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ABSTRACT

Globally, ovarian cancer (OC) is the leading cause of gynecological cancer-
associated deaths. Metastasis, especially multi-organ metastasis, determines the 
speed of disease progression. A multicenter retrospective study was performed to 
identify the factors that drive metastasis, from medical records of 534 patients with 
OC. The average number of target organs per patient was 3.66, indicating multi-organ 
metastasis. The most common sites of metastasis were large intestine and greater 
omentum, which were prone to co-metastasis. Results indicated that ascites and 
laterality, rather than age and menopausal status, were the potential drivers for multi-
organ metastasis. Cancer antigen (CA) 125 (CA-125) and nine other blood indicators 
were found to show a significant, but weak correlation with multi-organ metastasis. A 
neural network cascade-multiple linear regression hybrid model was built to create an 
ovarian cancer metastasis index (OCMI) by integration of six multi-organ metastasis 
drivers including CA-125, blood platelet count, lymphocytes percentage, prealbumin, 
ascites, and laterality. In an independent set of 267 OC medical records, OCMI showed 
a moderate correlation with multi-organ metastasis (Spearman ρ = 0.67), the value 
being 0.72 in premenopausal patients, and good performance in identifying multi-
organ metastasis (area under the receiver operating characteristic curve = 0.832), 
implying a potential prognostic marker for OC.

INTRODUCTION

Globally, close to 220,000 women develop ovarian 
cancer (OC) every year [1]. Owing to the lack of specific 
symptoms and effective markers for early detection [2, 
3], most OC cases are diagnosed in their advanced stages. 
Compared to disease diagnosed at stage I or II, detection 
of OC at stage III or IV usually results in low 10-year 
survival rates of 21% and less than 5%, respectively 
[4]. OC is called as “the silent killer” and causes more 

than 100,000 gynecological cancer-associated deaths 
worldwide per year.

Recently, Cardenas et al. proposed that the origin 
and evolution of OC follow a four-step process that 
includes migration, seeding, induction, and expansion 
[5]. If the potential driving factors perturb the interaction 
between tumor cells, normal stromal cells, and the immune 
system, this process may be triggered [6]. According to 
the International Federation of Gynecology and Obstetrics 
(FIGO), the development of OC is divided into four stages 
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[7]. At stage I, the tumor cells stay limited to the ovaries. 
With the homeostasis between tumor cells, normal stromal 
cells and the immune system is disturbed, tumor cells 
migrate to other pelvic organs (stage II), and beyond such 
as the abdomen and the lymph nodes (stage III), ultimately 
reaching outside of the peritoneal cavity (stage IV). The 
staging of OC by this method, suggests that the extent 
of tumor cell dissemination and growth determines the 
severity of the disease and the chances of survival [8].

Based on the pathological characteristics of OC as it 
progresses through the stages, we believe that monitoring 
tumor cell dissemination can help understand the exact 
status of the disease as well as help in its effective 
management. Unfortunately, there are not enough 
good biomarkers available for monitoring tumor cell 
dissemination and thereby the pathological progression 
of OC [9]. A clinically established serum biomarker is 
the cancer antigen (CA) 125 (CA-125) [10], a repeating 
peptide epitope of MUC16 [11]. CA-125 is a disease 
driver that gives impetus to the progression of OC by 
promoting tumor cell proliferation and inhibiting immune 
responses [12]. However, the use of CA-125 alone as a 
biomarker is not recommended due to its low sensitivity 
and limited specificity [13]. Attempts have been made 
to improve its performance by combining it with other 
biomarkers such as the human epididymis 4 (HE4) 
[14]. Recently, a combination of CA-125 and a panel of 
microRNAs have been suggested to be of potential value 
in monitoring progression of OC [15].

Based on the idea that routine medical examination 
indicators (MEIs) could be a potential source of 
biomarkers, we propose an alternative method for 
monitoring the progression of OC by making full use of 
the medical examination in clinical practice. Following the 
concept of CA-125-based combination biomarkers [14], 
an integration index can be made by considering multiple 
metastasis-related MEIs as inputs in a mathematical 
model. Compared with other potential biomarkers such as 
circulating microRNAs, MEIs have an obvious advantage 
of clinical availability [16]. This inherent advantage will 
help in using an MEI-based biomarker that is technically 
feasible in the current clinical context. In this study, an 
MEI-based biomarker was developed and validated by 
dissecting medical records of more than 800 OC patients. 
A function of the biomarker is to monitor the progression 
of OC and identify the risk of multi-organ metastasis. In 
summary, such an application will help facilitate disease 
management in OC.

RESULTS

Data collection from OC medical records and 
MEIs

In this study, 801 copies of OC medical records 
were collected from the affiliated hospitals of Harbin 

Medical University and were divided into two independent 
datasets including a training set and a validation set 
(Figure 1A). The training set contained 534 copies of 
medical records, from each of which 88 items of MEIs 
were collected (Supplementary Table 1). The validation set 
was constituted by 267 copies of medical records. Data of 
23 items of MEIs were collected for each medical record 
in the validation set (Supplementary Table 2). All the 
MEIs were measured when patients were first diagnosed 
with OC. No significant difference was observed in age 
and proportion of postmenopausal patients between the 
training set and the validation set (Figure 1B and 1C).

Epidemiological characteristics of metastasis in 
patients with OC

Briefly, one copy of a medical record corresponded 
to one patient who was clinically diagnosed with OC and 
underwent oophorectomy. A total of 15 possible metastatic 
sites were intraoperatively examined for each patient. 
Figure 2A presents an overview of all the metastasis in 
534 patients of the training set. The highest incidence of 
metastases was observed for the large intestine (59.6%), 
followed by the greater omentum (55.4%) and the internal 
genital organ (46.8%) (Figure 2B). On the contrary, the 
stomach and the ureter were found to have a low incidence 
of metastasis, less than 6%. On an average, the number 
of metastatic sites was 3.66 per patient in the training set, 
implying multi-organ metastasis. It was found that half of 
the patients showed metastasis to more than three organs, 
and in 18% of the patients, no metastasis to any organ 
was observed (Figure 2C). Furthermore, by using the 
hypergeometric test, we found that some organs tended to 
be targeted for co-metastasis at a significant level (Figure 
2D). One such example was the large intestine and the 
greater omentum, the two being targets of co-metastasis 
(Figure 2E). Another scenario was a patient showing 
simultaneous metastasis to both the spleen and the liver, 
despite the fact that the incidence of metastasis to these 
organs was relatively low (Figure 2B and 2E).

Ascites and laterality were driving factors of 
multi-organ metastasis

In the training set, about 55% of the patients 
developed ascites and bilateral ovarian cancer (Figure 3A), 
independent of age and menopausal status. Furthermore, 
we observed that bilateral OC patients with ascites were 
more inclined to develop multi-organ metastasis compared 
to unilateral OC patients without ascites (Figure 3B). This 
result suggested that ascites and laterality were synergistic 
drivers of multi-organ metastasis. Similar tendencies 
were observed in each of the subsets divided by age or 
menopausal status. This result implies that both age and 
menopausal status had a relatively weak impact on multi-
organ metastasis. Ascites and laterality were found to 
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significantly correlate with the number of metastatic sites 
in the training set (ρ = 0.329 for ascites and ρ = 0.451 for 
laterality)

CA-125 and nine blood test MEIs were identified 
to be correlated with multi-organ metastasis

A receiver operating characteristic (ROC) curve test 
was performed to explore whether tumor biomarkers or 
blood/urine test indicators could identify the presence of 
metastasis in a given organ. Our results suggested that 13 
MEIs were significantly associated with metastasis (P < 
0.001, Figure 4A). Ten of them were found to correlate 
extremely weakly or weakly with the number of metastatic 
sites, suggesting that they were multi-organ metastasis 
(MOM)-related MEIs (Figure 4B and 4C).

Integration of MOM-related MEIs by building a 
neural network cascade (NNC) model

As single MOM-related MEIs correlated extremely 
weakly or weakly with the number of metastatic sites, 
model integration was considered to obtain a stronger 
correlation between these two factors. Before the model 
integration, four MEIs were eliminated due to significant 
collinearity with other MEIs and a relatively low |ρ| 
(Figure 5A). Next, an NNC model was built for model 
integration of the four MEIs including CA-125, neutrophil 

percentage, prealbumin, and blood platelet count. Figure 
5B illustrates the architecture of the NNC model. 
Chloridion and thrombin time were not integrated into 
the model because they did not contribute to enhancing 
the correlation between the NNC output and multi-organ 
metastasis. The NNC output was shown to have a stronger 
correlation with multi-organ metastasis than with CA-125 
(ρ = 0.532 for the NNC output; ρ = 0.397 for CA-125). 
According to our cut off for correlation level (Figure 
5B), the NNC output presented moderate correlation with 
the number of metastatic sites. A higher ρ led to a more 
inclined fit line making it easier to distinguish different 
patients, compared with the relatively low ρ of a single 
MOM-related MEI, such as CA-125 (Figure 5C and 5D). 
The 10-fold cross-validation and the independent external 
validation confirmed the effectiveness of the NNC model 
integration (Figure 5E and 5F).

Establishment of ovarian cancer metastasis 
index (OCMI)

A multiple linear regression (MLR) model was used 
for further integrating NNC output, ascites, and laterality 
into a digital number that we named OCMI (Figure 6A). 
Compared with the NNC output, OCMI presented a 
stronger correlation with the number of metastatic sites (ρ 
= 0.617 for OCMI). A ρ of 0.673 was calculated between 
OCMI and the number of metastatic sites in the validation 

Figure 1: Patient grouping and demographic characteristics. (A) A flowchart of patient grouping. (B) Age distribution of 
patients. No significant difference was found between the training set and validation set (P > 0.001, Student’s t-test). (C) Proportions of 
postmenopausal patients. No significant difference was found between the training set and validation set (P > 0.001, Chi-square test).
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set. A moderate correlation between OCMI and the number 
of metastatic sites made it easier to distinguish between 
patients with a different number of metastatic sites. 
Compared with the NNC output, OCMI made it easier to 
differentiate the patients in the validation set (Figure 5F 
and 6B). ROC curve analysis results revealed that OCMI 
could more successfully identify multi-organ metastasis 
compared to CA-125 and NNC (Figure 6C and 6D). Our 
results suggested that, compared to CA-125 and NNC, 
OCMI presented the best performance correlating with 
the number of metastatic sites, in both premenopausal and 
postmenopausal women (Figure 6E and 6F), implying its 
potential application in predicting the risk of multi-organ 
metastasis in OC patients. Furthermore, OCMI was found 
to successfully distinguish patients without metastasis 
from those with metastasis with an area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.879.

DISCUSSION

Despite being the second most common 
gynecologic malignancy, OC causes the largest number of 
gynecological cancer-associated deaths in the world [17, 
18]. The scarcity of good diagnostic and prognostic tools, 
failure to make an early diagnosis, rapid metastasis, and 
tumor heterogeneity all make the clinical management 
of OC difficult [19]. In the present study, we provided a 
new prognostic biomarker, OCMI, which was generated 
by integrating six MEIs, for identification of multi-organ 
metastasis. Rationality of creating OCMI was based on the 
clinical observation that multi-organ metastasis is the main 
cause of the high lethality of OC [20]. Our results suggest 
that OCMI exhibited superior performance in identifying 
high-risk patients with OC than CA-125 alone did.

The epidemiological observation in 534 patients 
with OC revealed that more than half of the patients 

Figure 2: Metastasis tendencies in patients with OC. (A) Heatmap of metastatic sites in a training set (n = 534). BLA: bladder; 
DIA: diaphragm; GO: greater omentum; IGO: internal genital organ; LI: large intestine; LIV: liver; LYM: lymph node; MES: mesentery; 
PS: paracolic sulci; PER: peritoneum; RF: rectouterine fossa; SI: small intestine; SPL: spleen; STO: stomach; URE: ureter. (B) Incidences 
of metastases at different sites. (C) Percentage pie chart of patients based on the number of metastatic sites. (D) Heatmap of adjusted 
hypergeometric probability (-lgP). (E) Network illustration of co-metastatic sites (-lgP > 10). The –lgP values are shown as edge attribute.
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had multi-organ metastasis, but merely less than one in 
five patients showed no metastasis to any of the fifteen 
organs when first diagnosed. This observation was in line 
with the proven finding that a large proportion of OC 
patients actually end up succumbing to non-OC cancer 
[20]. Widespread metastasis of tumor cells should be 
considered as a main epidemiological characteristic of OC. 
An obvious predilection in metastasizing OC tumor cells 
for large intestine and greater omentum was observed. 
Furthermore, our results suggest that co-metastasis to these 
two organs was a common event among patients with 
established OC. The presence of ascites was associated 
with this event as ascites were found in more than 90% of 
patients with metastasis to the large intestine and greater 
omentum.

Compared to other cancers, OC is the most common 
cause of the formation of malignant ascites [21]. Malignant 
ascites provides tumor cells with an optimal transfer 
station for further dissemination to distant organs [22]. 
Consistent with the above findings, ascites was identified 
as a significant indicator for multi-organ metastasis in 

this retrospective study. Compared to ascites, laterality 
was identified as another strong indicator for multi-
organ metastasis. This finding was in line with a clinical 
report that about 60% of malignant OC was detected as 
bilateral ovarian carcinoma [23]. A reasonable inference 
is that bilaterality should be considered as two primary 
tumors rather than a consequence of collateral metastasis, 
considering the synergistic effect of bilaterality and ascites 
on promoting multi-organ metastasis [24].

It was verified that NNC-based integration of 
three blood MEIs markedly enhanced the power of CA-
125 to identify high-risk patients. The three MEIs are 
neutrophil percentage, prealbumin, and blood platelet 
count. Neutrophils were experimentally validated to 
promote epithelial-to-mesenchymal transition and OC 
cell migration [25]. Different from the clinical findings 
of Paik and his colleagues [26], our results suggest that 
the relative indicator neutrophil percentage is superior to 
the absolute indicator neutrophil count to be a prognostic 
indicator of OC due to the stronger association with multi-
organ metastasis. Low serum concentration of prealbumin 

Figure 3: Ascites and laterality are related with multi-organ metastasis. (A) Percentage pie charts of patients based on ascites 
and laterality. S: unilateral ovarian cancer; D: bilateral ovarian cancer; A-: without ascites; A+: with ascites. (B) Ascites and unilateral 
ovarian cancer are driving factors of multi-organ metastasis.
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Figure 4: CA-125 and nine blood test indicators that were identified as MCM-related MEIs. (A) A network of metastasis-
related MEIs and metastatic sites. BLA: bladder; GO: greater omentum; IGO: internal genital organ; LI: large intestine; MES: mesentery; 
PER: peritoneum; RF: rectouterine fossa; SI: small intestine; STO: stomach. ALB: albumin; CL: chloridion; Fbg: fibrinogen; LYMPH: 
lymphocyte count; LYMPH%: percent lymphocytes; MONO: monocyte count; NEUT: neutrophil count; NEUT%: percent neutrophils; PA: 
prealbumin; PCT: thrombocytocrit; PLT: blood platelet count; TT: thrombin time. (B) Definition of correlation intensity. (C) MCM-related 
MEIs.

Figure 5: Model integration of MOM-related MEIs. (A) Heatmap of MOM-related MEI co linearity. (B) NNC integration of 
MOM-related MEIs. La~Lc represent the ladder sub models in which the corresponding MEIs were imported; Pa~Pc are the integrated 
NNC parameters. For each sub model, RTr and RTe are shown. Spearman’s rho indicates the correlation between the number of metastatic 
sites and the integrated NNC parameter. NEUT%: percent neutrophils; PA: prealbumin; PLT: blood platelet count. Scatter plots of M/P are 
illustrated as of normalized CA-125 values (C) and normalized NNC outputs (D): training set; (E): 10-fold cross-validation; (F): validation 
set divided into 10 equidistant intervals, respectively.
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represents malnutrition that is common in OC. Geisler et 
al. have demonstrated that significant mortality occurs 
in OC patients with relatively low serum concentrations 
of prealbumin [27]. Recent clinical surveys found that 
serum concentrations of prealbumin negatively correlate 
with levels of vascular endothelial growth factor and 

C-reactive protein, suggesting the connection between 
nutritional impairment and tumor metastasis and systemic 
inflammation in patients with OC [28, 29]. A positive 
correlation between blood platelet count and multi-organ 
metastasis was suggested by our study. This finding is 
in line with previous observations that elevated platelet 

Figure 6: Performance assessment and validation of OCMI for identifying multi-organ metastasis. Scatter plots of 
M/P are illustrated as normalized OCMI values (A): training set; (B): validation set were divided into 10 equidistant intervals. OCMI: 
ovarian cancer metastasis index; NNC: the output of the NNC model; L: Laterality (0: Unilateral/1: Bilateral) A: ascites (0: Not detected/1: 
Detected). ROC curves of CA-125, NNC output, and OCMI to identify multi-organ metastasis in the training set (C) and the validation set 
(D). Multi-organ metastasis: the number of metastatic sites is more than 3. Column charts of Spearman’ rho (ρ) of patients in the training 
set (E) and the validation set (F) have been grouped by the menopausal state.
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count is a prognostic indicator of OC [30, 31]. Another 
supporting evidence is that functional interactions between 
platelets and OC cells play an important role in inducing 
epithelial-to-mesenchymal transition, invasion, and 
metastasis [32, 33].

As our previous work suggests [34–36], relying 
on a more complex model rather than using more input 
parameters is more effective in identifying the potential 
risk. In this study, a NNC-MLR hybrid model was 
established to construct the OCMI. NNC uses a ladder-
like architecture of simple neural network elements. 
This makes it more complex than the traditional 
artificial neural network. In this study, ascites and 
laterality were examined intraoperatively rather than 
preoperatively. This is due to the objective limitation of 
the study. In the clinic, functional magnetic resonance 
imaging (MRI) is a preferred choice for diagnosis and 
evaluation of OC [37], and both ascites, as well as 
laterality, can be recognized as features from an MRI 
image. Ma et al. compared the features of ovarian clear 
cell carcinoma and high-grade serous carcinoma, which 
included ascites and laterality [38]. Despite the authors 
emphasizing the consistency of MRI and intraoperative 
examinations, no performance evaluation data such as 
accuracy was provided. In the present study, only 10% 
of the medical records contained MRI examination, 
and therefore, we could not assess the consistency of 
MRI and intraoperative examinations and use MRI-
characterized ascites and laterality data for constructing 
OCMI. Further studies have to be performed to prove 
the value of MRI on the OCMI assessment of patients 
with OC.

Two potential limitations of the present study should 
be addressed. First, a small patient set was used to create 
OCMI. Despite an independent validation set being used to 
verify the effectiveness of NNC and OCMI in identifying 
high-risk patients, a larger patient set should be definitely 
tested for optimization of NNC and OCMI and for further 
assessment of their usefulness in OC management. 
Second, a correlation analysis between MEIs and multi-
organ metastasis was performed on a limited number of 
MEIs, including age, menopausal status, CA-125, blood 
and urine test MEIs, ascites, and laterality. In the future 
study, clinical imaging examination and personal life 
habits questionnaire should be considered and investigated 
with equal importance.

In conclusion, we provide a new means to evaluate 
the risk of metastasis and the extent of multi-organ 
metastasis in patients with OC. Integration of only four 
to six routine medical indicators is sufficient to make 
NNC and OCMI more clinically feasible. As a metastasis 
identification indicator, OCMI is expected to make it 
possible to effectively evaluate and monitor the rate and 
direction of disease progression of OC in future clinical 
practice.

MATERIALS AND METHODS

Ethical statement

This study was approved by the Ethics Committee of 
the first affiliated hospitals of Harbin Medical University 
(Approval number: 201531) and was carried out in 
accordance with the Declaration of Helsinki.

Access to medical records and MEIs collation

Electronic medical record systems of the second 
and third affiliated hospitals of Harbin Medical 
University were used to access the medical records of 
hospitalized patients who were clinically diagnosed 
with OC and had undergone oophorectomy. The MEIs 
included age, menopausal status, CA-125, blood and 
urine tests (68 items), ascites, laterality, and metastatic 
sites (n = 15). The 15 metastatic sites included bladder, 
diaphragm, greater omentum, internal genital organ, 
large intestine, liver, lymph node, mesentery, paracolic 
sulci, peritoneum, rectouterine fossa, small intestine, 
spleen, stomach, and ureter. All the medical records were 
divided into two independent datasets, a training set (n 
= 534, Supplementary Table 1) and a validation set (n = 
267, Supplementary Table 2). The validation set used a 
truncated information collection strategy that excluded 
the blood and urine test items that were not significantly 
related to multi-organ metastasis.

Metastasis tendency

In the training set, the percentage of incidence 
of metastases was calculated for each site, and a 
hypergeometric test was performed to evaluate the 
significance of co-metastasis among all the 15 studied 
sites. The hypergeometric probability was calculated as 
follows:

P = −
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Where N is the total number of metastases involving two 
sites i and j, M is the total number of metastases to site i, 
n is the number of metastases to site j, m is the number 
of metastases to both sites. A total of 105 hypergeometric 
tests were performed for the 15 sites. To avoid false 
positives, all the P values were adjusted by using an 
EXCEL calculator of Holm-Bonferroni sequential 
correction developed by Gaetano J [39]. Co-metastasis 
was considered significant only if the adjusted P < 0.001 
(–lgP > 3). HemI version 1.0.3.3 [40] and Cytoscape 
version 2.8.3 (Institute for Systems Biology, Seattle, WA, 
USA) [41] were applied to build a co-metastasis heatmap 
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and a co-metastatic sites network by using the values of 
–lgP, respectively.

Identification of cancer metastasis-related MEIs

GraphPad Prism version 6.0 (GraphPad Software, 
Inc., La Jolla, CA, USA) was used for identifying 
metastasis-related MEIs. First, a ROC curve test was 
performed to check whether a given MEI could identify 
single site cancer metastasis with an AUC of more than 
0.5 and a P value of less than 0.001. To determine MEIs 
that were related with multi-organ metastasis, Spearman’s 
correlation test was performed to evaluate the correlation 
between MEIs and the number of metastatic sites per 
patient. Spearman’s correlation test was applied instead 
of Pearson’s correlation test since some of the MEIs could 
not pass the D’Agostino-Pearson omnibus normality 
test and did not comply with the Gaussian distribution. 
A correlation was considered significant only if |ρ| (the 
absolute value of Spearman’s rho) was more than 0.1 and 
P was less than 0.001. Besides, co-linearity among MEIs 
was checked and graphically displayed in a heatmap using 
HemI version 1.0.3.3. Co-linearity was determined to be 
present if a |ρ| of > 0.3 was calculated for any two MEIs.

Integration of MOM-related MEIs

All of the MOM-related MEIs were normalized into 
a 0 to 1 digital number for data unification as previously 
described [34]. Following the previously established 
procedure [35], an NNC model was built for integration of 
the MOM-related MEIs by using the normalized number 
of metastatic sites as a model output. The Intelligent 
Problem Solver (IPS) tool in the software STATISTICA 
Neural Networks (SNN, Release 4.0E; Statsoft, Tulsa, 
OK, USA) was applied to construct 1-11-1 or 2-11-1 
radial basis function (RBF)-ANN sub-models, which 
constituted the overall framework of the NNC. In IPS, 
all the medical records in the training set (n = 534) were 
randomly divided into three subsets (training subset, 
verification subset, and testing subset) in a 2:1:1 ratio 
and the holdout cross-validation method was built-in for 
preliminary model validation. The medical records in 
the testing subset (n = 133) did not participate in model 
building and were used for model testing. IPS calculated 
correlation coefficients for the training subset (RTr) and 
the testing subset (RTe). The two correlation coefficients 
measured the correlation between the predicted and the 
actual numbers of metastatic sites of a patient. Similar 
values of RTr and RTe indicate good generalization ability 
of the model. Finally, the SPSS statistical software version 
19.0 (IBM Corp., New York City, NY, USA) was used 
to build an MLR model to further integrate NNC output 
and the two intraoperative examination items, ascites and 
laterality, into a digital parameter, OCMI.

Model validation and performance evaluation

For the NNC model, the 10-fold cross-validation 
method was used for model validation as previously 
described [35]. Briefly, all the medical records were 
randomly divided into 10 mutually exclusive sets of 
nearly equal size. Next, nine were selected for model 
training, and one was used for model validation. The 
above procedure was repeated 10 times to allow each 
of the 10 medical records sets to be independently used 
for validation. Spearman’s correlation test was used to 
investigate the significance and the level of correlation 
between the predicted and the actual numbers of metastatic 
sites in a patient. For both the NNC model and the MLR 
model, the validation set (n = 267, Supplementary Table 
2) was used for external validation. The Spearman’s rho 
and slope calculations were applied for performance 
evaluation of the two models. A slope was calculated 
from the scatter plot of M/P in 10 equidistant intervals 
of normalized CA-125/NNC output/OCMI. M/P is the 
ratio of the sum of metastatic sites divided by the sum of 
patients in an interval.

Data statistics

Data are presented as mean ± standard deviation 
(SD). GraphPad Prism version 6.0 was applied to 
conduct the following statistical analyses, including a 
ROC curve test, D’Agostino-Pearson omnibus normality 
test, Spearman’s correlation test, Student’s t-test, Chi-
square test, one-way ANOVA test, and Holm-Sidak's 
multiple comparisons test. In this study, differences were 
considered as statistically significant when P < 0.001.
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