application in healthcare and other areas where data 
is very sensitive and strict regulations on how data can be 
used need to be imposed. 
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DATA PRIVACY ISSUES AND REGULATORY 
BARRIERS

Data privacy issues

While data could be said to be the lifeblood of the 
current digital society, many are yet fully to grasp the need 
for appropriate acquisition and processing of data [52, 
53]. Among the key concerns in the generation and use 
of data are privacy issues. This is even more important 
in healthcare, where a high percentage of personal health 
data generated could be considered private. In order 
to ensure propriety in the handling of data, there have 
been regulations and rules that guide processes such as 
generation, use, transfer, access and exchange of data. 
Although privacy has been recognized as a fundamental 
human right by the United Nations in the Universal 
Declaration of Human Rights at the 1948 United Nations 
General Assembly, there is yet to be universal agreement 
on what constitutes privacy [54]. As a result, privacy 
issues and regulatory concerns have often been topics of 
important but yet varied interpretations wherever data is 
generated and used. 

Regulatory barriers

With the dawn of computing and constant 
advancements in tech, there have been massive amounts 
of data generated on daily basis, and a substantial amount 
of these data consists of information which could be 
considered private. Some regulatory efforts to ensure 
proper flow and use of these data could become barriers to 
meaningful development [52]. Among the key efforts to 
ensure that data is used within the appropriate standards, 
is establishment of the Health Insurance Portability and 
Accountability Act (HIPAA) of 1996 and Privacy Rule’s 
minimum necessary standard [55]. While developers 
and researchers are usually keen to get down to work; 
analyzing, processing and using data, some barriers could 
make getting and using relevant data challenging [55-58]. 
While regulatory barriers like HIPAA are necessary to 
ensure appropriate use of information, they could delay 
developmental efforts, especially when meaningful work 
have to be done as fast as possible. For instance, HIPAA 
requires an institutional review board to approve the use 
of data, and this could simply introduce some degree of 
complexity to data use [57].

Most people believe that their medical and other 
health information is private and should be protected, and 
patients usually want to know how this information is 
being handled [59]. The transfer of medical records from 
paper to electronic formats could increase the chances 
of individuals accessing, using, or disclosing sensitive 
personal health data. Although healthcare providers 

and public health practitioners in the US traditionally 
protect individual privacy, previous legal protections 
at the federal, tribal, state, and local levels could be 
inconsistent and inadequate. Hence, the HIPAA was 
established to ensure health insurance coverage after 
leaving an employer, and also to provide standards for 
facilitating healthcare-related electronic transactions. With 
the aim of improving the effectiveness and efficiency of 
the healthcare system, HIPAA introduced administrative 
simplification provisions that required Department of 
Health and Human Services to adopt national standards 
for electronic healthcare transactions [60, 61]. Meanwhile, 
Congress realized that developments and advancements 
in computing and electronic technology could affect the 
privacy of health information. As a result, Congress added 
into HIPAA provisions that made the adoption of federal 
privacy protections for certain individually identifiable 
health information compulsory.

The HIPAA Privacy Rule (Standards for Privacy 
of Individually Identifiable Health Information) provides 
national standards for protecting the privacy of health 
information. Essentially, the Privacy Rule regulates how 
certain entities, also called covered entities, use and 
disclose individually identifiable health information, called 
protected health information (PHI). PHI is individually 
identifiable health information that is transmitted or 
maintained in any form or medium (e.g., electronic, paper, 
or oral), but excludes certain educational records and 
employment records [60, 62]. Among other provisions, 
the Privacy Rule:

1. gives patients more control over their health 
information;

2. sets boundaries on the use and release of health 
records;

3. establishes appropriate safeguards that the 
majority of health-care providers and others 
must achieve to protect the privacy of health 
information;

4. holds violators accountable with civil and 
criminal penalties that can be imposed if they 
violate patients’ privacy rights;

5. strikes a balance when public health 
responsibilities support disclosure of certain 
forms of data;

6. enables patients to make informed choices 
based on how individual health information 
may be used;

7. enables patients to find out how their 
information may be used and what disclosures 
of their information have been made;

8. generally limits release of information to the 
minimum reasonably needed for the purpose of 
the disclosure;

9. generally gives patients the right to obtain a 
copy of their own health records and request 
corrections; and
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10. empowers individuals to control certain uses 
and disclosures of their health information.

It is absolutely important to maintain the privacy 
and security of health data, and Regulatory barriers serve 
to ensure rightful handling and use of these sensitive 
information. However, the complexity and difficulty 
introduced by these barriers could hamper meaningful 
progress in the use of data [57, 59]. There is therefore the 
need to develop systems and procedures that would not 
only ensure the appropriate handling and use of data but 
that would also significantly facilitate the use of data for 
meaningful progress towards better health outcomes.

ADVANCES IN BLOCKCHAIN

The blockchain is a distributed database using state 
machine replication, with atomic changes to the database 
referred to as transactions grouped into blocks, with the 
integrity and tamper-resistance of the transaction log 
assured via hash links among blocks. The blockchain 
concept was introduced for Bitcoin in the context of 
decentralized electronic currency [63]. Blockchain is 
usually understood to be decentralized, jointly maintained 
by a plurality of independent parties (maintainers), with 
the security assumptions postulating that a certain fraction 
of these parties may be non-responsive or compromised at 
any moment during blockchain operation like Byzantine 
fault tolerance [64].

Here we briefly describe the key features of the 
public and private [65, 66] blockchain technology: 

● Linked timestamping [67]: blockchain by design 
makes it possible to provide a universally verifiable proof 
of existence or absence of certain data or a state transition 
in the blockchain database. These proofs would be 
computationally unforgeable by third parties (i.e., anyone 
but a collusion of a supermajority of the blockchain 
maintainers), provided that underlying cryptographic 
primitives (hash functions and signature schemes) are 
computationally secure. Furthermore, accountability 
measures (e.g., proof of work or anchoring [68]) could 
make it prohibitively costly to forge such proofs for 
anyone, including the maintainers themselves, and provide 
long-term non-repudiation. Such proofs for small parts of 
stored data could be compact and do not need to reveal 
any other explicit information (only mathematically 
impersonal information).

● Blockchain uses a consensus algorithm [64, 69], 
which guarantees that non-compromised database copies 
have the same views as to the database state. In other 
words, consensus ensures that transactions in the log are 
eventually propagated to all non-compromised nodes and 
lead to the identical changes.

● Applied cryptography routines (e.g., public-
key digital signatures [70]) are used to decentralize 
authentication and authorization of transactions taking 
place within the network. That is, transactions are created 

externally to the blockchain nodes, which limits the 
repercussions of a node compromise.

The blockchain users are commonly divided into 
three parts according to their roles:

● Maintainers of the blockchain infrastructure, who 
decide business logic on the blockchain. The maintainers 
store full replica of the entire blockchain data, thus have 
full read access to it and decide on the rules of transaction 
processing, and are active participants of the consensus 
algorithm on the blockchain, in other words, have write 
access to the blockchain. Importantly, the maintainers 
are bound with a formal or informal contract with the 
other users as to the business logic encoded in the 
blockchain. That is, the maintainers cannot set or change 
the transaction processing rules arbitrarily; indeed, they 
provide means for external users to audit the blockchain 
operation for correspondence to these rules. 

● External auditors of the blockchain operation for 
example regulators, non-government organizations, law 
enforcement, who verify the correctness of the whole 
transaction processing in real time and/or retrospectively. 
Auditors are assumed to store replica of the entire 
blockchain data, or at least a logically complete portion 
of it, and read access to it to be able to perform complete 
audits. From the technical perspective, auditors do not 
participate actively in consensus, but otherwise are similar 
to maintainers in that they replicate the entire transaction 
log.

● Clients who are the end users of the services 
provided by maintainers. Each client may have access to 
a relatively small portion of blockchain data, but his/her 
software may utilize cryptographic proofs to verify, with 
reasonable accuracy, the authenticity of the blockchain 
data provided by maintainers and auditors.

For example, in Bitcoin, maintainers correspond to 
miners and mining pool software, auditors to non-mining 
full nodes, and clients correspond to simplified payment 
verification (SPV) wallets and, more generally, to client-
side key management software. Generalizing Bitcoin 
network taxonomy, we will refer to nodes having read 
access to the entire blockchain as full nodes, which are 
subdivided into validator nodes and auditing nodes as per 
the roles described above; the software on the client side 
will be accordingly called client software.

By utilizing cryptographic accountability and 
auditability measures, blockchains could minimize trust 
and associated counterparty risk among participants in the 
system [71]:

● As transactions are cryptographically authorized 
by the logical originators of such transactions, blockchain 
eliminates the risks associated with the single point of 
failure posed by centralized authorization systems. Key 
management could be complemented with public key 
infrastructure that would tie authorization keys with real-
world identities, if deemed necessary.

● Client-side data validation could allow reducing 
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the risks associated with man-in-the-middle attacks, 
including those when MitM is performed on the server 
side (e.g., by compromising the user-facing backend of 
the system). The client-side validation could further utilize 
secure user interfaces and key management (e.g., TEE 
capabilities in modern mobile platforms).

● The universality of cryptographic proofs 
provided to clients could allow to reliably convey them 
to third parties (e.g., use electronic receipts provided by 
a blockchain managing supply chain, for tax accounting 
purposes or as evidence in legal action). Furthermore, 
cryptographic soundness of proofs allows to definitively 
restore the blockchain state even in the case when the 
maintainers are entirely compromised.

● The availability of real-time and retrospective 
authorization tools with guarantees of data authenticity 
could reduce costs of auditing and monitoring processes. 
This, in turn, could allow counterparties to more accurately 
assess the contract risks, and/or allow regulators to more 
precisely estimate systemic risks.

 Blockchains could be categorized by the level of 
access to the blockchain data [66]:

● In public permissionless blockchains, all 
blockchain data is public. Furthermore, the consensus 
algorithm is censorship-resistant (e.g., proof of work 
used in Bitcoin), which ensures that maintainers are free 
to enter and leave the system; i.e., write access to the 
blockchain is public, too. The maintainers’ accountability 
in permissionless blockchains is achieved via economic 
means (e.g., prohibitively high cost of attacks in proof-of-
work consensus).

● Private blockchains have a well-defined and 
restricted list of entities having read and write access to 
the blockchain (e.g., a group of banks, the regulator and 
law enforcement in a hypothetical banking blockchain). 
Notably, end users of services codified in the blockchain 
(i.e., bank clients in the example above) do not have any 
access to the blockchain data.

● Public permissioned blockchains restrict write 
access to the blockchain data similarly to private 
blockchains, but are engineered to be universally auditable 
and thus oriented for wide read access by end users. For 
the sake of brevity, in the following statement, we will 
refer to this kind of blockchains as permissioned.

EXONUM FRAMEWORK FOR 
BLOCKCHAIN PROJECTS

Exonum (https://exonum.com, from Latin exonumia, 
numismatic items other than coins and paper money) is 
an open-source blockchain framework oriented towards 
permissioned blockchain applications with wide read 
access to blockchain data. 

Exonum employs service-oriented architecture 
(SOA) [72] and architecturally consists of three parts: 
services, clients, and middleware.

● Services are the main extensibility point of 
the framework, which encapsulate business logic of 
blockchain applications. An Exonum-powered blockchain 
may have a plurality of services; the same service could 
be deployed on a plurality of blockchains (possibly with 
prior configuration). Services have a degree of autonomy 
in that each service is intended to implement logically 
complete and minimum necessary functionality for 
solving a particular task; their interface allows reuse and 
composability. In blockchain terms, services implement 
endpoints for processing transactions (cf. POST and PUT 
requests for HTTP REST services), as well as for read 
requests (cf. GET endpoints for HTTP REST services) that 
retrieve persistent information from the blockchain state 
(for the definition of blockchain state, see below).

● (Lightweight) clients implement typical 
functionality of clients in SOA; they are intended to be 
the originators of most transactions and read requests 
in the system, and are correspondingly supplied with 
cryptographic key management utilities, as well as tools to 
form transactions and verify (including cryptographically) 
responses to read requests.

● Middleware provides ordering and atomicity of 
transactions, interoperability among services and clients, 
replication of services among nodes in the network (which 
is purposed for both service fault-tolerance and auditability 
via auditing nodes), management of service lifecycle (e.g., 
service deployment), data persistence, access control, 
assistance with generating responses to read requests, etc. 
That is, middleware reduces the complexity of the system 
from the point of view of service developers.

The main advantages of Exonum for the described 
application compared to alternative permissioned 
frameworks are as follows:

● Because of design of data storage structures for 
auditability, Exonum could make it easier for clients and 
auditors (incl. ones with incomplete read access to data) 
to audit the system both in real time (incl. intermittently) 
and retrospectively. Further, the list of auditors could be 
unknown beforehand, and could be scaled over the course 
of blockchain operation.

● Due to use of service-oriented architecture, the 
application could easily reuse services developed for 
other Exonum applications, add and reconfigure services 
utilized for the application, etc. The service orientation 
and direct use of common transports (such as REST + 
JSON) could allow to streamline integration of third-
party applications into the ecosystem provided by the 
Marketplace. Furthermore, service orientation could 
theoretically provide costless interoperability with other 
Exonum-based blockchains. (Albeit this possibility is 
not currently realized by the Exonum framework, the 
middleware layer could largely alleviate interoperability 
efforts needed to be pursued by service developers.)

● Compared to permissionless blockchains and 
frameworks with domain specific language/virtual 
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machine indirection, Exonum provides substantially 
higher throughput capacity (order of 1,000 transactions per 
second), and ability to encode complex transactional logic, 
incl. interaction with external components. 

● Exonum uses pessimistic security assumptions as 
to the validator node operation. The consensus algorithm 
employed in Exonum does not introduce single points 
of failure (e.g., dedicated orchestration / transaction 
ordering nodes). Furthermore, the set of validator nodes 
is reconfigurable, allowing to scale the security by adding 
new validators, rotating keys for validators, locking out 
compromised validators, etc. 

Blockchain storage

Blockchain state in Exonum is a persistent key-
value storage (KVS), where keys and values are, in most 
general case, byte sequences of an arbitrary length, with 
the defined operations:

● Put a value under a specified key (creating the key 
if necessary)

● Remove a key-value pair by the key
● Iterate over keys in the lexicographic order, 

including starting from a specific key.
Exonum allows to split the key space of the common 

KVS into the hierarchy of typed collections: lists, sets 

and maps, whereas items of the collections (or key-value 
pairs in the case of maps) are binary-serializable as per 
the Exonum serialization format. Operations on these 
collections are mapped to the corresponding operations 
of the underlying KVS. The two uppermost levels of 
hierarchy correspond to services and data collections 
within a specific service, respectively; i.e., the 2nd level 
of hierarchy are items of top-level service collections. 
Additional levels of hierarchy could be created by using 
collections as items of top-level collections. 

Collections can be declared as Merkelized. 
Merkelized collections introduce a new operation, hash 
of the collection, which is the hash commitment to all 
its items (or key-value pairs in the case of map). This 
construction allows to create compact (logarithmic wrt the 
number of elements in the collection) cryptographic proofs 
of presence (and absence in the case of sets/maps) of items 
in the collection. 

Similar to the hierarchical structure of collections 
within the blockchain described above, all Merkelized 
collections of a particular service could be committed to in 
a single hash digest (possibly, through one or more levels 
of indirection). Indeed, this hash digest could be calculated 
by creating a Merkelized meta-map of collection 
identifiers into collection hashes. Similarly, commitments 
of all services within the blockchain could be collected 
into a single blockchain-level hash digest, which would 

Figure 1: Exonum service design (each Service instance and Auditing instance has local replica of blockchain storage 
to ensure authenticity of the data and balance load).
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commit to all data in all Merkelized collections within the 
blockchain state. For all intents and purposes, the resulting 
blockchain-level hash digest is the hash (commitment) of 
the entire blockchain state. This would allow to create 
proofs of existence or absence tied to this single hash as 
a root of trust.

In order to reduce risks of history revisions 
and equivocation, H_state may be anchored on a 
permissionless blockchain with strong accountability 
guarantees (e.g., Bitcoin), and proofs provided to clients 
augmented accordingly. Cf. notion of partial proofs in 
the OpenTimestamps protocol (https://opentimestamps.
org/). Note that the anchoring scheme would allow to 
reliably assert statements about the blockchain state 
retrospectively, even if the blockchain itself has become 
unavailable (e.g., due to wide-scale compromise or 
collusion of the blockchain validators).

Network

Services may communicate with external world via 
2 kinds of interactions:

● Transactions is the only way to change 
the blockchain state. Transactions are executed 
asynchronously, with their ordering and results of 
execution being subject of the consensus algorithm 
executed on the blockchain. For this reason, incoming 
transactions are broadcast among full nodes in the network

● Read requests allow to retrieve information from 
the blockchain state, which may be accompanied by the 
corresponding proofs of existence/absence. Read requests 
can be processed locally by any full node (or, more 
generally, by any node having sufficient read access to the 
relevant keyspaces of the blockchain state)

Transport layer

Due to universal verifiability of transactions 
and proofs, clients may connect to a single node for all 
requests. Note that maliciously acting node cannot forge 
proofs for read requests; but it could delay transaction 
processing by not broadcasting transactions received from 
the client. The transport protocol is not intended to be 
pinned by the Exonum specification; indeed, similarly to 
web services in frameworks such as Java EE and CORBA, 
the middleware layer is tasked with the responsibility 
to abstract transport layer functionality from service 
developers, so that invocation of service endpoints could 
be mapped to local method invocations. As of Exonum 
0.2, RESTful JSON transport is supported for interaction 
of full Exonum nodes with clients, and TCP with a custom 
binary format is used in communication among full nodes. 
Authentication and authorization

Transactions are necessarily authenticated by their 
originators with the help of public-key digital signatures to 
ensure their integrity, as well as real-time and retrospective 
universal verifiability. Public key infrastructure (PKI) 
could be built on top to achieve more complete non-
repudiation and/or finely grained access control if 
necessary.

As read requests are local, authentication/
authorization for them could be transport-specific, 
achieved, e.g., with web signatures (esp. for read 
requests implemented with the HTTP GET method) or by 
authenticating the communication channel (e.g., via client-
authenticated TLS or Noise protocol).

In order to additionally boost security, service 
endpoints could be declared as private. Private endpoints 
could be compared with administrative interfaces in Web 
services; they are intended to process and manage local 
storage associated with a particular full node. Separation 

Table 1: Distinguishing characteristics of Exonum service endpoints

Characteristics Transactions Read requests

Localness Global (subject to 
consensus) Local

Processing Asynchronous Synchronous

Initiation Client Client

REST service analogy POST / PUT HTTP 
requests GET HTTP requests

Example on the 
cryptocurrency service Cryptocurrency transfer Balance retrieval
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of private endpoints could simplify access control and 
decrease attack surface; e.g., if the HTTP transport is used, 
private endpoints are mapped to a separate listen address 
compared to other endpoints.

Lightweight client

Most generally, a lightweight client in Exonum is a 
client-side library providing capabilities to communicate 
with full nodes (i.e., invoke service endpoints and receive 
responses) and cryptographically verify responses. A client 
could be complemented with key management capabilities 
and persistence of responses from full nodes; the former 
could be used for authentication of requests, and the latter 
could assist in non-repudiation and verifying consistency 
among different responses (e.g., monotonically non-
decreasing blockchain height).

Consensus

To order transactions in the transaction log and agree 
on the result of transaction execution, Exonum utilizes 
an authenticated, leader-based Byzantine fault-tolerant 
(BFT) [73] consensus algorithm. The Exonum network 
would continue operating even if up to 1/3 validators are 
hacked, compromised or switched off. Hence, there is no 
single point of failure in the network; the whole process of 
transaction processing is fully decentralized.

The consensus algorithm works under the 
assumption of unforgeable public-key digital signatures 
and a partially synchronous network. Under these 
conditions, the algorithm provides safety and liveness 
as defined in [74], with safety not depending on partial 
synchronicity. Similar to other partially synchronous BFT 
algorithms such as PBFT or Tendermint, the algorithm 
uses three kinds of consensus messages - block proposals, 
prevotes and pre-commits (see Consensus Section of 
the https://exonum.com/doc/ documentation), which are 
authenticated by digital signatures to enable transferring 
of messages among validators and to improve non-
repudiation.

Compared to other leader-based BFT algorithms, 
the algorithm used in Exonum has the following 
distinguishing characteristics:

● Unbounded rounds: Voting rounds have a fixed 
start time, but do not have a definite end time. A round 
ends only when the next block is received or committed 
locally. This helps decrease delays when the network 
connection among validators is unstable.

● Work split: Block proposals include only 
transaction hashes; furthermore, transaction execution is 
delayed; transactions are applied only at the moment when 
a node receives enough prevotes for a proposal. Delayed 
transaction processing reduces the negative impact of 
malicious nodes on the system throughput and latency.

● Requests: Requests algorithm allows a validator 
to restore consensus-related information from other 
validators by utilizing the fact that all messages are 
digitally signed. This has a positive effect on system 
liveness.

The validator set is reconfigurable; validators 
could be added or removed by the agreement of the 
supermajority of existing validators. The same procedure 
could be used for key rotation for validators.

Bitcoin anchoring

Exonum uses a BFT Bitcoin anchoring algorithm, 
which is packaged as a separate service. The algorithm 
periodically outputs the hash digest of a recent block 
on an Exonum blockchain, which commits to the entire 
blockchain state and transaction history, in a transaction 
on the Bitcoin blockchain. The anchoring transaction 
has a well-defined form and must be authenticated by 
a supermajority of validators on the anchored Exonum 
blockchain. Validators should use individual Bitcoin full 
nodes to get information from the Bitcoin blockchain 
in order to eliminate single points of failure associated 
with potential eclipse attacks [btc-eclipse] on the nodes. 
Anchoring transactions form a sequence; each next 
anchoring transaction spends an output created by the 
previous one. Authentication and chaining of anchoring 
transactions make the described anchoring procedure 
similar in its security characteristics to the paper-based 
anchoring described in [75].

COMBINATION AND TIME VALUE OF 
DATA

Health care providers around the globe are tracking 
patient encounters through an electronic medical records 
system, generating terabytes of patient medical records. 
This giant amount of medical data is a gold mine of health 
information. 

Each type of data (basic blood test, basic urine test, 
MRI, electroencephalogram, electrocardiogram, genome, 
transcriptome, microbiome etc.) and their combinations 
have relevant value, depending on quality of the medical 
records and its biological significance for certain disease 
condition (Figure 2). Different types of medical data have 
their own predictive value, representative sensitivity, 
prediction rate and weight. Patterns reflecting the changes 
in patient condition are more readable when doctor 
operates complex information, presenting patient health 
state on different levels at the current period of time. Some 
of the data types, like pictures, videos, voice can also have 
substantial predictive value for medical condition. For 
examples, several research groups already studied the 
application of voice and speech pattern recognition for 
diagnosis of Parkinson’s disease and its severity prediction 
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[76, 77]
Traditional diagnostics pipeline based on analysis 

combination of medical tests, especially when healthcare 
specialists try to diagnose serious and complex pathologies 
such as oncological, autoimmune, or neurodegenerative 
diseases. The combination of data types, especially the sum 
of low diagnostics data, provides a multi-level overview 
and better understanding of complex multifactorial 
conditions, and also leads to a faster diagnostics [78, 79]. 
Search and identification of suitable groups of biomarkers 
based on the multi-level data remains an important 
challenge. Taking into account different mechanisms of 
the disease development, biomarkers can acquire various 
forms. It is a common trend that various types of medical 
tests are being used for substantially broader diagnostic 
applications than those that were available at the start of 
their implementation.

Despite a large number of various diagnostic 
tests not all type of medical data is reasonable to use 
for the description of patient’s health state in dynamics. 
For example, genome analysis provides an important 
information on heredity, but due to it relative stability 
has a low value for prediction of dynamic changes in the 
organism compared to epigenome [80] or transcriptome 
[81]. Sampling time is an important component of any 
medical analysis, which allows to accurately describe the 
state of the human health at the moment. Following the 
principles of 360o health introduced by the NHS [82], the 
more different parameters are analyzed at the same time, 
the more detailed and voluminous the overall picture is. 
One-time combination of date provides a very nutritious 

feed for artificial intelligence, allowing to create powerful 
algorithms of effectively and precisely detection different 
human health states. 

In this paper we introduce a formal model that 
allows to evaluate data value that takes into account 
combination and time parameters of data. Based on the 
value model one may establish a proper cost for using the 
given data combination, and this in turn allows for creation 
of formal medical data transaction model to create medical 
data marketplace.

Data value model

Generally, data can be divided into the following 
categories: dynamic - reflecting the state of the organism 
at the time of sampling (blood test, transcriptome, 
epigenome, proteome, microbiome etc), and static - 
almost unchanged during the life of the patient (genome, 
fingerprint). Within a dynamic group, it is possible to 
differentiate rapidly changing data and gradually changing 
data. 

In congenital genetic diseases, the records obtained 
in the first years of life are important as determining the 
further development of the disease (Figure 3.1), for the 
age-associated diseases, it is important to analyze the 
results obtained before the diagnosis was made (Figure 
3.2), data role constant throughout the life of the patient 
(Figure 3.3).

Each personal biomedical record R could be viewed 
as a triplet (type, time, quality) where type is a categorical 

Figure 2: Predictive data types could be divided into two groups: rare data, such as the transcriptomic profiles, hair 
composition, or even novel data types that are not measured today and abundant retrospective data including common 
blood tests or the feed from social networks.
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variable for a record type, time is a sampling time of 
patient’s biomedical record (for example, when blood test 
was made) minus the patient’s time of birth, quality is a 
nonnegative number reflecting record quality (generally, it 
could be a vector). One of the key attribute encapsulated in 
the type is the half-life period of analysis - characterizing 
the ½ duration of the relevance of the data. For example, 
according to one of largest medical practice and research 
center, Mayo Clinic, cholesterol check is valid for only 
five years or less if a patient at the higher risk of heart 
disease [83]. While, the genome profile is valid for the 
whole life of the patient, so genome analysis has longer 
half-life period than basic cholesterol blood test.

The dataset is a setDataset = {(userrn, Rn)}n=1 of 
N (userrn, Rn) pairs, where user is a user profile. User 
profile (Patient’s profile) - an attribute that includes 
information of ethnicity, date of birth, sex, diagnoses, 
blood type, medical prescriptions, vaccinations, chronic 
diseases, interventions, smoking and alcohol status, 
family relations, weight, height, geolocation. User profile 
refers to a hybrid attribute, since it includes both static 
(date of birth, ethnicity, sex, blood type) and dynamic 
parameters (diagnoses, smoking and alcohol status, 
weight, geolocation).

The dataset Cost is a function of a Dataset and it 
consists of two terms: the combination for a each single 
user and combinations for a set of same type records for a 
groups of users.

Cost for single user

where k is a number of records in a combination, 
all records in the combination are for the user and are 
different, fk is a cost function for a combination for k 
records.

k=1: R= (type, time, quality)
f1(R|user) = Ψ (type|user), × quality × Ψ (type|user)
where
Ψ (type|user) is a base value of given record type 

and user combintation. In the model we set it as a mapping 
of categorical parameter type to the positive numbers (0, 
∞)

Ψ (type|user) is a time value of record. It is a 
function (0, ∞) → (0, ∞)

 k>1: R1= (type1, time1, quality1), . . . RK= (typeK, 
timeK, qualityK)

In case of combination of several records we keep 
the cost component structure similar to k = 1 case. This 
leads to the need to define base value, quality and time 
value for interaction component to the cost of several 
records.

fk(R1, . . .,Rk|user) = Ψk (type1,....,typek|user) × 
vk(quality1, . . . qualityk), × Ψk (time1, . . .,timek, type1,..., 
typek|user)

where
Ψk (type1,....,typek|user) is a base value of addition 

due to interactions. It is a mapping of categorical 

Figure 3: A possible scenario of data value dependence of age and health status of a patient. R- biomedical record, and 
index is patient’s age. 1 - The curve of dependence for the R, when value decreases with time, and is most valuable in the young age 2 - The 
curve of dependence for the R, when value increases with time, and is most valuable in the old age. 3 - The curve of dependence for the R, 
when value is constant
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parameters type1,....,typek to the positive numbers (0, ∞)
vk(quality1, . . . qualityk) is a quality of combination 

of records for one user. It is a function [0, ∞)k → [0, ∞) 
such that vk is monotonic nondecreasing function of each 
input and qualitylimm → 0 vk(quality1, . . . qualityk) = 0 for all m 
= 1,...k. The last property means that the adding a record R 
with zero quality does not change the cost of the Dataset. 
For example, vk = (Σk

m=1 1/ qualitym)-1

Ψk (time1, . . .,timek, type1,..., typek|user)
 is a time value for a set of records. For a fixed set 

of time1, . . .,timek it is a function [0, ∞)k → [0, ∞). For 
example, for each typem two time parameters Tm, typem,o and 
nonnegative function wm (t),t ≥ 0 is chosen. And

Ψk (time1, . . ., timek, type1,....,typek|user) = maxt minm 

= 1,..kwm( )
Figures 4 and 5 illustrate how the cost depending 

on records’ time were done: for the combination of the 
same type ( for example, blood tests made in different 
period of time) and for the combination of different types 
of data from the single patient (for example, blood test 
and transcriptome analysis). The greater intersection of 
time value curve is the greater combined records cost is. 
Data obtained it the same or short period of time have 
greater representation and predictive value, that’s why 
we introduce term time value of data. Time value of 
data - an indicator that demonstrates the representative 
and predictive rate of the group value of data, based on 
the difference in the records’ half-life time. It is relevant 
both: for a combination of data of one type and for a 
combination of data of different types.

 Cost for records from group of users

The cost increases only for the multiple records 
of the same type from distinct users. Let us fix type of 
records to find their combination cost increase. . Let 
useri1,....,userik have records with type type in the Dataset 
Let qualityi1, . . . qualityik be best corresponding qualities 
of users records with type in the Dataset. Then

Cost (type, qualityi1, . . ., qualityik, useri1,.. userik)

where for a fixed type function γ(k, type|useri1,...., 
userik) has a fixed superlinear growth with k increase. For 
example, γ(k, type|useri1,...., userik) = C × K × lnk or γ(k, 
type|useri1,...., userik) = C × K3/2

Every Dataset has it’s own critical representative 
level, critical level depends on the type of data, their 
quality, and patient profile. 

Cost of buying dataset

If customer wants to buy Dataset and already has 
bought some Dataset1, then

Cost(Dataset) = Cost(Dataset U Dataset1) - 
Cost(Dataset1)

The payments for users data are also fairly 
distributed among users according to their contribution to 
the dataset cost and previous payments from the current 
customer. Thus, the application of the data value model 

Figure 4: The cost of a combination of data (R1, R2, R3 ) of the same type obtained in different periods of time from the 
single patient, where type1 = type2= type3, quality1 = quality2= quality3, time1 ≠ time2 ≠ time3
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makes it possible to convert Big Data into Apprised Data.

Family and relationship value of data

Many studies in healthcare require the data coming 
from the closely related subject from the same family 
or region and commonly involve Human data analysis 
is complicated redistricted experimental possibilities. 
However, these challenges could be overcome with 
a powerful and efficient design of data analysis. One 
of possible approaches is analysis of genetically close 
patients, twins, siblings or parents and offspring or 
colleagues and friends. , where observed effects are 
influenced by less number of features. Eventually,The 
biomedical data obtained for relatives is commonly more 
valuable than the same data obtained from the unrelated 
individuals. 

Here we introduce a measure commonly used in the 
genealogy, the coefficient of relationship (r) between two 
individuals, also known as a coefficient of inbreeding, 
where a relationship between two subjects B and C is 
defined as

rBC = ΣpABpAC, where p is for path coefficients 
connecting B and C with common ancestor A.

and
 where pAB is defined as:

, where fA and fB are inbreeding 
coefficient for ancestor A and offspring B, respectively.

Given the fact, that humans population are 
genetically heterogeneous and usually , or random-
bred, we could set thefA=0 and a formula coefficient of 

relationship could be simplified:
rBC = Σp 2-L(p), where L(p) is the length of the path p.
This way, r of parent-offspring is 2-1 = 0.5, , and r of 

grandparent-grandchild is 2-2 = 0.25.
And cost function of data could be modified as 

following:
fk(R1, . . .,Rk|user) = Ψk (type1,....,typek|user) × 

vk(quality1, . . . qualityk), × Ψk (time1, . . .,timek, type1,..., 
typek|user) + λ[Ψk (type1,....,typek|user) × vk(quality1, . 
. . qualityk), × Ψk (time1, . . .,timek, type1,..., typek|user)], 
where λ is a regularization coefficient equals to coefficient 
of relationship of users the system and could be set as 
following :

λ Σm
i=1 ri, where m is a number of users in the system 

and r is a coefficient of relationship between them.
For distant relatives, r → 0 and almost will not 

contribute to the cost function of data, however, for a 
very close relative such as twins, r is equal to 1 and at the 
beginning, it will double the cost of data. The cost of data 
will grow with a number of close relatives that are using 
the platform and contributing their data.

PREDICTING PATIENT’S AGE TO 
EVALUATE THE PREDICTIVE VALUE OF 
DATA

Chronological age is a feature possessed by the 
every living organism and one of the most important 
factors affecting the morbidity and mortality in humans. 
The multitude of biomarkers linked to disease are strongly 
correlated with age. For instance, triglycerides, glycated 
hemoglobin (HbA1c), waist circumference, IL-6 increase 

Figure 5: The cost of a combination of different data types (R1, R2 ) obtained in different periods of time from the single 
patient, where type1 ≠ type2, quality1 = quality2, time1 ≠ time2 .
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with age, but other parameters like albumin, IGF and 
creatinine clearance go in an opposite direction [84, 85]. 
Many efforts have been made to integrate biomarkers in 
various health/risk indexes like Healthy Aging Index [86, 
87], Framingham Risk Score [88, 89], Frailty index [90, 
91], Physiologic Index of comorbidities [92]. Ultimately, 
age is the closest estimate of a health status of a person. 
Hence, combining various biomarkers and linking them 
to age will provide the basis for platform able to provide 
integrative analysis of health status, assess data quality 
and even identify fake data. In addition, treating aging as 
a disease to train the deep neural networks to capture the 
most important biological properties of the age-related 
changes that transpire during aging using the deep neural 
networks facilitates for transfer learning on individual 
diseases using a much smaller number of samples. 
First proposed by Zhavoronkov et al in 2015 [93], this 
technique can be used to reconstruct the data sets with the 
missing or incorrect features. 

Aging is also a continuous process gradually leading 
to loss of function and the age-associated diseases. The 
DNNs trained on the multi-modal data ranging from 
photographs, videos, blood tests, “omics”, activity and 
even smell and sweat during aging capture the many 
biologically-relevant features about the group, individual, 
organ, tissue or even a set of molecules. These DNNs 
can be used to extract the features most implicated in 

aging and specific diseases to be used as targets or build 
association networks and causal graphs. These DNNs can 
also be re-trained on a much smaller number of data sets 
of specific diseases within the same data type or using the 
many types of biological data. Here we propose a high-
level architecture fetaturing the various data types (Figure 
6). First, for each data type we build a DNN predictor of 
chronological age for the reasonably healthy individuals. 
Individual DNNs will allow for the detection of outliers 
and data quality control. Then all individual DNNs will 
be used to train multi-modal one-shot learning DNN. This 
architecture allows not only for accurate age prediction, 
but also for feature importance analysis. Results of such 
analysis across all predictors will tell about the importance 
of each individual biomarker and may inform its relative 
‘cost’. Since many of the biomarkers related to age 
(Albumin, Glucose, Norepinephrine, WBC, Il-6, etc.) 
are measured routinely in the clinic in a separate tests of 
different degree of invasiveness it is important to know 
which ones are more predictive.

HEALTH DATA ON BLOCKCHAIN 

One of the major problem for healthcare is 
data exchange and ability to use data in research and 
commercial projects. At the same time, healthcare sector 
requires to maintain a high standard of data privacy and 

Figure 6: A simple depiction of the deep neural networks trained to predict the chronological age within the data 
type and using the features extracted using the feature importance and deep feature selection for multi-modal age 
predictors. These predictors may be used for data integration, verification and transfer learning.
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security. Data breaches in healthcare storage systems can 
be especially costly because of HIPAA fines and reputation 
losses. Blockchain solutions as described later could 
reduce data breach risks by utilizing threshold encryption 
of data (meaning that cooperation of multiple parties 
is required to decrypt data), together with public key 
infrastructure (i.e., the use of asymmetric cryptography 
to authenticate communication with system participants).
Gained a substantial attention in recent years T, the 
blockchain technology gained substantial popularity in 
recent years primarily due to the popularity of the Bitcoin 
crypto currency, was previously has been proposed as a 
medium for health care data storage solutions [94, 95] and 
as a tool for to improving thee transparency in clinical 
trials [96].

A blockchain-based system can dramatically 
simplify data acquisition process. They allow user 
to upload his data directly to the system and give his 
permission to use his data if it was bought through the 
system using transparent price formula determined by data 
value model. Also it would guarantee fair tracking of all 
data usage activity.

The promise of such solution is the opportunity for 

users to take ownership of their data and access priviledges 
and even allow them to sell their data directly to the 
consumers of data for the fair value of data. However, 
exchanging the data for currency may be problematic for 
many reasons including the need to perform a massive 
number of micro-transactions in multiple countries and 
among a large number of different types of the data market 
market participants. 

Here we propose a new form of a utility crypto 
token called LifePound, which can be generated or mined 
by putting the data on the blockchain-enabled marketplace 
to facilitate for transactions and enable the novel incentive 
schemes. 

The architecture of the proposed platform is 
described in Figure 7.

The clients of the marketplace and their goals are
● users: to store and sell their biomedical data and 

to receive advanced health reports from the results of data 
analysis

● customers: to buy data from users and to provide 
results of data analysis for users

● data validators: to check the data received from 
users

Figure 7: The marketplace ecosystem consisting of the four parts: blockchain part, data storage, users and public 
instances. The blockchain is used to process new blocks of transactions, store and send keys and audit itself. The data storage contains 
encrypted data. Users send and sell their data using the marketplace (users), validate data (data validators), buy personal medical data 
(customers) and use LifePound as a cryptocurrency (LifePound users). The system is not fully open, and the public instances are used in 
cryptographic proofs for users to guarantee the marketplaces functioning correctness.
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● LifePound users: to use the cryptocurrency 
marketplace (possibly without any interaction with 
personal data).

Users are allowed to keep their data private and 
secured providing access to the data only for organizations 
whose paid for it and (optionally) staying as anonymous 
as possible. Customers intend to buy well-specified data 
samples which are aggregated from many users. To 
ensure the quality of the data provided by users, third 
party is needed - data validators, experts who are first 
buyers of the data. Data validators check the data quality 
and provide customers with a guarantee of user data 
validity. Interactions in the marketplace are registered on 
a blockchain in the form of transactions. Blockchain by 
itself does not contain any opened personal information. 
It contains hashes which could be used to timestamp 
and provide a reasonable level of non-repudiation for all 
actions at the marketplace. The former is achieved with the 
help of blockchain anchoring [52] and other accountable 
timestamping [59] techniques; the latter - with the help of 
digital signing and a blockchain-based PKI. 

Blockchain full nodes and cloud storage are the 
remaining two parts of the ecosystem. Cloud storage 
could be an existing cloud storage, for example, Amazon 
Web Services (AWS), which allows for building HIPAA-
compliant applications or Google Cloud Platform. One 
of the major reasons for integrating cloud storage into 
the ecosystem is to provide an off-chain storage solution 
especially for large biomedical data files, such as CT 
scans or MRIs, where the size of one data file could reach 
50 Mb. The cloud storage may require authentication 
for read and write access to data, which in a preferable 
setup would be based on the PKI established on the 
marketplace blockchain. To ensure security and privacy, 
the data uploaded by users to the cloud storage would be 
encrypted on the user side using a threshold encryption 
scheme [97-100]. As the storage technology matures, it 
may be possible to replace cloud storage with the personal 
storage systems, where all the personal data would truly 
belong to the individual and also reside at the individual 
storage. The individuals also may be able to lend their data 
to the other parties for training purposes instead of selling 
the data. 

Blockchain full nodes should be responsible 
organizations with an access to all information in the 
blockchain. They are divided into three subtypes:

● (Blockchain) validators: commit new blocks with 
transactions to the blockchain

● Auditors: audit the marketplace
● Key keepers: keep key shares according to a 

certain threshold encryption scheme necessary to decrypt 
user data in the storage. The precise protocol for key 
shares transmission and storage is out of the scope of this 
paper. In one possible setup, key keepers may have crypto-
identities backed by a blockchain-based PKI, which would 
allow them to establish authenticated communication 

channels with other participants of the described protocol 
for key share transmission. In this setup, the keepers might 
use ordinary security mechanisms to guarantee at-rest 
security for the shares. 

CLIENT WORKFLOW EXAMPLES

The intersections between different marketplace 
participants are illustrated in this subsection using several 
client workflows.

USER UPLOADS THE DATA

User chooses the data type and local path using 
system interface

1. User encrypts the data using a symmetric cipher 
(e.g., AES-256 in the CBC mode, or XSalsa20-
Poly1305 authenticated encryption scheme used 
in libsodium [https://download.libsodium.org/
doc/secret-key_cryptography/authenticated_
encryption.html]). A Shamir’s secret sharing 
technique [101] is then used to split the secret 
key to be distributed among key keepers, so 
that any K of key keepers together would be 
able to decrypt data, where K is a constant less 
than the number of key keepers N. The choice 
of constant K depends on the blockchain 
security model; as per Byzantine fault tolerance 
assumptions, K > round (N/3).

2. User distributes key shares among key keepers, 
e.g., using a direct authenticated communication 
channel established with each keeper. 

3. After user uploads encrypted data on a cloud it 
is consider to be LifeData.

4. User generates a transaction for data upload 
in order to notify ecosystem participants (in 
particular, data validators) that the upload has 
taken place. The transaction contains user’s 
public key, data type, and a link to the data at 
the cloud storage.

5. User signs the transaction and broadcasts it to 
blockchain nodes.

6. The transaction is included into the blockchain 
via consensus algorithm.

7. Now data validators can buy this data for 
validation.

DATA VALIDATOR VALIDATES THE DATA

1. Data validator (DV) chooses the (batch of) 
unvalidated data and generates a transaction to 
buy it for the validation.

2. DV signs transaction and broadcasts it to the 
blockchain nodes.

3. The transaction is included into the blockchain 
via consensus algorithm. If the DV has enough 
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LifePounds to buy it for validation, the DV’s 
LifePounds are sent to a validation smart 
contract and the workflow goes to step 4. 
Otherwise, the DV fails to validate data and 
goes to step 1.

4. Key keepers see an actionable data validation 
transaction in the blockchain. Each key keeper 
delivers stored key shares for each piece of data 
in the batch to the DV, e.g., via an authenticated 
communication channel.

5. DV uploads encrypted data from the cloud 
storage.

6. Once DV receives enough key shares from the 
key keepers, he decrypts the data.

7. DV validates data. The result is a vector of 
boolean values, signaling if corresponding 
pieces of data in the batch are valid or invalid 
w.r.t. the validation model used by the DV. The 
time for validation is limited. If validator failed 

to validate the data, the smart contract for data 
validation defaults to deeming all data in the 
batch valid.

8. DV forms and signs the transaction for data 
validation. The transaction contains the hashes 
of data and the validation result.

If the result for a particular data item in the batch is 
“valid”, then 

● LifePounds from smart contract are distributed 
among the data submitters’ accounts according to the data 
value model described in the previous section 

● Validated data becomes available for sale on the 
platform

DV will get a share of the revenue from third parties 
purchasing data from the batch in the future (see the 
following section). In one setup, the share of the revenue 
allocated to the DV is a blockchain-wide parameter.

If the result for a particular data item in the batch is 
“not valid”, then

Figure 8: The workflow example for marketplace users. User uploads data and gets LifePounds as a reward (amount depends on 
the value of data).

Figure 9: The workflow example for marketplace data validators (DV). Data validators are intermediate data buyers, who 
provide validation services to mine Lifepounds.
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● LifePounds from smart contract are refunded to 
the DV’s account

● Validated data is not available for sale at the 
platform.

Note. It is reasonable to have several DVs.

CUSTOMER BUYS THE DATA

1. Customer chooses the (batch of) validated data 
and generates a transaction to buy it.

2. Customer authenticates the transaction and 
broadcasts it to the blockchain nodes.

3. The transaction is included into the blockchain 
via consensus algorithm. If the customer has 
enough LifePounds to buy the specified data, 
the workflow goes to step 4. Otherwise, the 
customer fails to buy data and goes to step 1.

4. Key keepers see an actionable data purchase 
transaction in the blockchain. Each key keeper 
sends the key shares for all data in the batch and 
securely transmit them to the customer (e.g., via 
an authenticated communication channel).

5. Customer downloads encrypted data from the 
cloud storage.

6. Once the customer receives enough key shares 
from key keepers, he decrypts the data.

DATA SECURITY AND PRIVACY

One of the major challenges in the data-driven 
healthcare is data security and data privacy. Both the 
consumer, healthcare and research companies require the 
data of the many individuals to train their deep neural 
networks. The companies with the largest data sets acquire 
the data in the ways that may not be very transparent to the 

individuals and often the companies and the individuals 
do not understand the value of this data. The regulators 
often set up the barriers for the consumer data collection 
and storage substantially inhibiting the propagation of the 
recent advances in AI into the clinical practice (Figure 11).

The security of the described setup relies on the 
security of utilized crypto-primitives: the hash function 
and public-key signature scheme(s) utilized in the 
marketplace blockchain construction, as well as the 
symmetric cipher(s) and the secret sharing scheme(s) used 
for encrypting user data. Compared to centralized setups, 
the proposed scheme could allow to alleviate several 
attack vectors:

● Blockchain-based PKI for logically “well-known” 
users (e.g., blockchain validators, data validators, key 
keepers, etc.) could base on well-established measures 
for secure key management (e.g., key sharing, use 
of specialized hardware for key storage, etc.). These 
measures could be augmented with blockchain-based 
smart contracting (e.g., multi-signatures); further, 
blockchain could provide secure facilities for monitoring 
key revocation and issuance, which remain the weakest 
points for centralized PKI setups.

● The use of threshold encryption could allow 
to alleviate a single point of failure in long-term data 
storage. As data in the storage would be encrypted, the 
compromise of the storage would not lead to the data 
leakage. (Note, however, that access to the storage 
should be additionally restricted, e.g., by authenticating 
storage users with the help of the PKI established on the 
marketplace blockchain.) The compromise of a single key 
keeper likewise would not lead to the data compromise, 
as its key shares would be insufficient to decrypt data in 
the storage.

● The use of authenticated communication channels 
to transmit key shares could allow to achieve forward 

Figure 10: The workflow example for marketplace customers. Customers buy data for LifePounds. The data value model 
determines the data cost.
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Figure 12: Proposed personal data-driven economy, where the individuals have full knowledge of and control over 
their data and are rewarded for generating new data and for providing the data for research or commercial purposes. 
Such ecosystem may allow the regulators including the Food and Drug Administration (FDA) and the pharmaceutical and consumer 
companies to exchange their data

Figure 11: The flow of data from the individuals to the companies and research institutions. The introduction of the 
blockchain-based data ecosystem may help ensure that the individuals take control over their data and companies and research institutions 
may acquire data more freely reducing the need for the regulators to interfere. 
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secrecy, i.e., non-compromise of the encrypted user data 
even if the key keepers’ long-term asymmetric keys 
would become compromised (incl. the compromise of the 
underlying asymmetric cryptosystem, e.g., with the advent 
of quantum computing).

The user-side key management for data encryption 
and authentication of blockchain transactions may be 
prone to various risks (e.g., a faulty random number 
generator resulting in generation of keys with insufficient 
entropy; inadequate security for long-term key storage; 
compromises of the user interface). Minimizing these 
risks requires careful design of the client software 
and supporting materials. Existing solutions for 
cryptocurrencies and/or generic key management may be 
adapted to reduce the risks. 

The described setup does not concern data safety 
(in particular, protection against leakage) after the data 
has been purchased and transferred to the buyer. Such 
protection could be achieved with the help of existing 
security measures for data at rest and in use, and therefore 
is out of the scope of the present paper.

DEEP LEARNING FOR DATA QUALITY 
AND CONSISTENCY

While the DNNs are considered to have an 
exceptional generalization ability, they could be biased 
by the data they are trained on. Data quality is crucial 
for data-driven models; however, at the same time 
those models could be applied for data quality control 
and perhaps are the most suitable solutions for this 
task. First group of methods that could be utilized for 
healthcare quality check are unsupervised models aimed 
to detect anomalies that cluster far from the dataset. Deep 
autoencoders as unsupervised approaches which having as 
outputs input data itself and could be trained to reconstruct 
data also are suitable for anomaly detection. Poor-quality 
samples could be recognized as points with the highest 
reconstruction error [102]. Another set of approaches for 
the task are time-series based models, such as RNNs. 
Distribution of normal or good quality samples first 
is learned and then tested on a few next points in order 
to adjust model behaviour to the bias in the dataset not 
linked to the anomaly/poor quality samples. Anomalies in 
the data could also be linked to health conditions, so both 
those approaches could be used for pathology detection 
in health recordings [103, 104]. Finally, set of supervised 
techniques could be applied for data quality control [105]. 
However, one should take into account that supervised 
models require labelled dataset, which in case of anomaly 
detection will be highly unbalanced. Still, the problem 
could be solved with help of zero and one shot learning.

CONCLUSIONS

In this paper we presented the first attempt to 

assess the value of time and the combination value of 
personal data in the context of an AI-mediated health 
data exchange on blockchain.The value of the various 
types of data, combinations of the various data types, time 
value of one data type and time value of combination of 
data types is poorly understood and often debated. To 
address this problem, we foresee the emergence of a new 
profession “data economist” and creation of the health 
data economics research institutes. Recent advances 
in artificial intelligence enabled the creation of highly 
accurate predictors of biologically relevant features such 
as age, race and sex from very simple data types such as 
selfies, blood tests and such. The value of the various data 
types may depend on the application. For example, for the 
insurance companies, while the cost of data generation 
may be significantly higher for the genome compared to 
a selfie, the value of the recent picture of the patient may 
significantly exceed the value of the genome, since it may 
be more predictive of the patient’s age, health status and 
mortality. However, the combination of these data types 
will be considerably more valuable than the value of these 
data types individually. 

Blockchain and AI open new paradigms for health 
data ecosystems (Figure 12).

Blockchain technology enables the creation of a 
distributed and secure ledger of personal data, where 
patients are in control, own their data, and monitoring 
of access privileges and understanding of who looked at 
the data. Most importantly, blockchain technology allows 
for the creation of a data-driven marketplace, where 
patients can earn tangible rewards for making their data 
available to the application development community, 
pharmaceutical and consumer companies, and research 
institutions and generating new data through regular and 
comprehensive tests and checkups. Presently, only a few 
patients worldwide have the comprehensive data sets 
containing their clinical history combined with the genetic, 
blood biochemistry and cell count profiles, lifestyle data, 
drug and supplement use and other data types, because 
they do not see the value in this data and do not get tested 
regularly. On the other hand, the pharmaceutical and 
consumer companies alike are willing to pay substantial 
amounts for the large numbers of personal data records 
required to train their AI. These funds can be used to 
subsidize the regular testing by the patients, uncover 
the new uses for the various data types and develop 
sophisticated diagnostic and treatment tools. 
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