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ABSTRACT
The FGFR3-TACC3 fusion is an oncogenic driver in diverse malignancies, including 

bladder cancer, characterized by upregulated tyrosine kinase activity. To gain 
insights into distinct properties of FGFR3-TACC3 down-stream signalling, we utilised 
telomerase-immortalised normal human urothelial cell lines expressing either the 
fusion or wild-type FGFR3 (isoform IIIb) for subsequent quantitative proteomics and 
network analysis. Cellular lysates were chemically labelled with isobaric tandem mass 
tag reagents and, after phosphopeptide enrichment, liquid chromatography-high mass 
accuracy tandem mass spectrometry (LC-MS/MS) was used for peptide identification 
and quantification. Comparison of data from the two cell lines under non-stimulated 
and FGF1 stimulated conditions and of data representing physiological stimulation of 
FGFR3 identified about 200 regulated phosphosites. The identified phosphoproteins 
and quantified phosphosites were further analysed in the context of functional 
biological networks by inferring kinase-substrate interactions, mapping these to 
a comprehensive human signalling interaction network, filtering based on tissue-
expression profiles and applying disease module detection and pathway enrichment 
methods. Analysis of our phosphoproteomics data using these bioinformatics methods 
combined into a new protocol—Disease Relevant Analysis of Genes On Networks 
(DRAGON)—allowed us to tease apart pathways differentially involved in FGFR3-
TACC3 signalling in comparison to wild-type FGFR3 and to investigate their local 
phospho-signalling context. We highlight 9 pathways significantly regulated only 
in the cell line expressing FGFR3-TACC3 fusion and 5 pathways regulated only by 
stimulation of the wild-type FGFR3. Pathways differentially linked to FGFR3-TACC3 
fusion include those related to chaperone activation and stress response and to 
regulation of TP53 expression and degradation that could contribute to development 
and maintenance of the cancer phenotype. 
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INTRODUCTION

The Fibroblast Growth Factors (FGFs) and their 
receptors (FGFRs) regulate multiple biological processes 
and their dysfunction has been implicated in a range 
of developmental disorders and a variety of cancer 
types [1–3]. The growing number of FGFR inhibitors 
currently in cancer clinical trials follow numerous 
pre-clinical studies that established these receptors as 
attractive therapeutic targets [4, 5]. Over-expression and 
activating point-mutations are common causes of FGFR 
signalling dysregulation, but FGFR fusions have also 
been discovered in diverse tumours [6, 7]. The FGFR3-
TACC3 fusion was initially discovered in glioblastoma 
[8] and bladder cancer [9]. Subsequently, recurrent FGFR-
TACC gene fusions have been identified in a range of 
malignancies that include non-small cell lung cancer, oral 
and head neck squamous carcinoma, cervical carcinoma 
and triple negative breast cancer, with a frequency 
typically between 1% and 4% [10–13]. Nevertheless, 
taken across different cancer types, FGFR-TACC fusions, 
with FGFR3-TACC3 being by far most frequent, have 
now emerged as one of the most recurrent chromosomal 
translocations. Furthermore, these fusions have been 
linked to oncogene addiction and confer particular 
sensitivity to targeted agents; data on clinical response, 
although limited, are also promising [14, 15].

The size of FGFR3-TACC3 fusion proteins vary. 
They combine an FGFR3 portion lacking only a small part 
at the C-terminus and variable portions of Transforming 
Acid Coiled-Coil containing protein 3 (TACC3); for 
example, a fusion found in a bladder cancer cell line 
RT112, that is also frequently observed in other tumours, 
comprises amino acids 1–760 of FGFR3 (IIIb isoform) 
fused in-frame to amino acids 648–838 of TACC3 [9, 12]. 
Centrosomal TACC3 is involved in regulation of mitosis 
[16] and the protein contains a coiled-coiled domain 
that is incorporated in all fusion proteins, presumably 
contributing to constitutive dimerisation [17].

The effects of FGFR3-TACC3 expression on 
cellular functions are still largely unknown. Initial 
studies based on exogenous expression suggest that 
the functional effects seem to be dependent on the cell 
background. For example, as previously reported for 
several activating FGFR3 point-mutations, NIH3T3 cells 
expressing FGFR3-TACC3 show a transformed phenotype 
that was not observed in telomerase-immortalised normal 
human urothelial cells (TERT-NHUC) used in studies of 
initiation and development of bladder cancer, where major 
changes attributed to mutated FGFR3 include increased 
survival and proliferation to high cell density [9, 18, 
19]. Nevertheless, the fusion is invariably constitutively 
phosphorylated when expressed in a range of different 
cell types which, in turn, has been linked to various (but 
underexplored) changes in cell signalling [8, 9, 14, 17, 
20–24]. There is also evidence that FGF ligands further 

enhance fusion-mediated signalling [20]. Another distinct 
property suggested for FGFR3-TACC3 is a change in 
subcellular localisation manifested in a higher portion 
of the fusion (compared to WT FGFR3) being present 
in the nucleus and, in dividing cells, in mitotic spindle 
poles [8, 24]; this, together with differences in activation 
mechanisms, could result in phosphorylation of novel 
targets rather than just an enhancement of physiological, 
agonist-driven FGFR signalling.

To date, a comprehensive study exploring the 
effects of FGFR3-TACC3 on cellular signalling has not 
been performed. The present work aims to present a first 
overview of the effects of FGFR3-TACC3 expression in 
urothelial cells and highlight potential differences from 
physiological FGFR3 signalling. We use quantitative mass 
spectrometry (MS)-based phosphoproteomics methods 
that have emerged in recent years as a powerful approach 
to study phosphorylation dynamics in cell cultures and 
tissues [25]. As previously described, we adapted these 
methods to allow analysis of small amounts of TERT-
NHUC cells [26]. To further develop existing approaches 
for data analysis [27–29], we assemble pathway and 
network bioinformatics tools in a novel protocol that 
reveals new signalling links unique to the FGFR3-TACC3 
fusion.

RESULTS

Initial characterisation of selected cellular 
responses

Our previous comparison between FGFR3-TACC3 
fusion protein (corresponding to boundaries found in the 
urothelial cancer cell line RT112 and a number of clinical 
samples) and WT FGFR3 (IIIb) in TERT-NHUC cell 
lines included only limited assessments of downstream 
signaling; for example, in the absence of FGF1 
stimulation, phosphorylation of ERK1/2 was detected 
only in cells expressing FGFR3-TACC3 fusion [9]. For the 
extensive MS-based phosphoproteome analysis described 
here, we used the same cell lines under non-stimulated and 
FGF1 stimulated conditions. As outlined in Figure 1A, we 
refer to these experimental conditions as WT, WT-FGF, 
FUS and FUS-FGF and comparisons WT vs FUS as C1, 
WT-FGF vs FUS-FGF as C2 and WT vs WT-FGF as C3.

The different conditions were initially characterized 
for the expression of WT FGFR3 and FGFR3-TACC3 
fusion (Figure 1B). Subsequently, an antibody-based array 
for a set of specific phosphoproteins that play pivotal roles 
in intracellular signaling (Figure 1C and Supplementary 
Figure 1) was used to detect significant phosphoprotein 
changes for comparisons (C1, C2 and C3). Comparison 
C1 (WT vs FUS) revealed higher phosphoprotein content 
for FUS, notably for pERK (T202/Y204), pPRAS 40 
(T246) and GSK-3beta (S9), with pPRAS 40 (T246) 
also showing differential increase in comparison to C2  
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(WT-FGF vs FUS-FGF) (Figure 1C, top and middle 
panels). Following FGF stimulation in cells expressing WT, 
pERK1/2 (T202/Y204), pPRAS (T246) and pBad (S112) 
were all up-regulated (C3; Figure 1C, bottom panel). Data 
from the antibody-based array therefore confirm an increase 
in phosphorylation in FUS (C1) and FGF stimulation of 
WT cells (C3) as well as the consistency of the biological 
replicates (Figure 1C). It is also interesting that the significant 
increase in pGSK3β (S9) and decrease in pAKT (S473) in 

C1 was not observed in C3 while the increase in pBad was 
only seen in C3. Although covering only a few example 
proteins, this suggests that some phospho-signalling changes 
in FUS versus WT may involve pathway changes rather than 
simply modulation of physiological FGF stimulation, at least 
under conditions used here. Such a possibility was further 
explored via MS-based phosphoproteomic and subsequent 
bioinformatics analyses; a flowchart integrating these 
strategies is shown in Figure 2 with further detail described 

Figure 1: Phosphorylation profiles of selected intracellular signalling proteins allows initial comparison of WT and 
FUS and their responses to FGF stimulation. (A) Two TERT-NHUC cells lines, stably expressing either the WT FGFR3 (IIIb) 
or FGFR3-TACC3 fusion, were analysed without or following stimulation by 100 ng/ml FGFR1 for 10 min (in both cases 100 IU/ml 
heparin was included in incubation medium for 10 min). The four resulting experimental conditions have been designated as WT (1), 
WT-FGF (2), FUS (3) and FUS-FGF (4). Further comparisons of data generated from these conditions were between WT and FUS 
(comparison 1; C1), WT-FGF and FUS-FGF (comparison 2; C2) and WT and WT-FGF (comparison 3; C3). (B) Western blotting with 
anti-FGFR3 antibody to detect WT FGFR3 or FGFR3-TACC3 fusion in cell lysates from four experimental conditions described in (A): 
WT (1), WT-FGF (2), FUS (3) and FUS-FGF (4) (top panel). β-actin was used as a loading control (bottom panel). (C) Antibody array 
analysis comprising indicated proteins and their phospho-sites performed using cell lysates from four conditions, defined and compared 
as outlined in (A). Comparisons cover WT and FUS (C1) (top panel), WT-FGF and FUS-FGF (C2) (middle panel) and WT and WT-FGF 
(C3) (bottom panel). Data are shown as average signals from two independent experiments on two different biological replicates (number 
of stars: significantly changing phosphosites, unpaired Student’s t-test, p ≤ 0.05. Error bars: S.E.M.). See Supplementary Figure 1  
for further information about the antibody array and analyses.
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in Supplementary Information (Supplementary Tables 1–6 
and Supplementary Figures 2 and 4).

Quantitative phosphoproteomic analysis

The most prominently regulated phosphosites were 
identified by applying the workflow for sample labelling, 
phosphopeptide enrichment and phosphoproteomics 
analysis to obtain a High Confidence (HC) quantitative 
phosphoproteomics dataset for the four conditions 
(WT, WT-FGF, FUS and FUS-FGF) and calculated 
mean comparison ratios C1 (WT vs FUS), C2 (WT-
FGF vs FUS-FGF) and C3 (WT vs WT-FGF) using the 
observed replicates for each phosphosite (Figure 2, part A,  
Supplementary Table 2 and Supplementary Figure 2).  
Using the HC dataset the significantly regulated 
phosphosites for each condition have been defined 
as up-regulated: log2(p-sites in C1, 2 or 3) ≥ 0.5 and 
down-regulated: log2(p-sites in C1, 2 or 3) ≤ –0.5. This 
selection comprises 70 phosphopeptides (46 up-regulated 
and 24 down-regulated) in C1, 76 phosphopeptides 
(54 up-regulated and 22 down-regulated) in C2 and 55 
phosphopeptides (40 up-regulated and 15 down-regulated) 
in C3 (Figure 2, part A and Supplementary Table 4). We 
further filtered this set by removing peptides that were 
only observed in a single replicate, or where the variance 
(using 1.96σ) was too high to explicitly designate 

a phosphosite as up or down regulated. Regulated 
phosphosite significance was additionally tested using 
SigB (p ≤ 0.05) [30] (Figure 2, part A and Supplementary 
Table 5). The resulting set of the most significant HC 
regulated phosphosites for comparisons C1 and C3 is 
shown in Figure 3. Where available, corresponding 
proteome changes show that it is the phosphosites that are 
modulated, not protein abundance (Figure 3). In addition, 
Western blotting and quantitative phosphoproteomics gave 
similar changes for C1 and C3 (Supplementary Figure 3).

The most clearly differentially regulated phosphosites 
(those changed in only one comparison) in C1 are up-
regulation of HGS(Y132), TLN1(Y70) and CTTN(T401/
S405), with down-regulation of CTR9(S1081/5) and 
DKC1(S513). For C3, there is down-regulation of 
phosphosites PRKCD (Y313) and TRA2B(S97/9/101).

To better understand the cellular signalling 
context of these variable phosphosites we analysed 
them in the context of biological pathways and 
functional interaction networks. We obtained sets 
of network “seed” proteins for a comparison by 
identifying those with at least one variable phosphosite 
(comparison ratio, using 1.96σ, greater or less than one).  
As not all comparisons can be calculated using the HC 
dataset (for example, if a particular phosphopeptide 
is identified in all conditions except WT, then we can 
calculate C2, but not C1 or C3), we used a Quantitative 

Figure 2: Overview of phosphoproteomics workflow for data generation and analysis. The workflow provides both phospho 
and reference proteome datasets. Part A of the data analysis workflow, based on High Confidence (HC) quantitative proteomics dataset, 
has been designed to identify the most significantly regulated phosphosites between C1, C2 and C3. Number of regulated and sites for each 
comparison is summarised (part A, last panel); strict regulated sites additionally require >1 replicate and that μ±1.96σ does not include 
1. Part B of the data analysis workflow has been designed to generate seeds for subsequent network analysis; it is based on Quantitative 
Proteomics (QP) dataset [QP requires all channels to be quantified but with a less stringent FDR (5%)] to allow a broad pool of initial seeds 
while HC dataset is used to filter pathway results. Number of proteins for C1 and C3 is shown (part B, last panel). See also Supplementary 
Tables 1–6 and Supplementary Figure 2 (for replicate correlations) and Supplementary Figure 4 (for comparison of HC and QP datasets).
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Phosphoproteomics (QP) dataset comprising only 
phosphopeptides where reporter ions for all four 
experimental conditions were observed with <5% 
FDR (Figure 2, part B and Supplementary Table 6).  
Between HC and QP 74% of proteins are commonly 
identified (Supplementary Figure 4), with QP providing 
a broader set of seeds for exploration of network 

differences beyond just those most stringently observed 
in HC. However, the HC dataset is subsequently 
employed as a quality control filter to retain only the 
most relevant and confidently identified biological 
pathways (Figure 2, part B). The network seed proteins 
derived from the QP dataset and their overlap with HC 
proteins are shown in Supplementary Table 6. 

Figure 3: Most significantly regulated phosphosites identified from comparisons of WT vs FUS (C1) and WT vs WT-
FGF (C3). HC phosphopeptides are shown where mean C1 or C3 ratio shows both a substantial (|log2(comparison ratio)| > 0.5) and a 
significant (using +/–1.96σ) change. Phosphosites observed in only one replicate are excluded. Error bars show 2 standard deviations 
(log corrected). Where available, reference proteome levels are indicated as grey boxes. Peptides also passing SigB significance shown 
as (*).
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Differential pathway analysis

Our analysis workflow (DRAGON) has been 
designed to identify differences in signalling pathways 
under different cellular conditions and applied here 
to examine: (a) to what extent downstream signalling 
in FUS is constitutively activated and similar to 
physiological WT FGF signalling and, importantly, 
(b) to also identify specific differences in signalling 
pathways between them (see Methods and Supplementary 
Experimental Procedures). We therefore focused on the 
C1 and C3 comparisons of the MS-based datasets. The 
workflow summarised in Figure 4 expands the scope of 
the phosphosite regulation analysis so far considered  
(Figures 1 and 3) to include predicted kinase-substrate 
interactions, broader functional interactions on a human 
signalling network and significant differences in biological 
pathways implicated in each of the conditions. Figure 4 
summarises the bioinformatics data sources, tools and 
methods applied to identify differences in pathways 
between C1 and C3 (for full detail see Supplementary 
Experimental Procedures).

Differential pathway analysis was performed at the 
protein-level, i.e. only the distinct proteins were mapped 

onto the network. Where multiple phosphosites were 
identified for a protein it was considered a “substrate-
seed” if any phosphosite met the criteria for significant up 
or down regulation; up/down regulation is defined using 
the QP dataset for those phosphopeptides with quantitation 
ratios (for a given comparison) strictly greater than or less 
than 1 using the standard deviation limits of 1.96σ (thus 
phosphopeptides observed only once are excluded). For 
C1, the 74 substrate-seeds identified led to 86 possible 
kinase-seeds, of which AKT1 and GSK3B were also 
substrates. For C3, the 72 substrate seeds gave 83 possible 
kinases, of which EGFR, GSK3β, PTK6 and PRKCD 
were also substrates (Supplementary Table 6).

Seed proteins for C1 and C3 were separately mapped 
onto a human signalling network, from which proteins had 
been removed (filtered) that were unlikely to be expressed 
in either normal or tumour urothelial cells (for detailed 
network construction see Supplementary Information). 
From the 158 C1 seeds, 154 were mapped, excluding 
FYN (filtered), HDGFRP2, SRPR and kinase HCK (not 
in network). For the 151 C3 seeds, 147 were mapped, 
excluding FYN (filtered), HCK, MST4 and MAP2K6 (not 
in network). We extended the mapped seeds to include 
related proteins on the filtered network using a disease-

Figure 4: Differential pathway and network analysis process - DRAGON protocol - to identify networks specific to 
either FUS or WT signaling. DRAGON uniquely expands and filters protein interaction networks. Depicted multiple steps cover: 
(i) expansion of observed altered phosphosites to include predicted kinases; (ii) filtering by tissue expression; (iii) seeding and expansion 
of a general PPI network (the HSN) through a graph-kernel to create an effective network focused on each comparison; (iv) expansion of 
the proteins in each comparison using a module detection algorithm to give sets of proteins significantly implicated in signalling events; 
(v) enrichment in module sets for Reactome pathways; (vi) filtering by subtraction of pathway lists to remove identical hits in each 
comparison; (vii) filtering differential pathways to exclude those without at least one HC protein and (viii) detailed functional network 
expansion around specific pathways.
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module-finding algorithm DIAMOnD [31], returning an 
additional 200 proteins for each condition. DIAMOnD 
attempts to find proteins significantly related to seeds 
using a searching/scoring algorithm that finds more 
distantly connected proteins than methods using module-
detection by clustering using local network topology; the 
resulting protein sets have been shown to correlate better 
with those known to be disease-associated [32].

The final DIAMOnD-enriched lists of proteins 
for C1 (n = 354) and C3 (n = 347) were independently 
tested for Reactome pathway enrichment, resulting 
in 322 pathways for C1 and 309 for C3 (FDR 1%). 
Differential pathways—those that highlight key processes 
differing between FUS and WT-FGF signalling—were 
found by considering the total sets of ReactomeIDs 
returned and applying the following three set operations 
(RID=Reactome pathway ID):

unique C1 = {C1RID} – {C3RID};
unique C3 = {C3RID} – {C1RID};

shared C1 & C3 = {C1RID} ∩ {C3RID}

We found 23 pathways unique to C1, 10 unique 
to C3 and 299 shared—i.e. found in both C1 and C3. To 
ensure high-quality pathways, we removed any that did 
not contain at least one protein from our HC dataset in the 
list of protein ‘hits’ used to identify the pathway, resulting 
in nine pathways in C1 and five in C3. To find pathways 
common to C1 and C3 with evidence of differential 
regulation (i.e., due to different proteins identified as 
part of the same pathway between the two conditions), 
we identified pathways having 25% more protein hits in 
one condition as being more significantly associated with 
that condition. Of the 299 common pathways, high-quality  
C1-C3-shared pathways included three with preferential 
C1 involvement and six with preferential C3 involvement.

The results of the pathway analysis are summarised 
using a network-style diagram in Figure 5, which 
shows pathways specific to each condition (C1-only,  
C3-only, along with associated proteins), the 
differentially regulated common pathways (C1-C3-
shared) and the proteins that connect them. This analysis 
helps distil the complexity of the phosphoproteome 
datasets into sets of specific biological processes likely 
to underlie differential signalling and focus on the most 
important aspects underlying the oncogenic potential 
of the FGFR3-TACC3 fusion found in many cancer 
types. From a total of 2050 human Reactome pathways, 
Figure 5 displays the 23 most significant for differential 
regulation between C1 and C3 and, where found, proteins 
common to multiple pathways.

Differential regulation in C1 and C3

For C3-only, the strongest evidence for active 
pathways not found in C1 is the pair formed from 

(green) pathways [3] - ‘Apoptotic execution phase’ and 
[4] - ‘Apoptotic cleavage of cellular proteins’ (Figure 5). 
Involvement of these apoptosis pathways only in the 
WT-FGF condition and not in FUS is strongly supported 
by three HC proteins in common: PTK2, DSP and 
PRKCD. Additionally, PTK2 is shared with pathway 
[2] - ‘Netrin mediated repulsion signals’ and the C1-C3-
shared differentially regulated pathways [5] - ‘Netrin-1 
signaling’ and 6 - ‘DCC mediated attractive signaling’ 
(DCCs form netrin-1 receptors) (Figure 5). Loss of 
Netrin-1 signalling is implicated in the inhibition of p53-
dependent apoptosis [33]. Additionally, C3-only pathway 
[1] - ‘Regulation of TP53 Activity through Acetylation’ 
provides further evidence that the regulation of TP53 
activity and execution of apoptosis occur only in the WT-
FGF condition and are not present in FUS. A detailed 
functional interaction network centred on ‘Apoptotic 
execution phase’ and ‘Apoptotic cleavage of cellular 
proteins’, including phospho-signalling, is shown in 
Supplementary Figure 5.

The strongest evidence for C1-only processes 
outlined in Figure 5 are the chaperone activation 
pathways (1 & 2), each having three HC proteins 
identified: LMNA, TLN1 and SSR1. Additionally, 
via LMNA, these chaperone pathways appear to be 
connected to involvement in depolymerisation of the 
nuclear lamina (C1-only, pathway 5), which contains 
the HC protein TMPO. A further pathway in C1-only 
(9 - ‘uptake and actions of bacterial toxins’) involves 
HC protein HSP90AB1 that is part of the heat-shock 
response. The prominent involvement of chaperone 
pathways alongside a heat-shock response is evidence 
that expression of FGFR3-TACC3 fusion alone promotes 
stress response pathways in this cell line, independent of 
other stress-promoting factors. The localised phospho-
signalling context of LMNA, SSR1 and TLN1 is shown in 
Supplementary Figure 6. From this, one of the strongest 
C1-only phosphosites (TLN1 Y70) is predicted to be 
phosphorylated by FGR, which has a functional interaction 
with SHC1. Evidence supporting SHC1 involvement 
comes from interactions with proteins EGFR and EPHA2, 
both identified in the proteome dataset. LMNA shows 
reduced phosphorylation at S404/6, with the most likely 
kinase being GSK3A, which is also implicated in both 
AKT1 phosphosite up-regulation (S126/9) as well as 
up-regulation at S215 and down regulation at S219 of 
GSK3B.

We additionally analysed C1-only pathways  
3 & 4, which form a pair of pathways relating to TP53 
expression and degradation (Figure 5 and Figure 6A). 
Although TP53 and MDM2 are not observed directly 
(i.e. in HC, QP or proteome), we are able to infer their 
likely role in FUS signalling via our DRAGON protocol 
and provide a network of their interactions (based on 
data from Reactome FIViz [34]) including many proteins 
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that are directly observed in our proteomics datasets; 
examples include AKT1, EIF4B and GSK3B (Figure 6A 
and Supplementary Table 1). Together, these networks and 
pathways imply that FUS signalling could act to reduce 
apoptosis via enhanced signalling of the AKT / mTOR 
pathways, a pro-survival outcome mediated via activation 
of MDM2 [35].

Shared proteins and pathways provide evidence 
for interplay between C1-only and C3-only processes 

(Figure 5). For example, although the pathway C1-only 
[7] - ‘Negative regulation of MET activity’ is supported 
by only one HC protein, HGS, this is one of the clearest 
up-regulated phosphosites in C1-only (Figure 3A) and this 
pathway connects (via GRB2) to the significantly fusion-
regulated C1-C3-shared pathway [2] - ‘Spry regulation of 
FGF signalling’.

Considering the potential importance of the link 
between FGFR3-TACC3 and TP53 for the process of 

Figure 5: Overview of differentially regulated pathways derived from comparisons of WT vs FUS (C1) and WT 
vs WT-FGF (C3). (A) Diagram showing overall connectivity. Reactome pathways uniquely affected in C1 (left, red numbered 
rectangles) or C3 (right, green numbered rectangles) are shown along with links to protein ‘hits’ on each pathway (ellipses). Pathways 
common to both conditions, but with differential involvement of proteins are shown in blue, with red or green borders indicating 
preferential C1 or C3 involvement respectively. Pathways and proteins that link the two conditions are shown if there is evidence of 
differential involvement and hidden otherwise. Pathways directly connected in the Reactome hierarchy (i.e. related) are connected with 
zigzags. Proteins are coloured according to their respective pathways (red: C1-only, green: C3-only, purple: linker between C1 & C3 
and blue: part of a common pathway that may also link C1 or C3). Confidence of protein identification indicated by reference to HC 
(*, bold ellipse) or QP (bold ellipse) datasets. (B) Summary of proteins and the Reactome pathway descriptions for each differentially 
regulated Reactome pathway. Red: C1-only pathway / protein; green: C3-only; purple: protein linking C1-only and C3-only pathways; 
blue: pathway common to both C1 and C3 but with differentially involved proteins. Protein confidence levels: (*bold) - High, (bold) - 
Medium and (non-bold) - from network analyses. The pathways are numbered by increasing FDR, except where two have been merged.
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oncogenesis, we performed further experiments using 
NHUC cell lines (Figure 6B). We used FGF1 non-
stimulated and stimulated conditions based on previous 
reports that FGF1 not only stimulates WT FGFR3 but also 
enhances signalling by FGFR3-TACC3 fusion [20]. We 
similarly observed higher p-ERK following stimulation 
in both NHUC cells expressing FGFR3-TACC3 and the 
original urothelial cancer cell line RT112 (Figure 6B, 
left panel). Quantitation of TP53 amounts under these 
conditions, in contrast, revealed a significant reduction, 

which was not detected in cells expressing WT FGFR3 
(Figure 6B, right panel). 

DISCUSSION

FGFR-TACC fusions have emerged as one of the 
most significant chromosomal translocations in a range of 
cancer types [10–13]. One of the challenges related to a 
better understanding of the function of novel fusion kinase 
proteins has been to identify the signalling connectivity 

Figure 6: Further analysis of the relationship between FUS and TP53 based on C1 Reactome pathways 3 and 4. (A) 
Network diagram expanding of local functional interactions around pathways for the regulation of TP53 expression and degradation  
(C1-only, 3 & 4). Observed phosphoproteins (ovals) and predicted interacting kinases (rectangles; hexagons if also substrate) shown 
with significant up or down regulated phosphosite changes (red/green lines respectively). (QP proteins medium grey border; HC thick 
grey border; proteome yellow border). The diagram shows the central importance of AKT1 in FUS in terms of multiple predicted 
functional interactions, including TP53, EIF4B, GSK3B and PDK1. AKT1, 2 and 3 all have functional interactions with either TP53 or 
MDM2. The role of the predicted ATM kinase in these interactions is supported by links to substrates LMNA and HMGA2. (B) Western 
blotting (left panel) showing p-ERK and TP53 levels in NHUC cells stably expressing FGFR3 (IIIb) WT or FGFR3-TACC3 and the 
RT112 cell line following stimulation with 100 ng/ml FGF1 and 100 IU/ml Heparin for the indicated time points. GAPDH was used as a 
loading control. Quantification of TP53 levels after 24-hour stimulation compared to unstimulated cells (right panel) shows that TP53 is 
significantly down-regulated in the RT112 cells and in the NHUC FGFR3-TACC3 expressing cells, whereas no change is seen in NHUC 
cells expressing FGFR3 (IIIb) WT (n = 4 separate blots from 2 biological repeats, ± SEM). Data was analysed by multiple one-sample 
t-tests to a normalised control of 1 with **P < 0.01 and ***P < 0.001.
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that is either modulated or completely “rewired” by them, 
since it is likely that these events are important in the 
transforming ability of the fusion kinase. We here address 
this challenge by focusing on FGFR3-TACC3 fusion in 
the context of a human urothelial cell line (TERT-NHUC) 
with particular relevance for development of bladder 
cancer.

The combination of powerful individual 
bioinformatics tools and databases into a novel analysis 
protocol, DRAGON, allows data from a large number 
of phosphosite quantifications to be interpreted in terms 
of the differentially affected pathways between two 
comparisons, without requiring prior assumptions as to 
those most likely affected. DRAGON uniquely expands 
and filters protein interaction networks in multiple steps 
(Figure 4 and Supplementary Experimental Procedures). 
DRAGON thus provides a succinct interpretation of 
phosphosite changes by using both local (kinase-substrate) 
and genome wide (biological pathway) signalling contexts. 
The final DIAMOnD-enriched lists of proteins for C1  
(n = 354) and C3 (n = 347) and the networks of functional 
interactions (Figures 5, 6, Supplementary Figures 5, 6) are 
consistent with increasing evidence that cells are highly 
integrated complex systems in which functional changes 
may be reminiscent of phase changes and potentially 
involve hundreds of proteins [36, 37]. Proteome-wide 
data and careful filtering are needed to identify the most 
relevant protein/pathway networks and to eliminate 
unlikely and unhelpful predictions. 

In the context of changes in phosphorylation, we 
found 9 pathways significantly regulated only in the 
cell line expressing FGFR3-TACC3 fusion, including 3 
related to chaperone activation and stress response and 
2 to regulation of TP53 expression and degradation. Of 
the 5 pathways most clearly significantly regulated only 
by stimulation of the WT FGFR3, 2 relate to apoptotic 
execution phase, with a further pathway governing TP53 
regulation by acetylation. These mutually exclusive sets 
suggest that in addition to modulation of the nine common 
pathways identified in our experiments, there are also  
“re-wiring” differences between FUS and WT cells.

While the specific observed differences require 
further investigation, their potential significance can be 
further considered based on information from previous 
studies of bladder and other cancers and related cancer 
cell lines. With respect to unique pathways regulating 
chaperone activation and stress response (Figure 5), some 
of the pathways (ER stress response) have been well-
established as a consequence of oncogene expression 
in general and a higher rate of protein synthesis; 
accumulating evidence indicates that this stress response 
contributes to the development of cancer, affecting diverse 
aspects of the disease [38, 39]. In contrast, the link with the 
HSP90 chaperone system, has been previously associated 
with a subset of proteins (clients) including oncogenic 
fusion kinases [40, 41] and specifically documented for 

FGFR3-TACC3 fusion in the context of a bladder cancer 
cell line, RT112 [42]. The enhanced dependence of the 
FGFR3-TACC3 fusion on the functional HSP90 has been 
documented by the loss of FGFR3-TACC3 fusion protein 
expression and depletion of multiple oncogenic signalling 
proteins in RT112 cells by a selective HSP90 inhibitor, 
resulting in potent cytotoxicity. Therefore, the increase in 
the abundance and/or functionality of the HSP90 system 
would provide considerable advantage to affected cells 
by maintaining overexpression levels of FGFR3-TACC3, 
associated with this chromosomal translocation. All of 
these observations support the conclusion that our methods 
are correctly identifying important functional differences.

Of significant interest are highlighted links between 
FGFR3-TACC3 and TP53 (Figures 5 and 6). Notably, the 
role of the master tumour suppressor TP53 in development 
of bladder cancer has been extensively studied with 
aberrations in this gene linked to more advanced and 
invasive stages of bladder cancer, i.e. cancer progression 
[18, 43]. In contrast, mutations in FGFR3 are present in 
both earlier and latter stages but with higher frequencies 
(about 80%) at early stages of cancer initiation and are 
regarded as a distinct path in urothelial tumorigenesis. 
Our phosphoproteomic data, supported by follow up 
functional studies, demonstrate for the first time that the 
FGFR3-TACC3 fusion protein is able to down-regulate 
TP53, both in the TERT-NHUC cell line and in the fully 
transformed RT112 cell line (Figure 6). Although not 
noted as a common effect, there are examples of a link 
between oncogene action and down-regulation of the wild-
type TP53; among others, they include overexpression 
of HER-2/neu in breast cancer cell lines, NPM-ALK 
fusion protein in ALK-expressing lymphoma, cancer 
associated fibroblasts, and interestingly, another FGFR3-
fusion protein, FGFR3–BAIAP2L1, where evidence has 
been based on a comprehensive gene expression analysis  
[35, 44–46]. Like FGFR3-TACC3, FGFR3–BAIAP2L1 
has been identified in different cancers, including bladder 
cancer clinical samples and a bladder cancer cell line 
(SW780) [9, 44]. Both RT112 and SW780 urothelial 
cancer cell lines have the WT TP53; analysis of GMB 
clinical samples expressing FGFR3-TACC3, similarly, 
did not report correlation with mutations in TP53 [14]. 
It is possible that this FGFR3-fusion signalling to down 
regulate functions of TP53 in the context of urothelial 
cells contributes to changes towards the transformed 
phenotype even in the absence of TP53 mutations, initially 
by maintaining pre-malignant phenotype and allowing for 
accumulation of additional genetic alterations.

FGFR-TACC fusions are not limited to bladder 
cancer and have been observed in a range of different 
cancer types suggesting that some of the key differences 
could be common regardless of the tumour origin  
[10–13]. However, future global studies covering different 
cell types are needed to identify such key, common 
alterations. Similarly, the higher sensitivity to FGFR-
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inhibitors observed in FGFR3-fusion expressing cancer 
cells, compared to FGFR3 point mutations [19], could 
be better understood by comprehensive analyses and 
comparison of cellular networks linked to these different 
FGFR3 aberrations.

Overall, the tools used here offer a powerful 
approach for generating insights into cellular processes 
dysregulated by the fusion that contribute to subsequent 
transformation or maintenance of the cancer phenotype, 
thus providing a route to suggest additional or alternative 
therapeutic targets and potential biomarkers. While a 
number of the proteins/pathways/networks we identified 
have previously been individually associated with cancer 
in various cell types and contexts, the present results 
provide evidence of integrated interactions between 
these networks in a single system. Phosphoproteomics 
has thus provided an attractive initial overview of the 
complexity, but unravelling phase changes in highly 
integrated complex systems will require additional data 
and cell types. The DRAGON approach is not limited to 
phosphorylation networks and can potentially be applied 
in other analytical contexts of genomics, such as mRNA 
transcription, or proteomics, including regulation of 
protein abundance by degradation or translational control, 
other post-translation modifications and subcellular spatial 
modulation of function.

MATERIALS AND METHODS

Cell culture and FGF1 stimulation

Telomerase immortalised normal human urothelial 
cells (TERT-NHUC) expressing wild-type FGFR3 (IIIb) 
or FGFR3-TACC3 were generated previously [9] and 
cultured using the Keratinocyte Growth Medium Kit 2 
(Promocell, Heidelberg, Germany). The RT112 bladder 
cell line was cultured in RPMI supplemented with 10% 
foetal bovine serum (Thermo Fisher Scientific, UK). Cells 
were maintained at 37°C, 5% CO2.

For FGF1 stimulation, cells were serum/supplement 
starved for 1 hour before incubation with 100 IU/ml 
heparin (Sigma-Aldrich, GIllingham, UK) with or without 
100 ng/ml FGF1 (R&D Systems) for the indicated time 
points.

Protein extraction, trypsinization and labelling

For proteomic experiments, protein lysates were 
obtained using RIPA buffer (Thermo Fisher Scientific, 
UK) supplemented with protease inhibitory cocktail 
(Sigma-Aldrich, Gillingham, UK) and 0.3 mM Na3VO4. 
Protein concentration was determined with the Pierce™ 
BCA Protein Assay Kit (Thermo Fisher Scientific, UK).

Samples were diluted to 1 mg/ml in 0.1 M TEAB, 
reduced with 10 mM DTT at 60°C, and alkylated with  

25 mM IAA. Trypsinization was carried out for 16 hours 
at 37°C using Trypsin-Gold (Promega, Southampton, UK). 
Peptides were desalted using the Sep-Pak C18 cartridges 
(Waters, Elmstree, UK) before peptide labelling with the 
TMTsixplex™ Isobaric Label Reagent (Thermo Fisher 
Scientific, UK) kit according to the manufacturer’s 
instructions. Additional information can be found in the 
Supplementary Materials and Methods.

Phosphopeptide enrichment workflows

Enrichment of the fraction of phosphorylated 
peptides utilised antibody precipitation coupled with 
TiO2 chromatography as described previously [26], with 
minor changes. For the anti-phosphotytrosine peptide 
immunoprecipitation, the antibody PT66 was replaced 
with pY1000 (Cell Signalling Technology, Hitchin, 
Hertfordshire, UK). Elution was performed with 0.5% 
formic acid, negating the need for an additional clean-
up step. Additional information can be found in the 
Supplementary Materials and Methods.

LC MS-MS and proteomic/phosphoproteomic 
data identification and quantification

LC-MS/MS analysis was performed using an 
LTQ-Velos Orbitrap mass spectrometer (Thermo 
Fisher Scientific) as described previously [26, 47]. A 
detailed description of data analysis can be found in the 
Supplementary Materials and Methods.

Immunoprecipitation and blotting

Immunoblotting was carried out using 15 or 30 µg  
of total protein lysate as described previously. The 
following primary antibodies were used: anti-β-actin and 
anti-Laminin (Abcam, Cambridge, UK); anti-ERK1 K-23 
and anti-FGFR3 B-9 (Santa Cruz Biotechnology); anti-
Phospho ERK1/2, T202/Y204, anti-α-E-Catenin 23B2 and 
anti-Phospho-α-E-Catenin S652 (Cell Signalling, Hitchin, 
Hertfordshire, UK). Anti-mouse or anti-rabbit IgG HRP 
linked secondary antibodies (Cell Signalling, Hitchin, 
Hertfordshire, UK) were used.

The PathScan® Intracellular Signalling Array Kit 
(Cell Signalling, Hitchin, Hertfordshire, UK) was used 
according to manufacturer’s instructions to explore the 
phosphorylation status of proteins fundamental to signal 
transduction. Slide images were captured using Odyssey 
Fc System (Li-Cor Biosciences).

Immunoprecipitation for both FGFR3 WT and 
FGFR3-TACC3 (RT112) fusion were performed as in 
[48]. Immunoprecipitation of Topoisomerase IIα used 
100 ug of starting material and was precipitated using 
the anti-TOPO IIα antibody (Cell Signalling, Hitchin, 
Hertfordshire, UK). Eluted protein was probed via 
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immunoblotting using TOPO IIα and pS 1469 TOPO IIα 
antibodies (Cell Signaling, Hitchin, Hertfordshire, UK). 
Additional information can be found in the Supplementary 
Materials and Methods.

Differential pathways analysis by DRAGON 
protocol 

Proteins identified from peptides containing 
significantly altered phosphosites (defined as those sites 
where the quantitation ratio varied by at least 1.96σ with 
respect to WT) were mapped to kinases using NetworKIN 
[29, 49]. NetworKIN calculates an overall likelihood 
ratio that an observed phosphosite was phosphorylated 
by a particular kinase by combining individual likelihood 
ratios derived from local network proximity (via STRING 
[50] network topology) and the probability of interaction 
at the phosphosite’s peptide sequence motif, obtained via 
NetPhorest [51] classifiers. To remove the least likely 
kinases for each site, kinases with likelihoods below 
the median NetworKIN score (~1) were filtered out. An 
effective network was modelled for comparisons C1 and 
C3 by extracting a sub-network containing the combined 
set of QP identified proteins and their predicted interacting 
kinase or SH2-domain containing proteins (together 
forming the protein “seeds”), and their network neighbours 
from a comprehensive human signalling network 
compiled from Pathway Commons [52]. Each resulting 
effective network was filtered using Human Protein Atlas 
[53] expression levels to remove proteins unlikely to be 
expressed in either urothelial cancer or normal urothelial 
cells. The seed set was expanded by finding a further 200 
disease-related proteins for each condition by applying 
the DIAMOnD [31] algorithm to identify proteins 
showing significant connectivity with seeds on the HSN. 
For each condition in turn, Reactome [28, 54] pathway 
enrichment was tested using the combined set of seeds 
and significantly connected proteins, discarding pathways 
that did not contain at least one HC protein. The resulting 
pathway lists were compared to identify those unique to 
one condition or the other - the “differential pathways”. 
Additionally, pathways common to both conditions that 
contained 25% more protein hits in either one were 
marked as “differentially regulated shared pathways”. 
Detailed information can be found in the Supplementary 
Materials and Methods.
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