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INTRODUCTION

Clinical data provide an overview that colorectal 
cancer (CRC) has become the one of the most commonly 
diagnosed tumors in the overall population [1, 2]. 
Dietary habits with a high intake of fruits and vegetables 
have represented an inverse association with the risk of 
developing CRC, on account of the high content of fiber 
and phenolic compounds [3]. There have been interests 
in investigating the promising roles of vegetarian meals 
and their constituent phytochemicals against CRC both  
in vitro and in vivo. American cranberry (Vaccinium 
spp.) is a widely consumed berry fruit in North America 
due to its desirable polyphenols bioactives and berry 
phytonutrients. Accumulating evidence shows that daily 

consumption of cranberry has the potential ability to 
promote a healthy cardiovascular system and urinary 
system for its antioxidant activity [4]. Lately, there 
is evidence to suggest that cranberry phytochemicals 
have anticancer properties such as limiting prostate 
tumorigenesis and metastasis [5–7]. Furthermore, 
it has been observed that cranberry consumption in 
patients with prostate cancer decreased the level of 
serum prostate specific antigen [8] and the incidence 
of radiation cystitis [9]. Moreover, cranberry derived 
phytochemicals have been evaluated to be antineoplastic 
compounds in many tumor cell lines, such as in human 
breast cancer cells [10], lung cancer cells [11], ovarian 
cancer cells [12, 13], bladder cancer cells [14] and even 
esophageal adenocarcinoma cell lines [15, 16]. In addition,  
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ABSTRACT
It is increasingly perceived that dietary components have been linked with the 

prevention of intestinal cancer. Cranberry is a rich source of phenolic constituents 
and non-digestible fermentable dietary fiber, which shows anti-proliferation effect in 
colorectal cancer cells. Herein, we investigated the efficacy of long-term cranberry diet 
on intestinal adenoma formation in Apcmin/+ mice. Apcmin/+ mice were fed a basal diet or 
a diet containing 20% (w/w) freeze-dried whole cranberry powder for 12 weeks, and 
the number and size of tumors were recorded after sacrifice. Our results showed that 
cranberry strongly prevented the growth of intestinal tumors by 33.1%. Decreased cell 
proliferation and increased apoptosis were observed in tumors of cranberry-fed mice. 
Cranberry diet reduced the expression profile of colonic inflammatory cytokines (IFN-γ, 
IL-1β and TNF-α) accompanied with increased levels of anti-inflammatory cytokines (IL-
4 and IL-10). Moreover, the number of colonic goblet cells and MUC2 production were 
increased, and the intestinal barrier function was also improved. In addition, cranberry 
diet increased caecal short chain fatty acids concentrations, and down-regulated 
epidermal growth factor receptor signaling pathway. These data firstly show the efficacy 
and associated mechanisms of cranberry diet on intestinal tumor growth in Apcmin/+ mice, 
suggesting its chemopreventive potential against intestinal cancer.
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freeze-dried cranberry powder diet has been reported to 
alleviate inflammatory response and lipid oxidation, which 
is useful to individuals with the metabolic syndrome [17, 18].

Interestingly, several studies have investigated the 
bioavailability and metabolism of cranberry constituents 
in the gastrointestinal tract. Cranberry remained its 
antioxidant activity in the gastrointestinal tract, and 49 and 
57 metabolites were detected in human plasma and urine 
after cranberry administration, respectively [19, 20]. The 
rich native A-type proanthocyanidins (PACs) of cranberry 
improved intestinal barrier function by stimulating 
goblet cells proliferation and Th2 cytokines expression 
[21]. Cranberry supplementation significantly attenuated 
colitis severity and the production of Th1 cytokines 
induced by dextran sodium sulfate in mice, meanwhile, 
gut microbiota were altered and the levels of short-chain 
fatty acids (SCFAs) in cecum were increased [22, 23]. 
Adding cranberry proanthocyanidins to elemental enteral 
nutrition improved and maintained luminal IgA level [24]. 
Furthermore, regular consumption of dietary fiber offered 
good protection against pathogen infection by promoting 
the function of the intestinal mucus barrier [25]. When it 
comes to complex, elusive CRC, dietary cranberry has 
been implicated in a decreased formation of aberrant crypt 
foci induced by azoxymethane in Fisher 344 male rats 
[26]. Cranberry extracts played a cytotoxic role in human 
tumor cell lines including HT-29 through apoptosis and 
cell cycle arrest at G1/S phase [27]. However, to date, 
it remains to be determined if cranberry administration 
inhibits spontaneous intestinal tumorigenesis in vivo.

Apcmin/+ mice carrying heritable mutant Apc gene 
would develop multiple intestinal neoplasia that is analogous 
to human familial adenomatous polyposis (FAP). As a tumor 
suppressor gene, Apc gene mutations contribute to FAP and 
most sporadic CRC [28, 29]. This well-established animal 
model develops multiple polyps spontaneously in the gut, 
and has emerged to fulfil important roles in investigating 
malignant transformation in intestinal tumorigenesis [30, 
31]. Disordered Apc protein leads to decreased β-catenin 
degradation concomitant with the activation of the Wnt 
pathway [32, 33]. β-catenin accumulates in the nucleus 
and binds to transcription factor belonging to lymphoid 
enhancing factor (LEF-1) family, which augments the 
transcriptional level of target genes including cyclin D1 
gene [34]. Furthermore, Apc mutations are responsible 
for epidermal growth factor receptors (EGFR) signaling 
pathway activation [35]. Feng Y et al. highlighted that the 
inhibition of EGFR autophosphorylation and downstream 
targets (Akt kinase and extracellular signal-regulated kinase 
1/2, etc.) would suppress cell proliferation and meanwhile 
induce cell apoptosis [36]. EGFR inhibition has already 
been proven to be involved in polyp growth reduction in 
the Apcmin/+ mouse model of intestinal carcinogenesis [37]. 
In the present study, we investigated the inhibitory activity 
and underlying mechanisms of dietary cranberry against 

intestinal tumorigenesis in Apcmin/+ mice, which might 
provide a translational approach to reduce the risk of CRC.

RESULTS

Cranberry supplementation inhibited intestinal 
tumor development

All mice were regularly monitored to investigate the 
body weight and consumption of food and water during 
the experiment. No significant difference was found in 
food consumption or body weight between the control and 
cranberry groups throughout the study (Figure 1A). There 
was no mortality throughout the treatment period in any 
group. Furthermore, no macroscopic alterations indicative 
of toxicity were observed in any organs of cranberry-
treated mice, including the liver, kidney and lung.

The control mice developed an average of 19.25 
intestinal tumors per mouse, which were mostly populated 
in the small intestine. Dietary feeding of cranberry 
significantly decreased the total number of intestinal 
polyps by 33.1% (19.25 ± 4.62 vs 12.88 ± 2.90, p < 0.01; 
Supplementary Table 1, Figure 1B). More specifically, the 
prominent effect of cranberry on the decrease in larger 
polyps (>1 mm) of small intestine was observed in size 
distribution analysis (<1 mm, p > 0.05; 1–2 mm, p < 0.05; 
>2 mm, p < 0.05; Figure 1C). Further, proximal and middle 
portions of small intestine showed 33.3% ( p < 0.05) and 
57.7% ( p < 0.05) reduction in the numbers of polyps by 
cranberry, respectively (Figure 1D). However, there were no 
significant differences for the numbers of distal and colonic 
tumors between the two groups (Figure 1B and 1D). Both 
groups could develop adenomas with or without low-grade 
dysplasia at all segments of the intestine, which had no 
significant difference with respect to tumor stage. These 
data suggested the inhibitory effect of cranberry on tumor 
growth without any toxicity in Apcmin/+ mice.

Cranberry diet inhibited cell proliferation and 
induced apoptosis in intestinal tumors

Cell proliferation and apoptosis have been 
implicated in evaluating intestinal tumor development 
in Apcmin/+ mice. The level of proliferation was reflected 
by Ki-67 immunostaining of sections from middle small 
intestine Swiss rolls, which is used as a prognostic 
marker in human neoplasia. As shown in Figure 2A, 
intestinal tissue sections of the cranberry diet-fed Apcmin/+ 
mice exhibited a significant decrease in the number of 
proliferative cells within tumors, compared with those of 
the basal diet-fed mice (109.67 ± 10.78 vs 55.33 ± 7.41, 
p < 0.01). The level of apoptosis in adenomas of Apcmin/+ 
mice was determined by TUNEL, and cranberry group 
had more apoptotic cells in tumors compared with mice 
on control diet (6.33 ± 0.47 vs 16.67 ± 1.70, p < 0.01, 
Figure 2B).
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The expression profile of colonic inflammation 
mediators was regulated by cranberry 

Chronic inflammation of the intestinal mucosa has 
been suggested to play a crucial role in regulating immune 
response to initiate or promote CRC development [38]. In 
this experiment, we investigated the effect of cranberry 
supplementation on cytokine profiles in the pericarcinous 
tissues in colon. We observed that the mRNA expression 
levels of IFN-γ, IL-1β and TNF-α mRNA were 
significantly down-regulated, whereas IL-4 and IL-10 
were remarkably increased in the colonic mucosa from 
cranberry diet-fed Apcmin/+ mice compared with control 
without obviously affecting TGF-β (Figure 3A and 
3B). These data suggested that the inhibition of pro-
inflammatory cytokines expression and the promotion of 
anti-inflammatory cytokines by cranberry diet might play 
a role in the process of inflammation during intestinal 
tumorigenesis in Apcmin/+ mice.

Cranberry feeding improved intestinal mucosal 
barrier function in Apcmin/+ mice

Previous studies have suggested that colitis mouse 
models and patients with ulcerative colitis present a 
reduced number of goblet cells and thus a thinner mucus 
layer [39, 40]. In the present study, immunostaining and 
RT-PCR were used to assess the distribution of tight 
junction protein, zona occludens 1 (ZO-1) and claudin 3 
in the middle small intestine and the colon, respectively 
(Figure 4A and 4B; Supplementary Figure 1) [41]. 
Control group was associated with a leaky tight junction, 
meanwhile, cranberry supplementation restored impaired 
epithelial tight junction [42]. Cranberry-fed group showed 
higher gene expression levels of ZO-1 and claudin 3 than 
control group in the small intestine ( p < 0.01, p < 0.05;  
Figure 4A and 4B). PAS staining showed that diet 
supplementation with cranberry increased the number of 
goblet cells compared with control diet (22.35 ± 4.46 vs 

Figure 1: Cranberry ingestion inhibited intestinal tumor development. (A) Dietary feeding of cranberry did not affect body 
weight gain in Apcmin/+ mice. (B) The numbers of polyps per mouse in the small intestine and colon in both groups were listed. (C–D) 
Cranberry supplementation decreased the number of larger polyps (>1 mm) with the most prominent effect in proximal and middle sections 
of small intestine. Columns represented as mean from the ten mice in each group, bars represented as standard deviation. **p < 0.01 and *p < 
0.05, cranberry diet-fed vs basal diet-fed Apcmin/+ mice. (E–F) The representative gross appearance of intestinal tumors from both groups 
was shown after 12-week experiment.
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Figure 2: Cranberry supplementation inhibited proliferation and promoted apoptosis in intestinal tumors. (A–B) 
Middle small intestinal sections from basal diet-fed and cranberry diet-fed mice were stained with Ki-67 and TUNEL, wherein brown-
stained cells demonstrated Ki-67 immunostaining (400× magnifications), green staining represented apoptotic cells (200× magnifications). 
Scale bars, 50 μm. Both assays were quantified by counting percent positive rate of tumor cells’ nuclei at 5 randomly selected fields from 
each section. Values are means from ten mice in each group with their standard errors. **p < 0.01, cranberry diet-fed vs basal diet-fed Apcmin/+ 
mice. n = 10/group.

Figure 3: Dietary cranberry relieved chronic inflammation in colon. (A–B) RNA was extracted from tumor-adjacent tissue in 
colon for real-time quantitative PCR analysis. The relative mRNA expression of inflammatory cytokines including IFN-γ, IL-1β, TNF-α, 
IL-4, IL-10 and TGF-β was presented. Data was expressed as fold change compared with the control group (100%). *p < 0.05, **p < 0.01, 
***p < 0.001, cranberry diet-fed vs basal diet-fed Apcmin/+ mice. n = 10/group.
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33.11 ± 4.58, p < 0.001, Figure 4C). As a major component 
of inner mucus layer, MUC2 mucin produced by goblet 
cells was up-regulated by cranberry feeding (16.13 ± 2.71 
vs 27.71 ± 1.83, p < 0.001, Figure 4D). Cranberry-treated 
mice were associated with longer villi and deeper crypts 
compared with control mice (Figure 4 and Supplementary 
Figure 1). The results suggested that cranberry might be 
effective in influencing the number of goblet cells and gut 
mucin production, and ultimately enhancing the integrity 
of the gut barrier.

Cranberry feeding increased caecal 
concentrations of SCFAs in Apcmin/+ mice 

Fibre containing diet influences the production and 
absorption of SCFAs, particularly propionic and butyric 
acids. SCFAs, which are formed by microbial degradation 

of dietary fibres in colon, have capacity to reduce low-
grade inflammation [43, 44]. In this experiment, we 
found that the addition of cranberry diet to Apcmin/+ mice 
made no significant difference in the weight of caecal 
content ( p > 0.05, Table 1). The concentration of acetic 
acid was highest, followed by propionic and butyric 
acids. These caecal concentrations of the three SCFAs 
were 2.9-3. 2-fold higher than that of the control group  
( p < 0.05). The observed results highlighted that SCFAs 
had been postulated to elucidate the underlying link 
between fibre containing diet and prevention of CRC.

Cranberry feeding down-regulated EGFR 
signaling in Apcmin/+ mice

The effects of cranberry feeding on EGFR 
signaling pathway involved in tumor development were 

Figure 4: Cranberry supplementation protected colonic barrier function. (A) Paraffin-embedded colon tissues were used 
to determine ZO-1 distribution by immunofluorescence stain using an anti-ZO-1 antibody and FITC-labeled secondary antibody and 
visualized using fluorescence microcopy (green staining; 200×). Nuclei were stained with DAPI (blue staining). Real-time PCR analysis 
of ZO-1 expression in the cell membranes of colonic epithelial cells was shown. (B) Claudin 3 distribution was showed analogously by 
immunofluorescence stain and real-time PCR. (C–D) PAS and MUC2 in the colon tissues of both groups were assessed using immunostaining 
(200×). Scale bars, 50 μm. The numbers of positively stained cells were determined by counting the absolute number of positive stained 
cells in at least 300 colonic crypts for each mouse. ***p < 0.001, *p < 0.05, cranberry diet-fed vs basal diet-fed Apcmin/+ mice. n = 10/group.
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further investigated. Immunostaining supported that 
phosphorylation of EGFR and Akt in intestinal tumors 
from distal small intestine were suppressed by cranberry 
supplementation. It was observed that the average 
percentages of p-EGFR-positive cells in cranberry diet-fed 
and basal diet-fed groups were 16.67 ± 4.11 vs 32.33 ± 4.03 
( p < 0.05, Figure 5A) and p-Akt stained cells were 44.33 
± 8.99 vs 73.33 ± 5.91 ( p < 0.05, Figure 5B). However, 
immunostaining showed that there was no difference in 
the activation of Wnt/β-catenin signaling between the two 
groups ( p >  0.05, Supplementary Figure 2).

Western blot analyses were consistent with 
immunostaining results. We compared the relative density 
of the protein band for total EGFR, p-EGFR, total Akt, 
and p-Akt to those of internal control bands from the 
same mouse’s tumor tissue lysate. The fold changes of 
the average protein band ratio in cranberry diet-fed group 
were calculated since the control group’ was set as 100%. 
The levels of phosphorylated EGFR and Akt were reduced 
in tumors of cranberry diet-fed group when compared to 
controls ( p < 0.001; p < 0.05, Figure 5C). No differences 
were found in the total amounts of EGFR and Akt. All these 
results suggested that cranberry supplementation suppressed 
the activation of EGFR signaling in Apcmin/+ mice.

DISCUSSION

It is increasingly perceived that dietary components 
have been linked with the prevention of CRC [25, 45]. 
Among them, fruits and vegetables have emerged to fulfil 
important roles in improving health. Berries promisingly 
have raised interests for their high phytochemical and 
fibre content [46–48]. The present study showed the 
inhibitory effects of feeding cranberry supplemented 
diet on the intestinal polyposis in the Apcmin/+ mouse 
model, which justified further research about how berry 
phytonutrients prevented CRC in vivo. It was highlighted 
that dietary cranberry would beneficially modulate colonic 
inflammation and caecal SCFAs, inhibit activation of 
EGFR signaling and regulate proliferation and apoptosis 
of tumour cells possibly due to the fermentable fibre 
components and phenolic compounds in berry.

Recent years researchers have raised interests in 
botanical dietary therapeutics, corresponding with an 
association that plants, fruits and vegetables contain intricate 
components with multifunctional roles, which may better 
prevent or postpone elusive chronic diseases than single 
active pharmaceutical ingredients. As chemopreventive 
dietary constituent, cranberry fruit (Vaccinium macrocarpon 
Ait.) is a promising dietary source of phytochemicals, 
because of richness in flavonoids such as anthocyanins 
glycosides, flavonol glycosides, and proanthocyanidin 
(PAC) oligomers; organic and phenolic acids such as 
benzoic acid and ursolic acid, etc. [49–51]. In particular, 
proanthocyanidinsin cranberries contain “A-type” bonds 
compared with the B-type PACs present in most other 
fruits [46]. Polyphenols from cranberry have emerged to 
fulfil putative roles in chronic diseases, i.e. type 2 diabetes, 
heart disease and various cancers for their high antioxidant 
capacities [52]. Cranberry “A-type” PAC could better 
contribute to pathogenic Escherichia coli agglutination 
and then decrease the invasion of enterocytes [53]. Most 
of procyanidins are degraded into multiple phenolic 
compounds as biologically active forms under the action of 
gut microbiota. Furthermore, dietary fiber of cranberry may 
influence the gut microbiota, which is essential to intestinal 
barrier function [25]. Cranberry bioactives are possible 
contributors to limit carcinogenesis in a complementary 
fashion. In this study, the consumption patterns of CRC 
patients are imitated appropriately, because 20% dietary 
supplementation level is achievable for human being [54–
56], which offers a fine prospect in achievement transform. 
In addition, effects require further elaboration to determine 
the dose-response relationships of lower levels of cranberry 
supplementation to health benefits.

Chronic inflammation and excessive immune 
signaling receive attention for the causes of dysregulation 
of cell proliferation in Apcmin/+ mice, which accompanied 
with the up-regulation of inflammation genes [57]. The 
levels of intestinal inflammation cytokines are used to 
assess the development and progression of inflammatory 
responses in CRC patients [58, 59]. The present study 
found that inflammatory mediators of the colon were 
regulated by dietary cranberry in Apcmin/+ mice, which 

Table 1: Effects of cranberry diet on the weight of caecal content and SCFAs concentrations
Apcmin/+ mice (control) Apcmin/+ mice (cranbery)

Mean SEM Mean SEM
Caecal content weight (g) 0.15 0.07 0.06 0.05
Acetate (µM/g WW) 7.36 1.68 23.74 8.74*

Propionate (µM/g WW) 5.45 1.14 15.92 5.54*

Butyrate (µM/g WW) 3.71 0.78 11.47 4.05*

WW, wet weight. SCFAs, short-chain fatty acids. Values represented the means with their standard errors, n = 10/per group. 
*p < 0.05.
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exhibited a reduced intestinal inflammatory response. 
These mice fed by cranberry had a lower level of 
inflammation. Phytochemicals including fibre and 
phenolic compounds in cranberry are known to influence 
inflammatory responses by way of exerting a myriad of 
cellular effects [60–62]. These effects include release of 
antioxidant potential and induction of an anti-inflammatory 
effect by modulating NF-κB signaling [63, 64]. Therefore, 
the combined effects of phytochemicals in cranberry diet 
beneficially attenuated intestinal immune response in 
Apcmin/+ mice. Gut barrier separates the host from luminal 
microorganisms and noxious molecules while absorbing 
nutrients. Mucus layer, mainly comprising MUC2, is 
the front line of innate immune defense. Gut barrier 
properties may be destroyed due to unbalancing pro- and 
anti-inflammatory mediators in the mucosa [42, 65, 66]. 
In this study, cranberry ingestion stimulated goblet cells 
to produce MUC2 and promoted epithelial intercellular 
junctions to maintain gut barrier.

Substantial evidence indicates that a Western-style 
diet low in dietary fiber is associated with a high risk of 
colorectal carcinogenesis [67]. Following the consumption 
of cranberry fibre, the anti-cancer potential may have been 
driven by microbial metabolic products, such as SCFAs [68]. 
SCFAs are the end productions of non-digestible dietary 
carbohydrates under the fermentation of intestinal microflora 
[22]. SCFAs, particularly butyrate, have been regarded as 
chemopreventive agents which play plurifunctional roles 
in the colonocytes. The current working hypothesis is that 
butyrate provides energy for epithelial cells [69, 70] and 
enhances gut barrier integrity [71]. Furthermore, butyrate 
exerts anti-inflammatory effects within epithelium through 
the modulation of inflammatory signaling pathways 
including the inhibition of histone deacetylase activity. All 
these actions play a comprehensive role in influencing the 
dynamic balance of gut microbiota towards commensal 
bacteria such as butyrate-producing bacteria [70, 72, 73]. In 
the present study, as a consequence of increased microbial 

Figure 5: Cranberry supplementation down-regulated EGFR signaling pathway in intestinal tumors. (A–B) p-EGFR 
and p-Akt from the diatal small intestine of both groups were shown by immunohistochemical staining (400×). Scale bars, 50 μm. Data 
were semiquantified as mean percentage of positive cells at five randomly selected fields. (C) Protein lysates from tumors were analyzed by 
Western blot analysis using anti-total EGFR and p-EGFR antibodies, and anti-total Akt and p-Akt antibodies, which anti-β-actin antibody 
was used as an internal control for total protein. The fold changes were calculated by comparing the relative densities of total EGFR, 
p-EGFR and p-Akt bands to corresponding β-actin bands from the same mouse. Proteins were quantified by densitometry using Image J 
to calculate the average ratio, and the average ratio in control was set as 100%. Columns, means from at least six mice in each group; bars, 
standard deviation. *p < 0.05, ***p < 0.001, cranberry diet-fed vs basal diet-fed Apcmin/+ mice. n = 8/group.
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activity, caecal SCFA concentrations (acetate, propionate 
and butyrate) were increased in cranberry-supplemented 
group compared to the control. And, we did not find that 
proanthocyanidin- rich dietary fiber could increase the caecal 
content weight similar to those in other studies [74, 75]. 
Furthermore, butyrate has been implicated in the decreased 
expression of pro-inflammatory mediators, as well as 
increased expression of anti-inflammatory mediators, which 
was observed by Jakobsdottir G et al. [74]. Butyrate and its 
role in CRC prevention need to be excavated for its clinical 
use any further.

Anthocyanins, proanthocyanidins, and flavonol 
glycosides have demonstrated enhanced antiproliferative 
interactions synergistically or additively [16, 76]. In 
the present study, daily consumption of cranberry for 
12 weeks reduced proliferation and induced apoptosis 
in colorectal tissue of Apcmin/+ mice. The activation of 
EGFR is essential for accelerating cell cycle progression, 
promoting cell proliferation and impeding cell apoptosis 
by phosphorylating (activation) its downstream targets 
(PI3K/AKT and Ras-ERK) in many tissue types [77]. 
Activating EGFR/AKT signaling is known to promote 
tumorigenesis, and EGFR signalinghas regarded as a 
promising target to control tumor development [16]. In 
this study, the dietetic treatment with cranberry was found 
to beneficially regulate cell proliferation and apoptosis, 
and meanwhile impede the phosphorylation of EGFR 
and its downstream Akt in intestinal tumors in Apcmin/+ 
mice, compared with basal diet. However, it remains to 
be determined the mechanisms of the inhibitory effects of 
EGFR pathway by cranberry nutrients.

Overall, this study suggested that dietary 
administration of cranberry inhibited intestinal tumor 
development in the Apcmin/+ mouse model. Cranberry 
exerted its effects probably by decreasing inflammatory 
cytokine production and promoting intestinal barrier 
function while simultaneously regulating EGFR signaling, 
associated with intestinal proliferation and apoptosis for its 
fiber-derived SCFAs. In summary, an appropriate dietary 
intervention, as a new treatment strategy, in combination 
with pharmaceuticals, may have benefit on preventing 
intestinal cancer in high-risk populations.

MATERIALS AND METHODS

Animals and diets

Female Apcmin/+ mice aged 4 weeks on C57BL/6J 
background (n = 20) were obtained from the Animal 
Model Institution of Nanjing University, P. R. China. The 
genotypes of the mice were screened using PCR methods 
to identify Min genotype [78]. Animals were housed in 
humidity- and temperature-controlled plastic cages with 
12/12 h light/dark cycle (temperature: 25°C; humidity: 
50%; lights off at 18:00) under specific pathogen free 

(SPF) circumstances. The animals were randomly divided 
into two groups (10 mice per group, 5 mice per cage). 
Control group was fed AIN-93G control diet continuously 
while the cranberry-treated group was fed 20% cranberry 
powder (wt/wt) mixed in AIN-93G diet ad libitum for 
12 weeks by reference to dosages in published reports 
[22, 48, 56]. Freeze-dried whole cranberry powder was 
purchased from commercial vendor Peak Season Foods 
(Nampa, Idaho, USA), and its nutrition facts were showed 
in Table 2. The rodents were weighed once a week and 
monitored daily for any signs of toxicity throughout the 
12 week treatment period. The animals were starved 
overnight and then killed by CO2 inhalation at the end of 
12 weeks. All the animals were starved overnight before 
sacrifice in order to clean the bowel and obtain intestinal 
tissues more easily. Caecal contents were snap-frozen and 
stored in refrigerators at –80°C until analysis for SCFA 
content. All experimental procedures were performed 
under the guidelines of the Institutional Animal Care and 
Use Committee at Tianjin Medical University, Tianjin, 
P. R. China.

Measurement of tumors and tissue collection

The intestine was immediately excised from each 
mouse after sacrifice as previously described [79]. The 
intestines of all mice were opened longitudinally and then 
rinsed well with sterile ice-cold PBS solution to remove 
the intestinal contents. The small intestine was divided 
into three equal sections, i.e., proximal, middle, and 
distal, and the colon. Afterwards, all tissue sections of the 
small intestine and colon were viewed and recorded by 
the same veterinary pathologist blinded to the experiment 
with a steel rule under an Olympus SZX7 stereo dissecting 
microscope. The total numbers of polyps in each section 
were counted. The size of each polyp was measured and 
categorized as small (<1 mm), medium (1–2 mm), or 
large (>2 mm). Swiss-rolled middle small intestine and 
colon as well as hepatic and kidney tissues were fixed in 
10% neutral-buffered formalin until further analysis for 
preparing Paraffin-embedded tissue sections. Paraffin-
embedded intestinal Swiss rolls containing tumors were 
stained with hematoxylin and eosin (H&E) for tumor stage 
or used for immunohistochemical staining. Adenomas 
from middle small intestinal tissues were excised and 
snap-frozen rapidly, and stored at –80°C for later analysis 
of protein expression.

Periodic acid Schiff (PAS) staining

1% Periodic acid solution (Sigma-Aldrich) was 
used to incubate deparaffinised colonic sections for  
10 min. And then Schiff reagent (Sigma-Aldrich) was used 
for incubation for 40 min. The PAS-stained sections were 
counterstained with Hematoxylin for 2–5 min. Extensive 
PBS solution was used to rinse well between each step.
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Histopathology and immunohistochemistry

Formalin-fixed, paraffin-embedded intestinal tissue 
blocks were cut into 4-μm slices by a microtome for 
immunostaining. Thereafter, intestinal tissue slices were 
deparaffinised in xylene and rehydrated in graded ethanol. 
Antigens were retrieved in Antigen Unmasking Solution 
(Vector laboratories, Inc. Burlingame, CA, USA) for  
15 min. Endogenous peroxidase activity was quenched 
by immersing in 3% hydrogen peroxide for 10 min. 5% 
goat serum was used to block non-specific binding in Tris-
buffered saline for 1 h at room temperature. The tissue 
sections were incubated with primary antibodies, rabbit 
anti-Ki-67 (ab16667, Abcam, Cambridge, MA, USA), 
phospho-EGFR (Tyr1068) (CST3777, Cell Signaling 
technology, Boston, MA, USA), phospho-Akt (p-Akt, 
Ser473) (CST4060, Cell Signaling technology, Boston, 
MA, USA), β-catenin (Santa Cruz Biotechnology, Inc., 
Santa Cruz, CA, USA), cyclin D1(ab134175, Abcam, 
Cambridge, MA, USA) and rabbit anti-MUC2 (Santa 
Cruz Biotechnology, Inc), overnight at 4°C in a humidity-
controlled chamber. Washed sections were then incubated 
with appropriate horseradish peroxidase (HRP)-labeled 
second antibodies for 30 min followed by incubation 
with 3, 3′-diaminobenzidine for color development. The 
sections were viewed blindly (400× or 200× magnification) 
under the light microscope by the same pathologist (YJZ). 
At least five fields searched for each tumor without any 
overlap were viewed to count the numbers of positive cells 
(brown staining). All tumors in each section were analyzed 
to calculate the final numbers of positive cells. Hence, the 
proliferation index was determined as the number of Ki-67-
positive cells × 100 / total number of cells.

TUNEL assay

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay was performed to detect apoptosis 
in tumors of middle small intestine. Paraffin-embedded 
sections containing tumors were deparaffinized, and stained 
for apoptotic nuclei using an In Situ Cell Death Detection 
Kit (Roche Diagnostics) based on manufacturer’s protocols. 
To quantitate the average number of apoptotic cells in each 
group, five fields from each section were randomly chosen 
with 200× magnification (n = 10/ group).

Real-time quantitative PCR analysis

Total RNA was extracted from tumor-adjacent 
tissues in distal small intestine and colonusing the RNeasy 
mini kit (Qiagen, Carlsbad, CA, USA) and reverse-
transcribed using the TIANScript Reverse Transcription 
Kit (TIANGEN, Inc. Beijing, China). Real-time PCR was 
performed to measure the levels of cytokines, ZO-1 and 
claudin 3 using Taqman Gene Expression Master Mix. The 
Oligonucleotide primer sequences were showed in Table 3. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
was used as a house-keeping gene to normalize the relative 
abundance of targeted genes at the level of mRNAs. Real-
time polymerase chain reaction (PCR) was carried out for 
amplification on a StepOne Plus real time PCR instrument 
(Applied Biosystems, Carlsbad, CA) following the 
manufacturer’s recommendations with all cDNA products 
analyzed in triplicate. Gene expression of each transcript 
was analyzed using the standard ∆∆CT method to calculate 
fold-changes which were normalized to the housekeeping 
genes for each sample.

Table 2: Nutrition facts of freeze-dried whole cranberry powder
Serving Size 10 Grams
Serving Per Container 23
Amount Per Serving
Calories 38 Calories from Fat 0

% Daily Values*

Total Fat 0 g 0%
Saturated Fat 0 g 0%
Trans Fat 0 g

Cholesterol 0 mg 0%
Sodium 2 mg 0%
Total Carbohydrate 9 g 3%

Dietary Fiber 2 g 8%
Sugars 5 g

Protein 0 g 0%
Vitamin A 1% Vitamin C 3%
Calcium 0% Iron 0%

*Percent Daily Values are based on a 2,000 calorie diet.
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Western blot analysis

Tumors from distal small intestinal tissues were 
excised and stored in refrigerators at –80°C. The total cellular 
lysates of these adenomas were prepared by sonication and 
RIPA buffer, during which 10 μL/mL of proteinase inhibitor 
cocktail and phosphatase inhibitor cocktail (Sigma, St. Louis, 
MO) were added respectively. After homogenization and 
centrifugation (12,000 g, 4°C, 15 min), protein concentration 
of the resulting lysate was determined by Bicinchoninic 
acid protein assay (Thermo Scientific Inc.). Proteins were 
separated by SDS-polyacrylamide gel electrophoresis 
and then transferred onto a PVDF membrane. Primary 
antibodies, including rabbit polyclonal antibodies against 
EGFR, phospho-EGFR, Akt, and phospho-Akt, were used 
to perform western blot, and later blotted with secondary 
antibodies (anti-rabbit IgG peroxidase conjugates). Anti-β-
actin antibody was employed to assess total protein loading 
of cellular lysate. The chemiluminescent signal of the 
PVDF membrane was detected by X-ray films with ECL 
(GE Healthcare, Bucks, UK) and analyzed with an image 
processor program (Image J), which contributed to determine 
the intensity of the targeted band and internal control band in 
each individual mouse. 

Caecal SCFAs detection using gas 
chromatography

The SCFAs including acetic, propionic and butyric 
acids in the caecal contents of mice were analyzed using 

gas chromatography (GC) as previously described with 
slight modification [56, 74]. Briefly, SCFAs were extracted 
from frozen caecal contents and injected into the GC system 
(Agilent 7890A) equipped with a HP-INNOWAX capillary 
column (30 m × 0.25 mm × 0.25 μm; Agilent Technologies, 
USA) for chromatographic separation. Samples (1 uL each) 
were injected into the capillary column by split-injection 
mode with a split ratio of 1:1. Nitrogen was used as carrier 
gas at a constant flow of 1 mL/min. Injector temperature 
was maintained at 220°C. After an initial temperature of 
70°C for 2 min, the oven temperature was increased to 
150°C at a rate of 10°C/min, and then increased by 15°C/
min and finally kept at 230°C for 5 min. Different peaks 
were identified according to their respective retention times 
using acetic, propionic and butyric acids GC standards 
(Sigma-Aldrich, USA). Agilent Chemstation software was 
used for data collection.

Statistical analysis

All continuous variables were presented as mean 
± SEM. Statistical comparisons of the multiplicity of 
intestinal tumors were analyzed by two-tailed Student’s 
t-test with the GraphPad Prism version 5.00 (GraphPad 
Software, Inc.). The percentage of positively stained cells 
and the fold changes of the ratio for the relative density 
of bands in western blot analysis were performed using 
Student’s t-test. Student’s t-test was also used to determine 
differences in body weight between groups. Differences 
were considered statistically significant with p < 0.05.

Table 3: Gene sequences of primers in the present study
Primers Sequence
GAPDH Forward 5′-TGTGTCCGTCGTGGATCTGA-3′

Reverse 5′-CCTGCTTCACCACCTTCTTGA-3′
IFN-γ Forward 5′-GCATCTTGGCTTTGCAGCT-3′

Reverse 5′-CCTTTTTCGCCTTGCTGTTG-3′
IL-1β Forward 5′-GTGGCTGTGGAGAAGCTGTG-3′

Reverse 5′-GAAGGTCCACGGGAAAGACAC-3′
TNF-α Forward 5′-ACTCCAGGCGGTGCCTATG-3′

Reverse 5′-GAGCGTGGTGGCCCCT-3′
IL-4 Forward 5′-CGAATGTACCAGGAGCCATATC-3′

Reverse 5′-TCTCTGTGGTGTTCTTCGTTG-3′
IL-10 Forward 5′-TGGACAACATACTGCTAACCG-3′

Reverse 5′-GGATCATTTCCGATAAGGCT-3′
TGF-β Forward 5′-GCTGAACCAAGGAGACGGAAT-3′

Reverse 5′-GCTGATCCCGTTGATTTCCA-3′
ZO-1 Forward 5′-GGGCCATCTCAACTCCTGTA-3′

Reverse 5′-AGAAGGGCTGACGGGTAAAT-3′
claudin 3 Forward 5′-CCTGTGGATGAACTGCGTG-3′

Reverse 5′-GTAGTCCTTGCGGTCGTAG-3′
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