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ABSTRACT

Hepatoblastoma (HB) is one of the most common hepatic malignancies in the 
pediatric population. HB are composed of a variety of tumors, which derived from 
different origins and had varying clinical outcomes. However, the unclear underlying 
mechanisms of HB limited exploring novel biomarkers and effective therapeutic 
targets. We searched microarray datasets on Gene Expression Omnibus (GEO) 
database and selected GSE75271 and GSE75283 datasets for comprehensive analysis. 
Weighted gene correlation network analysis (WGCNA) was employed to identify genes 
which were associated with tumor malignant phenotypes, including HB subtypes, 
Cairo classification and tumor stage. Coexpression analysis of identified genes was 
also performed and lncRNA-miRNA-mRNA network was finally conducted. Our results 
showed that a total of 22 lncRNAs, 13 miRNAs and 66 mRNAs were identified to 
be associated with tumor malignant phenotypes. Mechanistically, these molecules 
might promote the malignant phenotypes via regulating metabolic pathways. Among 
of them, 6 miRNAs (hsa-miR-106b, hsa-miR-130b, hsa-miR-19a, hsa-miR-19b, hsa-
miR-20a and hsa-miR-301a), 8 lncRNAs (NR_102317, XR_245338, XR_428373, 
XR_924945, XR_929728, XR_931611, XR_935074 and XR_946696), and 6 mRNAs 
(EGFR, GAREM, INSIG1, KRT81, SAR1B and SDC1) were selected to conduct a lncRNA-
miRNA-mRNA network. Taken together, our findings provide evidence for exploring 
molecular mechanisms of HB. Those identified malignant phenotype-associated 
molecules might be potential biomarkers and anti-cancer therapeutic targets in future.

INTRODUCTION

Hepatoblastoma (HB) is the most common 
malignant liver tumor in children, accounting for 
approximately 50% of pediatric hepatic-related cancers 
[1]. The incidence of HB in children with age <15 is 

about one per million (1/1,000,000), and nearly 20% of 
those patients already have a synchronous metastasis at 
the first diagnosis. Despite recent advances in treatment, 
such as surgical resection, adjuvant chemotherapy, and 
liver transplantation, the prognosis in advanced HB stages 
still remains poor [2, 3]. It has been accepted that HB are 
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composed of a variety of tumors deriving from different 
immature liver precursors, including hepatocytes, biliary, 
and other epithelial or mesenchymal cells, which caused 
significant tumor heterogeneity [4, 5]. For decades, 
researchers have observed the varying clinical outcomes 
in patients with different histological subgroups [5–9]. In 
addition, other parameters, such as tumor stage, distant 
metastasis, multifocality, patient age and birth weight, 
have also been reported to be associated with prognosis 
[10, 11]. However, the underlying mechanisms remains 
unknown. A thorough understanding of molecular 
mechanisms regarding tumor progression is essential for 
exploring effective therapeutic targets against HB.

Studies have revealed that only a small proportion 
(1%–2%) of the genome encodes proteins, and the 
majority of the mammalian genome encodes plenty of 
non-coding RNAs [12–14]. As an important member of 
the non-coding RNAs, microRNAs (miRNAs), referred 
to 18-25 nucleotides, have been clearly demonstrated to 
regulate a variety of cellular processes via recognizing the 
3’-untranslated regions of specific mRNAs and suppressing 
the expression of target genes [15]. Long non-coding RNAs 
(lncRNAs), another sort of non-coding RNAs with more 
than 200 nucleotides, are found to play pivotal roles in 
chromatin remodeling, transcription regulation and post-
transcriptional mRNA processing [16–19]. Recently, 
increasing studies reported that lncRNAs could also 
function as competing endogenous RNAs (ceRNAs) by 
competitively binding to miRNAs through their miRNA 
response elements (MRE) [20]. These ceRNAs usually 
share MRE with other coding transcripts and therefore 
act as sponges for that cluster of miRNAs, protecting 
the targeted mRNA transcripts from degradation [21]. 
Although the functional mechanism that lncRNAs act as 
ceRNAs leading to miRNA deregulation has been observed 
in multiple malignancies, the lncRNA-miRNA-mRNA 
network in HB is far from being fully investigated.

In the present study, we performed a comprehensive 
analysis based on mRNA, lncRNA and miRNA expression 
profiling data derived from 50 HB patients and 5 controls, 
and identified differentially expressed mRNA, lncRNA 
and miRNA in HB. Next, we employed weighted gene 
correlation network analysis (WGCNA) and coexpression 
analysis to select the modules which are associated with 
tumor malignant phenotypes. Based on above results, 
we finally conducted several potential lncRNA-miRNA-
mRNA networks in HB.

RESULTS

Identification of the malignant phenotype-
associated mRNAs and lncRNAs in HB

GSE75271 was selected for identify differentially 
expressed mRNA and lncRNAs in HB patients [22]. As 

shown in Figure 1A, Then, we performed a probe level 
analysis of GSE75271 by linear models for microarray 
data (LIMMA). Those probes with P-value less than 
0.05 and foldchange more than 2.0 were identified as 
differentially expressed probes. One hundred ninety-four 
probes were primary selected, which were all down-
regulated in HB patients (Figure 1B). Next, 194 probes 
were annotated by Affymetrix microarray annotation files 
according to previous reported method [23]. Finally, we 
identified a total of 61 lncRNAs and 133 mRNAs from 
194 differentially expressed probes (Figure 1C).

To further explore the malignant phenotype-
associated mRNAs and lncRNAs, we performed a 
weighted gene correlation network analysis (WGCNA) 
(Figure 2A) and divided 194 differentially expressed 
probes into eight module eigengenes (ME), including 
MEgrey, MEred, MEblue, MEgreen, MEbrown, 
MEmagenta and MEblack (Figure 2B). Next, we 
employed module-trait relationship analysis to conduct 
the association between eight MEs and 13 clinical 
traits (including race, sex, age, HB subtypes, Cairo 
classification, tumor stage, CTNNB1, NFE2L2 and TERT 
mutation status, histological types, prognosis, tumor 
recurrent status and survival time). Interestingly, we found 
that one module (MEblue) was negatively associated with 
HB subtypes, Cairo classification and tumor stage, with 
P-values of 1x10-7, 2x10-8 and 1x10-4, respectively (Figure 
2C). The blue module contained a total of 66 mRNAs and 
22 lncRNAs, which were selected as malignant phenotype-
associated mRNAs and lncRNAs for the further analysis 
(Table 1).

Identification of the malignant phenotype-
associated miRNAs in HB

We also identified tumor-associated miRNAs 
using WGCNA method based on GSE75283, which 
was miRNA profiling dataset derived from the same HB 
patients as GSE75271 (Figure 3A). Similarly, we divided 
887 miRNAs into ten MEs, including MEgreen, MEpink, 
MEblack, MEtan, MEgreenyellow, MEmidnoghtblue, 
MEpurple, MEsalmon, MEblue and MEmagenta (Figure 
3B). Interestingly, the module-trait relationship analysis 
revealed that MEmidnoghtblue was positively associated 
with HB subtypes, Cairo classification and tumor stage, 
with P-values of 2x10-4, 3x10-4 and 2x10-4, respectively 
(Figure 3C). The midnoghtblue module contained 13 
miRNAs, which were identified as malignant phenotype-
associated miRNAs (Table 1).

Coexpression analysis of malignant phenotype-
associated molecules

To explore the possible relationship between 
malignant phenotype-associated molecules, including 
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mRNAs, lncRNAs and miRNAs, we performed 
coexpression analysis. As shown in Figure 4, we found 
that the lncRNAs were positively associated with 
nearly almost mRNAs. Interestingly, we also found that 
identified miRNAs were negatively associated with both 
mRNAs and lncRNAs. These results suggested that these 
mRNAs, lncRNAs and miRNAs might form lncRNA-
miRNA-mRNA network, which affected the progression 
of HB patients. In order to predict biological function of 
above identified lncRNA-miRNA-mRNA network, we 
performed Gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analysis. Biological process analysis suggested these 
molecules were mainly involved in metabolic biological 
processes, such as lipoprotein metabolic process and 
oxidation-reduction process (Figure 5A). Cellular 

components analysis showed that they were located at 
endoplasmic reticulum (ER) membrane, the latter of which 
played a critical role in liver metabolism (Figure 5B). 
Besides, molecular function analysis also showed these 
molecules mostly belonged to heme-binding and oxygen-
binding protein families (Figure 5C). KEGG pathway 
analysis further revealed that these malignant phenotype-
associated molecules might be involved in regulating the 
metabolic related pathways to influence carcinogenesis 
and tumor progression (Figure 5D).

Construction of lncRNA-miRNA-mRNA 
network in HB

We further conducted lncRNA-miRNA-mRNA 
network in HB based on the coexpression analysis 

Figure 1: Identification of differentially expressed mRNA and lncRNAs from the HB dataset. (A) Normalization of dataset 
GSE75271. (B) A total of 194 downregulated probes were picked up from HB patients. (C) Within the 194 downregulated probes, 133 
mRNAs and 61 lncRNAs were identified.



Oncotarget97557www.impactjournals.com/oncotarget

of malignant phenotype-associated molecules. The 
construction of lncRNA-miRNA-mRNA network included 
three steps: (a) candidate malignant phenotype-associated 
lncRNAs, miRNAs and mRNAs were selected according 
to WGCNA results; (b) the correlation coefficients 
between lncRNAs, miRNAs and mRNAs were calculated 
based on their corresponding profiling data; (c) targets of 
miRNAs were predicted from Targetscan (http://www.
targetscan.org/). Finally, a total of 6 miRNAs (hsa-miR-
106b, hsa-miR-130b, hsa-miR-19a, hsa-miR-19b, hsa-
miR-20a and hsa-miR-301a), 8 lncRNAs (NR_102317, 
XR_245338, XR_428373, XR_924945, XR_929728, 

XR_931611, XR_935074 and XR_946696), and 6 
mRNAs (EGFR, GAREM, INSIG1, KRT81, SAR1B 
and SDC1) were selected to conduct lncRNA-miRNA-
mRNA network. Heatmap was conducted to present the 
correlation coeffecient between molecules (Figure 6A), 
and Cytoscape were used for visualization of lncRNA-
miRNA-mRNA network (Figure 6B).

DISCUSSION

HB is a common malignant hepatic tumor in 
children and the prognosis varies among different 

Figure 2: The WGCNA analysis of the malignant phenotype-associated mRNAs and lncRNAs. (A) The cluster dendrogram 
of differentially expressed mRNAs and lncRNAs derived from the dataset GSE75271. (B) The cluster dendrogram of module eigengenes. 
(C) The module-trait relationship analysis between the 8 odules and clinical characteristics. ME: module eigengenes.
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categories. To date, there are limited effective methods 
to treat HB. Hence, it’s essential to explore underlying 
molecular mechanism of HB. In the present study, we 
for the first time identified the malignant phenotype-
associated lncRNAs, mRNAs and miRNAs, which were 
associated with HB subtypes, Cairo Classification and 
tumor stage. Next, we conducted the lncRNA-miRNA-
mRNA network based on their expression patterns to 
provide a molecular explanation for HB patients.

With the advancement of whole-genomic 
sequencing technologies, lncRNAs have attracted 
increasing attention [24]. Amount studies have reported 
that aberrant lncRNA expressions could serve as novel 
molecular biomarkers in the cancer diagnosis and 
prognosis prediction [25, 26]. LncRNAs could function 
as oncogenes, regulating alternation of key signaling 
pathways, and promoting tumor growth and metastasis 
[27, 28]. Recently, the miRNA sponge role of lncRNAs 
and lncRNA-miRNA-mRNA network have been widely 

accepted [20]. For instance, lncRNAs SPRY4-IT1 could 
sponge miR-101-3p and consequently increase EZH2 
expression to promote cellular proliferation and metastasis 
of bladder cancer cells [29]. LncRNA-UCC was found to 
promote colorectal cancer progression by sponging miR-
143 [30], and lncRNA-CCAT1 promotes hepatocellular 
carcinoma progression by sponging let-7 [31]. However, 
whether the lncRNA-miRNA-mRNA network plays an 
important role in HB patients have not been fully explored. 
A recent study reported that TUG1/miR-34a-5p/VEGFA 
network was involved in regulating hypervascularity and 
hepatoblastoma progression [32]. In the present study, we, 
for the first time, explored malignant phenotype-associated 
lncRNAs, miRNAs and mRNAs in HB by using WGCNA 
methods, respectively. A total of 22 lncRNAs, 13 miRNAs 
and 66 mRNAs were identified, which were strongly 
associated with HB subtypes, Cairo classification and 
tumor stage. These findings may provide us potential 
biomarkers and/or anti-cancer targets in future.

Table 1: Identification of HB-associated mRNAs, miRNAs and lncRNAs

HB-associated mRNAs HB-associated 
miRNAs

HB-associated 
lncRNAs

AC005523.3 GPRC5C REPS2 NR_045387 hsa-miR-106b

ADHFE1 GSTA1 RET NR_024548 hsa-miR-130a

AKR7A3 GSTZ1 RIPK4 NR_027005 hsa-miR-130b

ALDH6A1 HAO2 RNF144B NR_040515 hsa-miR-17

AMBP INSIG1 RPS6KA4 NR_102317 hsa-miR-18a

APBB1IP KMO SAR1B NR_102357 hsa-miR-19a

APOA1 KNG1 SDC1 XR_171896 hsa-miR-19b

CBS KRT81 SEBOX XR_245338 hsa-miR-20a

CD53 LCAT SLC22A7 XR_427361 hsa-miR-25

CDC37L1 LGR4 SLC7A2 XR_428373 hsa-miR-301a

CRAT LPA SMARCA4 XR_922928 hsa-miR-301b

CTAG2 MGAT5 STS XR_923052 hsa-miR-449a

CTAGE15 MIR6778 SYDE1 XR_924107 hsa-miR-451

CYP1A2 MUT TTC39C XR_924945

CYP2C18 NEUROG3 UGT1A1 XR_924990

CYP4F2 NFKBIZ VNN3 XR_929728

DHTKD1 OAF WFDC3 XR_931611

EGFR PCCB ZFYVE28 XR_931899

ETS2 PIGC ZG16 XR_933428

GAREM PTCRA ZNF584 XR_935074

GLYAT RARG ZSCAN5A XR_946696

GPLD1 RDH16 ZYG11A XR_949848
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One hallmark of cancer is the metabolic 
reprogramming in cancer cells, including 
glycometabolism, lipid metabolism and amino acid 
metabolism [33–35]. In HB cell lines HepG2, Hep3B 
and HuH-6, the metabolic reprogramming has been 
defined as one important hallmark and contributes to 
tumor progression [36]. Several driver genes of HB, such 
as β-catenin, YAP and c-Myc [37, 38], could also affect 
intracellular energy metabolism. Moreover, it was also 

be found that that molecular targeting of mitochondrial 
metabolism holds promise as a novel and effective 
therapeutic approach for HB [39]. In the present study, 
we also performed pathway enrichment analysis of 
above identified molecules. Our results revealed that 
most molecules associated with HB classification and 
tumor stage belonged to metabolic pathway, indicating 
a close interaction between metabolic pathways and HB 
malignant phenotypes.

Figure 3: The WGCNA analysis of the malignant phenotype-associated miRNAs. (A) The cluster dendrogram of differentially 
expressed miRNAs derived from the dataset GSE75283. (B) The cluster dendrogram of module eigengenes. (C) The module-trait 
relationship analysis between the 10 modules and clinical characteristics. ME: module eigengenes.
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In this study, we also conducted the lncRNA-
miRNA-mRNA network consisting of 6 miRNAs, 8 
lncRNAs and 6 mRNAs, which was associated with HB 
classification and tumor stage. In this conducted network, 
we identified two genes in epidermal growth factor 
(EGF) signaling, EGFR and SDC1 [40], acting as effector 
genes. Recently, a whole transcriptome analysis based on 
HB patients suggested that aberrant EGF signaling was 
associated with HB classification [41]. The loss of EGFR 
signaling members were shown to be more present in 
less differentiated embryonal and undifferentiated small 
cells subtypes of HB. Therefore, our findings might also 

provide evidence for explaining the underlying molecular 
variation of different HB subtypes.

In conclusion, we identified malignant phenotype-
associated lncRNAs, miRNAs and mRNAs by employing 
WGCNA method. Mechanistically, these molecules 
might promote the malignant phenotypes of HB via 
regulating metabolic pathways. Moreover, we also 
conducted a lncRNAs-miRNAs-mRNAs network based 
on above findings. To our best knowledge, this is the first 
comprehensive study investigating lncRNA-miRNA-mRNA 
network in HB. If validated, our findings might provide 
evidence for exploring anti-cancer target in HB patients.

Figure 4: Coexpression analysis of malignant phenotype-associated molecules. The heatmap was presented by correlation 
coefficient between each pair of malignant phenotype-associated molecules. Range of colors (red to blue) shows the correlation coefficient 
(high to low).
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Figure 5: Function annotation of malignant phenotype-associated molecules. Gene ontology analysis of biological processes 
(A), cellular components (B) and molecular function (C) of those molecules. (D) The KEGG pathway enrichment analysis.

Figure 6: Construction of lncRNA-miRNA-mRNA network in HB. (A) Selected 6 mRNAs, 8 lncRNAs and 6 miRNAs for 
network. (B) Predicted lncRNA-miRNA-mRNA network in HB.
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MATERIALS AND METHODS

Microarray data

Gene and miRNA profiling data of HB patients 
were searched from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo), which is a public 
database containing freely available profiling datasets. 
We finally selected two datasets for bioinformatic 
analysis, including GSE75271 (mRNA profiling data 
based on Affymetrix Human Genome U133 Plus 2.0 
Array platform) and GSE75283 (miRNA profiling data 
based on Agilent-029297 Human miRNA Microarray 
v15 platform), which were derived from the same 50 HB 
patients and 5 controls [22]. All raw data were downloaded 
from GEO database.

Data normalization and probe annotation

The raw data of GSE75271 was stored as probe-
level CEL files, and was quantile normalized using 
Robust Multi-array Average (RMA) method. After 
data normalization, expression level of each probe in 
GSE75271 was obtained. The probe sequences with 
corresponding Affymetrix probe IDs were downloaded 
from the Affymetrix website (http://www.affymetrix.com). 
The annotation of lncRNA transcripts were then performed 
according to previous reported method [23]. A total of 
8240 lncRNA transcripts were generated with RefSeq 
transcript IDs. The probe ID-centric gene expression 
profile was also generated according to Affymetrix 
annotation files.

Weighted gene correlation network analysis

WGCNA is an algorithm for constructing a co-
expression network, defined by the similarity of gene 
co-expression [42]. In data processing, the genome-wide 
gene expression data was initially filtrated with measuring 
the consistency of gene expression profiles by Pearson 
correlation, then we utilized the power adjacent function to 
Pearson correlation matrix to transform data into weighted 
gene co-expression networks. Network module represents 
a cluster of closely interconnected genes. Finally, the 
adjacency matrix, a measurement of topology similarity, 
is converted into the topological overlap matrix (TOM), 
and modules are detected by cluster analysis [43].

Pathway enrichment analysis

GO analysis is freely available for users in the 
annotation and biological properties of genes, gene 
products and sequences [44]. KEGG is a knowledge 
base for systematic analysis of gene functions in terms of 
the networks of genes and molecules [45]. We used GO 
analysis and KEGG analysis to identify the function of the 
aberrantly expressed candidate lncRNAs-associated genes. 

The P-value of each enriched pathway was assigned with 
-log10 transformation. P<0.05 (-log10(P-value)=1.30) 
was considered as statistically significant.

Statistical analysis

All data were analyzed by R software 3.4.1 (https://
www.r-project.org/). For the pair of molecule i and j, 
Pearson correlation coefficient was computed. P < 0.05 
was considered statistically significant.
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