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Transcriptional response to hypoxic stress in melanoma and 
prognostic potential of GBE1 and BNIP3
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ABSTRACT

Gradients of hypoxia occur in most solid tumors and cells found in hypoxic 
regions are associated with the most aggressive and therapy-resistant fractions of 
the tumor. Despite the ubiquity and importance of hypoxia responses, little is known 
about the variation in the global transcriptional response to hypoxia in melanoma. 
Using microarray technology, whole genome gene expression profiling was first 
performed on established melanoma cell lines. From gene set enrichment analyses, 
we derived a robust 35 probes signature (hypomel for HYPOxia MELanoma) associated 
with hypoxia-response pathways, including 26 genes up regulated, and 9 genes down 
regulated. The microarray data were validated by RT-qPCR for the 35 transcripts. 
We then validated the signature in hypoxic zones from 8 patient specimens using 
laser microdissection or macrodissection of Formalin fixed-paraffin-embedded  
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(FFPE) material, followed with RT-qPCR. Moreover, a similar hypoxia-associated gene 
expression profile was observed using NanoString technology to analyze RNAs from 
FFPE melanoma tissues of a cohort of 19 patients treated with anti-PD1. Analysis of 
NanoString data from validation sets using Non-Negative Matrix Factorization (NMF) 
analysis (26 genes up regulated in hypoxia) and dual clustering (samples and genes) 
further revealed that the increased level of BNIP3 (Bcl-2 adenovirus E1B 19 kDa-
interacting protein 3)/GBE1 (glycogen branching enzyme1) differential pair correlates 
with the lack of response of melanoma patients to anti-PD1 (pembrolizumab) 
immunotherapy. These studies suggest that through elevated glycogenic flux 
and induction of autophagy, hypoxia is a critical molecular program that could be 
considered as a prognostic factor for melanoma.

INTRODUCTION

Cancer immunotherapy has recently emerged 
as an important treatment modality. FDA approval 
of sipuleucel-T (Provenge*), ipilimumab (Yervoy*), 
nivolumab (Opdivo*) and pembrolizumab (Keytruda*) 
has started to deliver on the long awaited promise of 
cancer immunotherapy [1]. Many new modalities of 
immunotherapies targeting cytotoxic T lymphocytes 
(CTLs) responses, such as adoptive cell therapies and 
vaccines, are in advanced clinical trials. The ultimate 
goal of most cancer immunotherapy strategies is to 
induce a strong cytotoxic T lymphocyte (CTL) response 
[2]. The prevailing view is that induced or boosted 
CTLs will eradicate tumor cells. However, this view 
has been seriously challenged by clinical observations 
[3]. Immunotherapy effectiveness is dependent on the 
qualitative and/or quantitative features of the killer 
cells and the complexity of the genomic aberrations 
harbored by neoplastic cells, but is also regulated 
by numerous dynamic properties of the tumor 
microenvironment [4]. Besides tumor cells, the tumor 
microenvironment harbors a variety of host-derived 
cells. It is a complex system playing an important 
role in tumor development and progression [5]. It 
involves soluble factors and metabolic changes. Among 
the metabolic changes, hypoxia plays a key role in 
sculpting tumor microenvironment [6]. Hypoxia arises 
due to a combination of excessive oxygen consumption 
by growing tumor cells and the disorganized tumour-
associated vasculature [7]. Accumulating evidence 
indicates that hypoxia plays an important role in tumor 
progression, affecting both metastatic spread and 
selection of cells with more aggressive phenotypes [8]. 
It is well established that hypoxic stress is a feature of 
most solid tumors and is associated with poor prognosis 
in several cancer types [9, 10]. In the context of tumor 
microenvironment, tumors impose several limitations 
to dampen T cell immunity as T cells, experiencing the 
metabolic framework of growing tumors, fail to activate 
distinct pathways to accomplish their functional 
requirements. Tumor microenvironmental hypoxia is in 

this regard a relevant example demonstrating how the 
tumor microenvironment can paralyze and neutralize 
T cell functions [11]. It is a negative prognostic and 
predictive factor owing to its multiple contributions 
to chemoresistance, radioresistance, angiogenesis, 
resistance to cell death, altered metabolism and 
genomic instability [12].

The master regulator of the hypoxic response is 
the Hypoxia-inducible factor 1 (HIF-1). Several reports 
have identified links between cancer outcomes and 
the level of HIF-1α protein [6, 12]. While incipient 
angiogenesis in small tumors may occur independently 
of hypoxia, growing tumors will at some point 
inevitably experience inadequate nutrient and oxygen 
supply [12, 13]. This deprivation triggers an angiogenic 
switch, which is associated with reduced sensitivity 
to cytotoxic and genotoxic treatment and more 
aggressive metastatic behavior [13]. Therefore, precise 
knowledge of the hypoxic state of a tumor not only 
provides a valuable entry point to understanding tumor 
progression, but also holds considerable prognostic 
value.

Despite the ubiquity and importance of HIF-
1 response and our knowledge about the variation in 
the global transcriptional response to hypoxia among 
different cell types, little is known about gene expression 
signatures that might relate to melanoma development 
and response to treatments. It is becoming clear that 
HIF-1α expression alone is not a reliable marker of 
tumor response to hypoxia. Although treatment efficacy 
has been improved for patients with melanoma using 
checkpoints inhibitors [14], the overall 5-year survival 
rate is still about 50%. In fact, tumors respond very 
heterogeneously to this treatment and biomarkers 
are needed. Here, we have focused on determining 
transcriptional response to hypoxic stress in melanoma. 
RNA microarray analysis was performed to examine 
the effect of hypoxia on gene expression. We identified 
a gene expression signature, and discuss the putative 
prognostic and predictive potential of BNIP3 and GBE1 
genes in the clinical outcome of melanoma patients 
treated with anti-PD1 (pembrolizumab).
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RESULTS

Transcriptional changes associated with hypoxia 
in human primary melanoma cell lines

We analyzed the changes in global transcript 
levels in response to hypoxic stress. For this purpose, we 
used DNA microarrays to examine the gene expression 
program in response to hypoxia (1% O2) in different 
melanoma cell lines established from melanoma patients. 
We profiled global mRNA levels at the 24h time point 
selected on the basis of our previous finding [15]. The 
different mRNA samples were analyzed by hybridization 
to DNA microarrays. Analysis of gene expression profiles 
of human primary cell lines of melanoma cultured at 1% 
oxygen vs 21% oxygen, allowed to establish a signature of 
35 genes (Figure 1A and Table 1). 26 genes up-regulated 
(fold-change ≥ 2.5) and 9 genes down-regulated under 
hypoxic conditions (fold change ≤-2) and an adjusted 
p-value (FDR) < 0.05 (Figure 1B). Clustering analysis 
clearly showed seperation of the samples into two 
groups according to their hypoxic status (Figure 1A). To 
investigate putative interactions between these genes, we 
then used STRING (Search Tool for Recurring Instances 
of Neighbouring Genes). The analysis revealed the 
existence of a functional interaction between 15 genes 
of the hypomel signature (13 genes overexpressed: 
BNIP3, AK4, SLC2A1, ADM, PFKFB4, ENO2, VEGFA, 
DDIT4, PGK1, GBE1, ALDOC, CCL28 and 2 genes 
underexpressed: EPRS and DDX21) (Figure 1C). A 
further examination of the hypomel signature using Gene 
Set Enrichment Analysis (GSEA) showed that several 
pathways were involved including hypoxia, metabolic and 
glucose catabolic processes (Figure 1D).

We next performed RT-qPCR analysis and 
confirmed the expression levels of hypoxia-associated 
genes identified by microarray assay (Figure 1E). An 
analysis of the correlation between expression level 
fold changes derived from microarray and RT-qPCR 
experiments is depicted in Figure 1F and revealed a 
significant correlation (Pearson’s r = 0.76; p<0.0001). 
Thus, the microarray data highly corroborate with those 
obtained by RT-qPCR for the 35 gene expression in 
each of the 10 tested human cell lines. Data depicted in 
Supplementary Figure 1 indicate that the genes associated 
with hypoxic stress are specifically induced in melanoma 
and not in peripheral blood mononuclear cells (PBMC) 
cultured under hypoxic conditions.

Comparative analysis of hypoxia-associated gene 
expression in primary and metastatic melanoma

We next examined the gene expression, by RT-
qPCR, in response to hypoxic stress on a second set of 
melanoma cell lines freshly established from primary 
and metastatic tumors derived from 3 melanoma patients 

(Figure 2A, 2B and 2C). Further analysis indicates a 
correlation between the fold change expression levels 
obtained by microarray in the previous assay and the RT-
qPCR analysis (Figure 2D) (Pearson’s r = 0.61; p<0.0001). 
Furthermore, comparative analysis of gene expression 
levels, as assessed by RT-qPCR, in primary vs metastatic 
cell lines indicates a strong correlation of gene expression 
between the two cell types (Figure 2E) (Pearson’s r = 
0.84; p<0.0001). Using the same experimental system, 
Western blot analysis on two highly expressed genes 
(ANGPTL4 and BNIP3) confirmed their induced 
expression concomitant with HIF-1α induction in the 
cells when cultured under hypoxic conditions at 24h and 
48h (Figure 2F, 2G and 2H). These results, obtained from 
materials freshly isolated from patient tumors, substantiate 
the deregulation of genes of the hypomel signature in 
melanoma cells. It further indicates that primary and their 
metastatic counterparts will respond similarly, with respect 
to these genes under hypoxic stress.

Hypoxia-associated gene expression in 
hypoxic zones detected by anti-HIF-1α 
immunohistochemistry (IHC) in 8 melanoma 
patient tissues

We then investigated tissue specimens from patients 
with melanoma. Using IHC and HIF-1α on FFPE serial 
sections, we could identify (Figure 3) non hypoxic 
(A1) and hypoxic zones (A2, A3, A4, A5) in primary 
melanoma from 4 patient tissues. A1 and A2 are from 
the same primary melanoma. In this survey, It should 
be noted that HIF-1α positivity was considered specific 
only when the staining was found in cancer cell nuclei 
(arrows) while cytoplasmic staining was considered as non 
specific. Analysis of metastatic tissues illustrates hypoxic 
(A7 and A9) and non hypoxic (A6 and A8) zones, in 2 
metastatic lymph nodes and 2 cutaneous metastases. As 
depicted in Figure 3, the number of HIF-1α positive cells 
as well as the intensity of staining can vary in the tumor 
zone. When the HIF-1α positive or negative zones had a 
limited surface, laser dissection of hypoxic or non hypoxic 
zone of the patient specimen was required for subsequent 
transcriptional analysis. To this end, we dissected the 
hypoxic and non hypoxic areas in melanoma samples 
from 8 patients who developed primary melanoma, 
metastatic lymph node, or cutaneous metastasis. RNAs 
were extracted then amplified by RT-qPCR for the 26 
up-regulated genes of interest in tumor zones delimited 
after HIF-1α immunostaining (Figure 4A, 4B and 4C) 
and compared to microarray fold changes obtained in the 
hypomel signature derived from cell lines.

In Figure 4A, RT-qPCR data obtained were 
comparable for the 4 hypoxic zones of primary melanoma 
when normalized to a non hypoxic zone. We noted that 
the gene expression fold changes measured by qRT-PCR 
for the zones of interest (melanoma primary, metastatic 
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lymph node and cutaneous metastatic) were similar in 
most instances, but often slightly reduced as compared 
with those obtained in the hypomel signature derived from 
primary cell lines.

This difference could be explained in part by the 
fact that in the different hypoxic zones, only a fraction 
of cells were actually imposed to hypoxic conditions (as 
shown by HIF-1α immunostaining), whereas in our cell 

Figure 1: Hypoxic gene expression profiles in 10 primary human cell lines. The hypomel signature was restricted at 26 genes 
overexpressed with fold change ≥2.50 and 9 genes underexpressed with fold change ≤-2 and p <0.005. Expression levels for individual 
genes were scaled by red or green color indicating an elevated or a reduced level of expression, respectively. (A) Heat map generated from 
microarray data and the gene expression fold changes of the 35 hypoxia-regulated genes in 10 primary human melanoma cell lines after 24h 
hypoxia (1% O2). (B) Volcano plot of gene expression microarray data (Log2 fold change) with adjusted p-values for the 10 primary human 
melanoma cell lines cultured under hypoxia 1% O2 for 24h. A total of 16 underexpressed genes and 135 overexpressed genes with a p<0.05. 
(C) STRING (Search Tool for Recurring Instances of Neighbouring Genes) approach detecting functional interactions between hypomel 
genes. (D) Graph representing the most significantly enriched gene sets/pathways (Top30) with hypoxia based on GSEA with significant 
FDR (FDR<0.25) and p<0.05). (E) Hypoxia 24h versus normoxia fold change expression for microarray data and from two independent 
PCR1 and PCR2 for hypomel 35 genes. (F) Correlation between microarray data and PCR data presented in Figure 1E: average of two 
independent RT-qPCR experiments (PCR1 and PCR2).
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Table 1: List of hypoxic signature (HYPOMEL) genes

Gene Name Gene Bank accession number Description

ANGPTL4 NM_139314 Angiopoietin-like 4

BNIP3* NM_004052 BCL2/adenovirus E1B 19kDa interacting protein 3

NDRG1 NM_006096 N-myc downstream regulated 1

AK4 NM_001005353 Adenylate kinase 4, nuclear gene encoding mitochondrial protein

ANKRD37 NM_181726 Ankyrin repeat domain 37

PPFIA4 NM_015053 Protein tyrosine phosphatase, receptor type, f polypeptide, 
interacting protein (liprin), alpha 4

SLC2A1* NM_006516 Solute carrier family 2 (facilitated glucose transporter)

TMEM45A NM_018004 Transmembrane protein 45A

ADM NM_001124 Adrenomedullin

PFKFB4 NM_004567 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4

FAM162A NM_014367 Family with sequence similarity 162, member A

SLC16A3 NM_001042422 Solute carrier family 16, member 3

FAM115C NM_173678 Family with sequence similarity 115, member C

RIMKLA NM_173642 Ribosomal modification protein rimK-like family member A

ENO2 NM_001975 Enolase 2 (gamma, neuronal)

VEGFA* NM_001025366 Vascular endothelial growth factor A

DDIT4 NM_019058 DNA-damage-inducible transcript 4

HILPDA NM_013332 Chromosome 7 open reading frame 68

PGK1 NM_000291 Phosphoglycerate kinase 1

GBE1 NM_000158 Glucan (1,4-alpha-), branching enzyme 1

SPAG4 NM_003116 Sperm associated antigen 4

ALDOC NM_005165 Aldolase C, fructose-bisphosphate (ALDOC), mRNA

CCL28 NM_148672 Chemokine (C-C motif) ligand 28

C4orf47 NM_001114357 Chromosome 4 open reading frame 47

WDR54 NM_032118 WD repeat domain 54

SLC2A3* NM_006931 Solute carrier family 2 (facilitated glucose transporter), member 3

IER3IP1 NM_016097 Immediate early response 3 interacting protein 1

COBLL1 NM_014900 COBL-like 1

SDCBP NM_005625 Syndecan binding protein (syntenin)

C5orf51 NM_175921 Chromosome 5 open reading frame 51

PLSCR1 NM_021105 Phospholipid scramblase 1

EPRS NM_004446 Glutamyl-prolyl-tRNA synthetase

TAF9B NM_015975 TATA box binding protein (TBP)-associated factor

UBLCP1 NM_145049 Ubiquitin-like domain containing CTD phosphatase 1

DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21

The genes that overlap with other hypoxia signatures are in italic. The genes with a * are frequently up-regulated under 
hypoxia.
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line-based assays, virtually all the cells were exposed to 
hypoxic conditions. Moreover, by comparing HIF-1α 
immunostainings in patients with primary melanoma 

(Figure 5A and 5C) or metastatic lymph nodes (Figure 
5B), we observed that tumor hypoxic zones with the 
strongest staining of HIF-1α were associated with a 

Figure 2: Quantification by RT-qPCR of hypomel 35 genes signature in 3 pairs of primary and metastatic cell lines 
from 3 patients. (A) Patient 1 from whom were derived primary cell line Ray I2 and metastatic cell line M1. (B) Patient 2 from whom 
were derived primary cell line T1 and metastatic cell line G1. (C) Patient 3 from whom were derived primary cell line M4T and metastatic 
cell line M4T2. The 35 genes were quantified in two independent experiments after reverse transcription of total extraction mRNA from 
cells cultivated in normoxia and hypoxia 24h. (D) Correlation between microarray (from the 10 primary human melanoma cell lines) 
and RT-qPCR data of 3 primary cell lines (Ray I2, T1 and M4T) presented in Figure 2A, 2B and 2C. (E) Correlation between RT-qPCR 
data in A, B and C from 3 metastatic cell lines (M1, G1 and M4T2) and RT-qPCR data from 3 primary cell lines (Ray I2, T1 and M4T). 
Quantification by Western-blot of 3 proteins highly induced under hypoxia 16h, 24h and 48h (HIF-1α, ANGPTL4 and BNIP3) versus 
actin in 3 couples of primary and metastatic cell lines from 3 patients. (F) Patient 1 from whom were derived primary cell line Ray I2 and 
metastatic cell line M1. (G) Patient 2 from whom were derived primary cell line T1 and metastatic cell line G1. (H) Patient 3 from whom 
were derived primary cell line M4T and metastatic cell line M4T2.
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higher expression of most of the 26 up-regulated genes 
of the hypomel signature, suggesting a link between 

hypoxia, HIF-1 expression enrichment of the hypomel 
signature.

Figure 3: Hypoxia-associated gene expression in hypoxic zone detected by immunohistochemistry (IHC) with anti-
HIF-1α in 8 melanoma cases. IHC detection of HIF-1α on serial sections of FFPE tissues showing 4 hypoxic (C2, C3, C4, C5) and 
1 non hypoxic (C1) zones, delimited by rectangles in A1 to A5, in primary melanoma from 4 patients. A1 and A2 is the same primary 
melanoma with one hypoxic zone (A2) and one non hypoxic zone (A1). Specific staining is observed in C2 (as compared with C1) in tumor 
nuclei (arrows). C3, C4 and C5 also show nuclear staining (arrows) with a variable cytoplasmic staining considered as non specific. IHC 
Identification of hypoxic (C7 and C9) and non hypoxic (C6 and C8) zones, delimited by rectangles in A6 to A9 in 2 metastatic lymph nodes 
(A6 and A7) and 2 cutaneous metastases (A8 and A9) from 4 patients. Magnification × 20 in A. Magnification × 400 in B and C. A1 to A9 
and C1 to C9: immunostaining with anti-HIF-1α B1 to B9 : immunostaining with isotypic control.



Oncotarget108793www.impactjournals.com/oncotarget

Figure 4: Hypomel genes expression by RT-qPCR in FFPE hypoxia zone positive after macro or microdissection 
from 8 tissue patients (melanoma primary, metastatic lymph node and cutaneous metastatic) Representation of data 
microarray fold changes (from cell lines) and PCR data fold changes derived from HIF-1α positive zone vs HIF-1α 
negative zone. (A) 4 patients with primary melanomas : HIF-1α positive zone primary melanomas (zone A2, A3, A4 and A5) vs HIF-1α 
negative primary melanoma (zone A1). (B) 2 patients with metastatic lymph nodes : HIF-1α positive metastatic melanoma zone (zone A7) 
vs HIF-1α negative metastatic melanoma zone (zone A6). (C) 2 patients with cutaneous metastases : HIF-1α positive cutaneous metastase 
zone (zone A9) vs HIF-1α negative cutaneous metastase zone (zone A8). The average of transcript levels of PPIA, GAPDH and ACTB 
were used as endogenous controls genes.
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Figure 5: The intensity of nuclear HIF-1α staining is linked to the number of up-regulated hypomel genes. (A) Data 
microarray data (from cell lines), and RT-qPCR results for HIF 1α positive primary melanoma 1 zone (zone A2) vs HIF-1α negative primary 
melanoma 1 zone (zone A1, as in Figure 3). (B) Data microarray data (from cell lines), and RT-qPCR results for HIF-1α positive metastatic 
lymph node 2 zone (zone A7) vs HIF-1α negative metastatic lymph node 1 (zone A6, as in Figure 3). (C) Data microarray data (from cell 
lines), and RT-qPCR results for HIF-1α positive primary melanoma 4 zone (zone A5) vs HIF-1α negative primary melanoma 1 zone (zone 
A1, as in Figure 3). Specific staining is observed in cancer cell nuclei (arrows). Cytoplasmic staining is considered as non specific.
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The recent application of the NanoString as a reliable 
gene expressiosn analysis prompted us to test whether 
the expression of our selected genes was correlated to 
treatment response in 19 melanoma patients treated with 
anti-PD1 (Supplementary Table 1). The NanoString 
approach offers a valuable alternative to RT-qPCR, is 
more accurate, and needs less materials because of direct 
quantification of gene copy number without the need for 
enzymatic amplification. We first validated this approach 
using 8 samples from patient tissues and cell lines with 
known hypoxic status. As shown in Supplementary Figure 
2, a correlation exists between Nanostring data and the 
data previously obtained by microarray and RT-qPCR on 

cell lines (Pearson’s r = 0.506 ; p=0.00835), reinforcing 
the robustness of the NanoString analysis.

We next applied this approach for the 26 up-
regulated genes within the hypomel signature using the 
19 melanoma patient samples treated with anti-PD1 (9 
responders (R) and 10 non responders (NR)). Finally, 
we investigated whether some genes within the signature 
could have a predictive value for the clinical outcome.

To compensate for processes unrelated directly 
to hypoxia, we used the “biomarker pair” approach 
under the rationale that such pairs would normally 
share common biological properties yielding similar 
expression levels, however could differ in their response 

Figure 6: Hypoxia-associated gene expression in a cohort of 19 FFPE tumors from melanoma patients treated with 
anti-PD1: Data from transcriptional analysis by NanoString from 19 melanoma cases analyzed by statistical method 
based on differential pair analysis. Correlation between expression of hypoxia genes BNIP3/GBE1 in tumors and response to 
treatment anti-PD1. The cohort consisted of a total of 19 patients including 9 patients who were responders (R) and 10 patients who were 
non responders (NR) to anti-PD1 treatment. (A) Most R samples appear markedly different from NR samples due to higher levels of GBE1. 
(B) A t-test demonstrates a significant difference between NR and R (log-fold (BNIP3/GBE1), p = 0.0138).
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to treatment [16]. We identified 18 pairs of highly 
correlated pairs (correlation level > 0.80) based on the 
raw expression levels of the 26 studied genes. Then, 
we applied Nonnegative matrix factorization analysis 
(NMF) to the matrix consisting of samples in (rows) and 
expression ratios between each selected pair of genes 
as variable. NMF seeks matrix factors containing only 
nonnegative elements. The resulting factorization often 
leads to substantial improvements in interpretability of the 
factors and in prediction of the outcome [17]. Prototypical 
expression patterns are estimated, in effect yielding a bi-
ordering of samples and genes within clusters. In case of 
association with responder status, a majority of samples 
with a given status should be grouped together on top 
of a given cluster. In order to assess the significance 
of such grouping, a permutation test is performed, as 
described further in the methods section. The NMF-based 
ordering of samples appeared significantly associated 
with the responder status (p = 0.041 based on 100000 
permutations). The dual ordering of genes pointed to 
the BNIP3/GBE1 differential pair, which had the largest 
leverage on the second cluster. Responder status appeared 
significantly associated to BNIP3/GBE1 differential 
expression level (p=0.0138) following a one-way analysis 
of the differential pair (Figure 6A and 6B).

DISCUSSION

Tumor hypoxia is one of the most important features 
of the tumor microenvironment, exerting an adverse 
effect on tumor aggressiveness and patient prognosis. In 
the course of these studies, we have identified a gene-
expression profile of the hypoxia response in freshly 
established melanoma cell lines. We established a signature 
(called hypomel for HYPOxia MELanoma) of 35 genes: 
26 genes up-regulated (fold-change ≥ 2.5) and 9 genes 
down-regulated under hypoxic conditions (fold change 
≤ -2). The hypomel signature was validated in tumors 
FFPE from patients who developed primary melanoma, 
metastatic lymph node, or cutaneous metastasis. We have 
analyzed transcriptional expression by RT-qPCR of the 
hypomel signature in hypoxic zones delimited after IHC 
staining with anti-HIF-1α. RNAs were extracted from 
the hypoxic zones which were levied by microdissection 
laser. We found that a high staining with anti-HIF-1α in 
tumor hypoxic zone associated with a high expression 
of genes belonging to the hypomel signature. Based on 
the evidence currently available, it now appears that both 
the adaptive and innate immune systems can recognize 
and eliminate tumors. The problem we face, however, 
is that the tumor microenvironment is able to neutralize 
and paralyze both responses. One challenge for tumor 
immunologists in the future, is identifying patients for who 
will respond favorably to immunotherapy. Accordingly, 
in the course of these studies, we attempted to examine 
whether this identified signature correlates with clinical 

outcome of melanoma patients treated with anti-PD1 
monoclonal antibody pembrolizumab and explored the 
quantitative NanoString technology to investigate whether 
some genes within the signature could have a predictive 
value for response following pembrolizumab treatment 
of patients with advanced melanoma. More importantly, 
we looked for pairs of highly correlated genes based on 
their raw expression levels (correlation level > 0.80). Non-
Negative Matrix Factorization, NMF, was applied to the 
split matrix [17], yielding a dual clustering of samples 
and genes into two clusters. Samples and genes were 
ordered by decreasing leverage on their respective cluster. 
Finally, the association between the ordering of samples 
and responder status was assessed through a permutation 
test. Specifically, responder status was permuted among 
patients, the association score re-calculated and compared 
to the original score.

We identified 18 pairs of highly correlated pairs 
based on the raw expression levels of the 32 studied 
genes corresponding to 26 up-regulated genes and 6 
housekeeping genes. The dual ordering of genes pointed 
to the BNIP3/GBE1 differential pair, which had largest 
leverage. Responder status appeared significant following 
a one-way analysis of the differential pair. We could 
demonstrate that the levels of BNIP3 and GBE1 correlate 
with the clinical response in melanoma patients treated 
with anti-PD1.

Several studies have shown that autophagy 
constitutes a potential target for cancer therapy and that 
the induction of autophagy in response to therapeutics can 
be viewed as having a prodeath or a prosurvival role [18], 
contributing to drug resistance. Our very recent studies 
highlighted a new hypoxia-induced pathway in which 
NANOG activates BNIP3L expression, contributing to 
autophagy induction in hypoxic tumor cells and their 
resistance to killing by CTL [19] further suggesting a 
link between hypoxia-induced resistance and autophagy-
related stemness. BNIP3 is a member of the BCL-2 
family of proteins with reported pro-death as well as pro-
autophagic and cytoprotective functions, depending on 
the type of stress and cellular context [20]. In line with 
this, increased BNIP3 levels in melanoma patients appear 
to be linked with poor prognosis [20]. The induction 
of autophagy in response to metabolic and therapeutic 
stresses can have a prodeath or a prosurvival role. It 
should be noted that autophagy can contribute to fulfilling 
acute metabolic needs under starvation conditions by 
degrading and recycling the cargos [18]. Moreover, 
accumulating evidence indicates that among the various 
metabolic adaptations used by cancer cells to adjust to 
the conditions imposed by the tumor microenvironment, 
changes in glycogen metabolism are emerging as an 
essential response [21]. Of note, the induction of the 
melanogenic pathway may lead to robust upregulation of 
HIF-1-dependent and independent pathways in cultured 
melanoma cells, suggesting a key role for melanogenesis 
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in regulation of cellular metabolism [22, 23]. In addition 
several reports indicate that melanogenesis can affect 
disease or therapeutic outcomes [24-26], metabolism [22, 
27] or immune functions [28].

Hypoxia is known to induce adaptive changes in 
cell metabolism that include a switch from oxidative 
phosphorylation to glycolysis and increased glycogen 
synthesis. In this context, glycogen provides a convenient 
glucose reservoir during energy stress, glucose deprivation 
or senescence [29]. In addition, cancer genomics data 
indicate that elevated levels of the glycogenic enzyme 
GBE1 are associated with poor survival in AML [30]. 
Consistent with these reports, our studies point to a role 
of elevated glycogenic flux that correlates with a poor 
clinical response in melanoma treated with checkpoint 
inhibitor anti-PD1. These studies further suggest that 
channeling of glucose through glycogen may promote 
the survival of melanoma cells under hypoxia. Through 
elevated glycogenic flux and induction of autophagy, 
hypoxia appears to be a potential critical molecular 
program that could be considered as a prognostic factor 
for melanoma.

Nordsmark and colleagues found that pretreatment 
tumor oxygenation is a highly significant prognostic factor 
for survival after primary radiotherapy applied alone 
or combined with chemotherapy, surgery, or radiation 
sensitizers in patients with locally advanced HNSCC 
[31]. Increased HIF-1α expression has been reported by 
Mouriaux F et al. to correlate with cell proliferation and 
vascular markers CD31 and VEGF-A in uveal melanoma 
[32]. However, there was no correlation found between 
high HIF-1α expression and patient survival However 
very recently, the association of HIF-1α expression with 
clinicopathological characteristics and overall survival 
(OS) of patients with OSCC was evaluated by Zhou J et 
al. who found an association of HIF-1α overexpression 
with tumor size, tumor stage, lymph node metastasis, and 
overall survival [33].

The current studies establish a link between hypoxia, 
autophagy, glucose metabolism and clinical outcome. 
Indeed, much remains to be learned to further dissect this 
relationship. Next experiments will provide more insights 
into the role of hypoxic stress in shaping the anti-tumor 
response and its impact in cancer immunotherapy.

MATERIALS AND METHODS

Clinical samples

Clinical samples were collected from 19 patients, 
12 females and 7 males who were treated with anti-PD1 
(pembrolizumab) for a primary or metastatic melanoma. 
All patients had given their written informed consent in 
accordance with the declaration of Helsinki to participate. 
The main characteristics of the patients and their clinical 

responses according to the classical RECIST1.1 evaluation 
criteria are reported in the Supplementary Table 1.

Human tumor melanoma cell lines and 
peripheral blood mononuclear cell (PBMC)

Human melanoma cell lines ME204 AI/ER, ME260 
LN/DG, T921 DUF/ALE, ME300PB, ME290mH and 
NA8 derived from the primary lesion, were provided by 
Dr Pedro Romero (Ludwig Center for Cancer Research, 
Lausanne, Switzerland). M74 derived from the primary 
lesion was established by Pr Jotereau (CRCNA, Inserm 
UMR892, Nantes, France). RIOUP2 was derived from 
the primary lesion, by the laboratory. The 3 pairs of 
human melanoma cell lines : T1 and G1, M4T and 
M4T2, RAYI2 and M1 were derived from the primary 
lesion and the metastatic lymph node, respectively, of 3 
patients in the laboratory. All the melanoma cells were 
cultured in RPMI 1640 with glutamax supplemented 
with 10% FCS, 1% penicillin-streptomycin, 1% sodium 
pyruvate at 37°C in a humidified atmosphere containing 
5% CO2. All culture reagents were from ThermoFisher 
Scientific (Waltham, MA, USA). PBMC were generated 
from one healthy donor and cultured in RPMI 1640 with 
glutamax supplemented with IL-2 (25 U/ml; Roussel-
Uclaf, Romainville, France), 10% Human AB serum 
(Institut Jacques Boy, Reims, France), 1% penicillin-
streptomycin, 1% sodium pyruvate at 37°C in a 
humidified atmosphere containing 5% CO2.

Hypoxic conditioning of tumor cells

Hypoxic treatment was conducted in a hypoxia 
workstation (Invivo2 400, Ruskinn, UK) in a humidified 
atmosphere containing 5% Co2, 1% O2 and 94% N2 at 
37°C (24h and 48h). Melanoma cells for RNA and protein 
analysis were lysed directly in the hypoxia workstation 
without reoxygenation.

Microarray assay

Gene expression analysis were performed with 
Agilent® SurePrint G3 Human GE 8x60K Microarray 
(Agilent Technologies, Santa Clara, CA, USA) with 
the following dual-color design: the test samples 
(Hypoxic samples) were labeled with Cy5 whereas 
the control samples (normoxic samples) were labeled 
in Cy3 using the two-color Agilent labeling kit (Low 
Input Quick Amp Labeling Kit 5190-2306) adapted 
for small amount of total RNA (100 ng total RNA per 
reaction). Hybridization was then performed following 
the manufacturer instructions. Microarray images were 
analysed by using Feature Extraction software version 
(10.7.3.1) from Agilent technologies. Defaults settings 
were used.
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Microarray data processing and analysis

Raw data files from Feature Extraction were 
imported into R with LIMMA [34], an R package 
from the Bioconductor project, and processed as 
follows: gMedianSignal and rMedianSignal data were 
imported, controls probes were systematically removed, 
and flagged probes (gIsSaturated, gIsFeatpopnOL, 
gIsFeatNonUnifOL, rIsSaturated, rIsFeatpopnOL, 
rIsFeatNonUnifOL) were set to NA. Intra-array 
normalization was performed by a loess normalization, 
followed by a quantile normalization of both Cy3 and 
Cy5 channel. Then inter-array normalization was 
performed by quantile normalization on M values. To 
get a single value for each transcript, taking the mean of 
each replicated probes summarized data. Missing values 
were inferred using KNN algorithm from the package 
‘impute’ from R bioconductor. Normalized data were 
then analyzed. To assess differentially expressed genes 
between two groups, we start by fitting a linear model 
to the data. Then we used an empirical Bayes method to 
moderate the standard errors of the estimated log-fold 
changes. The top-ranked genes were selected with the 
following criteria: an absolute fold-change ≥ 2.5 and ≤-2 
and an adjusted p-value (FDR) < 0.005. To interogate 
interactions between hypomel genes and pathways, we 
used STRING (Search Tool for Recurring Instances of 
Neighbouring Genes). Gene Set Enrichment Analysis 
(GSEA) used the Molecular Signatures Database 
(MSigDB).

RNA isolation and real-time quantitative 
polymerase chain reaction (RT-qPCR)

Total RNAs were extracted from cell samples 
using TRIzol solution (Invitrogen). The quality of RNAs 
was assessed using a Bioanalyzer instrument (Agilent) 
and then quantified using a Biospecnano (Shimadzu, 
Kyoto, Japan). cDNA synthesis was prepared from 1 
μg of total RNA with random hexamers using Applied 
Biosytems Reverse Transcription kit according to the 
supplied protocols. Gene expression was quantified by 
SYBR Green qPCR method using the Maxima™ SYBR 
Green/ ROX qPCR Master Mix on an StepOnePlus Real 
Time PCR system (ThermoFisher Scientific). Relative 
expression was calculated by using the comparative Ct 
method (2-ΔΔCt). Primer sequences for the quantification 
of 35 genes were purchased from Sigma and are available 
upon request. Transcript levels of HPRT for PBMC, or 
18S for melanoma cells lines were used as endogenous 
control.

Western blot

Melanoma cells lines from 3 patients were grown 
in two different conditions normoxia (21% PO2) and 

hypoxia (1% PO2) for 24h and 48h at 37°C. Cancer 
cells were washed twice in phosphate-buffered saline 
and lysed in plates with lysis buffer (62.5 mM Tris-
HCl [pH 6.8], 2% weight/volume sodium dodecyl 
sulfate, 10% glycerol, 1 mM orthovanadate, 2 mM 
phenylmethylsulfonyl fluoride, 25 μM leupeptin, 5 mM 
benzamidine, 1μM pepstatin, and 25 μM aprotinin). 
Lysates were sonicated on ice, resolved by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(30μg/well), and transferred onto nitrocellulose 
membranes. The membranes were blocked in blocking 
buffer then probed overnight at 4°C with the indicated 
primary Abs. Primary antibodies (Abs) against HIF-
1α (mouse Ab, Clone 54/HIF-1α 610959), BNIP3 
(mouse Ab, clone ANa40, 10433), ANGPTL4 (Rabbit 
polyclonal Ab, SAB1410901) and β-Actin (mouse Ab, 
clone AC-15) were purchased respectively from BD 
Biosciences (San Jose, CA, USA), Abcam (Cambridge, 
UK) and Sigma-Aldrich (St Louis, MO, USA). The 
labeling was performed following incubation with 
horseradish peroxidase (HRP)-conjugated secondary 
Abs: a HRP goat anti-mouse for HIF-1α and BNIP3, 
and a HRP goat anti-rabbit for ANGPTL4, and 
detection with an enhanced chemiluminescence kit (GE 
Healthcare, Chicago, IL, USA). Blots were scanned and 
processed by Adobe Photoshop 7.0 software.

Immunohistochemistry staining for HIF-1α

The tissue collection was composed of 4 human 
melanoma primary tumors, 2 human cutaneous metastasis 
tumors and 2 human melanoma lymph node metastases.

For each patient, four micrometer sections of Fixed-
formaldehyde paraffin embedded (FFPE) melanoma 
human tumors were prepared and stained with HES 
(Hematoxylin Eosin Safran). Deparaffinized tissue 
sections were treated with Antigen Retrieval Solution 
(citrate buffer, pH 8.0, concentrated 10×, T0010 (Diapath, 
Martinengo, Italy) in water bath at 95°C. Tissue sections 
were then incubated with H2O2 3% for 10 min and 
solution PowerVision IHC/ISH Super Blocking PV6122 
(MM France, Brignais, France) for 20 min. Histological 
slides were incubated over night at 4°C with a polyclonal 
rabbit anti-human HIF-1α antibody NB100-479 (Novus 
Biologicals, Littleton, CO, USA) or a rabbit polyclonal 
IgG Ab 27472 (Abcam). For signal amplification, slides 
were then incubated with rabbit alkaline phosphatase 
conjugated secondary antibody PowerVision poly-
AP anti-Rabbit IgG PV3133 (MM France). The signal 
was revealed with the Liquid Permanent Red K0640 
(Dako, Les Ulis, France) and Mayer’s hemalun solution 
counterstain (Merck Millipore, Billerica, MA, USA). 
In this analysis, was considered as positive nuclear 
immunostaining of HIF-1α in cancer cells, whereas 
cytoplasmic immunostaining was considered as non-
specific.
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Laser microdissection and pressure catapulting 
of glomerules

Laser microdissection was performed with a PALM® 
RoboSoftware 4.6 MicroBeam system (PALM Microlaser 
Technologies, Zeiss Micro-Imaging, Munich, Germany) 
coupled to an inverted microscope Axio Observer.Z1. 
Serial 20 μm-thick sections from 3 human melanoma 
FFPE fragments (primary melanoma 1, 2 and 4, Figure 
3) were spread onto polyethylene naphthalate (PEN) 
membrane-coated slides (Carl Zeiss Micro Imaging, 
Munich, Germany). After sectioning, the slides were 
incubated for 10 min in a toluene solution followed by 10 
min in absolute alcohol to completely remove the paraffin 
embedding. Staining for 1 min in a Mayer’s Hematoxylin 
solution, 30 s in a saturated lithium carbonate solution and 
30 s in a solution of erythrosine were successively done 
followed by 30 s each of absolute alcohol and toluene, 
respectively.

A total surface of 4 areas (between 6.6 × 106 μm2 
and 18 × 106 μm2) was collected from several sections 
representing the 3 identified hypoxic tumoral areas (zone 
A2, A3 and A5, Figure 3) and 1 non hypoxic tumoral area 
(zone A1, Figure 3). The total of surface was determined 
by the computer during microdissection process. All 
the surfaces were computed and the total surface was 
determined accordingly. Each sample was recovered in 
lysis buffer from the RNeasy FFPE kit (Qiagen, Hilden, 
Germany) for further molecular analyses.

Macrodissection with scalpel

Serial 20 μm-thick sections from 5 human melanoma 
FFPE tumors (primary melanoma 4, metastatic lymph 
node 1 and 2, cutaneous metastasis 1 and 2, Figure 3) were 
prepared as samples obtained by laser microdissection. A 
total of 5 areas was collected with a scalpel from several 
sections representing the 3 identified hypoxic tumoral 
areas (zone A4, A7, and A9, Figure 3) and 2 non hypoxic 
tumoral areas (zone A6 and A8, Figure 3). Each sample 
was recovered in lysis buffer from the RNeasy FFPE kit 
(Qiagen,) for further molecular analyses.

Pathway specific gene expression profiling of 
hypoxic and non hypoxic tumoral FFPE samples

Total RNAs were extracted from 9 area melanoma 
FFPE tissue sections obtained by laser microdissection or 
macrodissection with scalpel (zone A1 to A9, Figure 3), 
using RNeasy FFPE kit (Qiagen, Hilden, Germany). RNA 
quantity and quality was assessed using the Nanodrop-
ND-1000 (Nanodrop Technologies, Wilmington, USA). 
First-strand cDNA was synthesized using a High-
Capacity cDNA Reverse Transcription Kit (ThermoFisher 
Scientific) according to the manufacturer’s protocol. 
Signaling pathways transcript analyses were conducted in 

duplicates using a personalised Human qPCR SignArrays® 
384 system (gene profiling analysis Human qPCR 
SignArrays® 384 kit for 26 genes of interest; and Perfect 
MasterMix SYBR Green (AnyGenes, Paris, France)) on 
a LightCycler 480 (Roche, Rosny-sous-Bois, France) as 
described by the manufacturer, in 9 FFPE samples. Quality 
control of qPCR data for consequent analysis was based on 
positive and negative PCR controls. Briefly, a total volume 
of 20μl of PCR mix, which included 10μl of Perfect 
MasterMix SYBR Green®, 8μl of PCR grade water and 
2μl of cDNA was loaded into each well of the qPCR array. 
PCR amplification was conducted at 95°C for 10 min, 
followed by 40 cycles of 95°C for 10 sec and 60°C for 30 
sec. The mRNA expression for each gene was normalized 
using the average expression of 3 housekeeping genes: 
peptidylprolyl isomerase A (cyclophilin A, PPIA), 
b-actin (ACTB), and Glyceraldehyde-3-phosphate 
deshydrogenase (GAPDH). Data analysis was conducted 
using AnyGenes® Excel analysis tools based on ΔΔCt 
method by calculating fold changes for each gene as the 
difference in gene expression between positive HIF-1α 
and negative HIF-1α samples.

Nanostring analysis

Total RNAs were extracted from a cohort of 19 
tissues patients (Supplementary Table 1). 8 RNA samples 
already analyzed by microarray and/or by RT-qPCR were 
included as controls in the analysis : 6 RNA samples 
from 3 cell lines (Mel-1, Mel-6 and Mel-10) cultured 
under normoxia and hypoxia, 1 RNA sample extracted 
from hypoxia FFPE zone positive of a primary melanoma 
(zone A4, Figure 3) and 1 RNA sample extracted from 
hypoxia FFPE zone negative of a primary melanoma 
(zone A1, Figure 3). Total RNA concentration and purity 
(Ratio 260/280 and ratio 260/230nm) were calculated 
using a Nanodrop ND8000 spectrophotometer (Ozyme, 
Saint-Quentin en Yvelines, France). Total RNA integrity 
was assessed using a micro electropheresys (RNA6000 
LabChip, Agilent technologies), and RIN or percentage 
of fragment longer than 300 nt were calculated, upon a 
total RNA migration. Direct quantification of mRNA 
was achieved according a Nanostring Custom Elements 
approach. 50 ng of total RNA were used as template to 
detect 32 targets corresponding to 26 mRNA of interest 
and 6 housekeeping genes. The Nanostring nSolver 
software was used to control raw data, and to normalize 
data based on geometric mean of positive controls, and 
water signals to deduce unspecific counts.

With the goal of identifing biomarker of response 
to therapy, we looked for pairs of highly correlated genes 
based on their raw expression levels (correlation level > 
0.80), under the rationale that such correlated genes would 
normally share common biological properties yielding 
similar expression levels, however could differ in their 
response to treatment [16]. Within each pair of correlated 
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genes, the difference between genes, called “differential 
pair”, was calculated, thereby ensuring that the variation in 
expression, not caused by the response to treatment itself, 
will be optimally filtered out. The matrix of differential 
pairs was further split into two parts corresponding 
to positive and negative differences. Within first part, 
negative differences were replaced by 0. Within second 
part, positive differences were replaced by 0, whereas 
negative differences were replaced by their absolute value. 
Non-Negative Matrix Factorization (NMF) was applied to 
the split matrix [17]. Specifically, two expression profiles 
among genes, each one linked to a particular expression 
pattern, were simultaneously estimated. A dual clustering 
of samples and genes into two clusters was achieved by 
grouping together samples and genes that loaded most on a 
particular pattern or expression profile. Finally, within each 
cluster, samples and genes were ordered by descending 
leverage on their respective cluster. The association between 
the ordering of samples and responder status was assessed 
through a permutation test. Responder status was permuted 
among patients and the rank-sum score was re-calculated 
and compared to the original score.
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