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ABSTRACT
Aim: A Mendelian randomization study (MRS) can be linked to a “natural” 

randomized controlled trial in order to avoid potential bias of observational 
epidemiology. We aimed to study the possible association between serum urate (SU) 
and total bilirubin (TBIL) using MRS.

Materials and Methods: An observational epidemiological study using ordinary 
least squares (OLS) regression and MRS using two-stage least square (TLS) regression 
was conducted to assess the effect of SU on TBIL. The comparison between the OLS 
regression and the TLS regression was analyzed by the Durbin-Hausman test. If 
the p value is significant, it suggests that the OLS regression cannot evaluate the 
relationship between exposure and outcome, and the TLS regression is precise; while 
if the p value is not significant, there would be no significant difference between the 
two regressions.

Results: A total of 3,753 subjects were analyzed. In OLS regression, there was 
no significant association between SU and TBIL in all subjects and subgroup analysis 
(all p > 0.05). However, MRS revealed a negative correlation between SU and TBIL 
after adjustment for confounders (beta = –0.021, p = 0.010). Further analysis 
was conducted in different SU subgroups, and results show that elevated SU was 
associated with a significant reduction in TBIL after adjustment for hyperuricemic 
subjects (beta = –0.053, p = 0.027). In addition, the results using the Durbin-
Hausman test further confirmed a negative effect of SU on TBIL (p = 0.002 and 
0.010, respectively).

Conclusions: This research shows for the first time that elevated SU was a 
potential causal factor in the reduction of TBIL and it provides strong evidence to 
resolve the controversial association between SU and TBIL.
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INTRODUCTION

Uric acid is the end-product of purine metabolism 
in humans and is controlled by several genetic factors [1], 
such as ABCG2 and SLC2A9 [2]. It has been reported that 
hyperuricemia can be one of the factors inducing oxidative 
stress followed by a pro-inflammatory process and 
endocrine dysfunction in adipose tissue [3]. Bilirubin had 
powerful antioxidant properties [4–6] and could be oxidized 
to biliverdin by reactive oxygen species (ROS) which could 
then protect cells from oxidative stress [7]. Observational 
studies about the relationship between serum urate (SU) 
and total bilirubin (TBIL) levels were controversial. An 
observational study conducted in Korea has suggested that 
SU positively correlates with TBIL levels [8]. However, 
two reports found no association between SU and TBIL 
in Korea and Japan [9, 10]. Surprisingly, a researcher in 
Serbia found that SU were positively associated with TBIL 
in men, but not in women [11]. It was generally known that 
the results from conventional observational epidemiology 
were more likely misinterpreted by a variety of confounders, 
such as lifestyle, socioeconomic factors, baseline health 
status, reverse causation, selected bias or other potentially 
unknown factors [12]. For example, SU levels were strongly 
affected by hormonal factors [13], body composition [14], 
diuretic use [15] and son on. Therefore, it was difficult 
to confirm whether SU was a real mediator of TBIL or 
whether the observed relationship between SU and TBIL 
was attributable to confounders. Therefore, it is difficult to 
confirm whether SU is a real causal of TBIL or whether the 
observed relationship between SU and TBIL was attributable 
to confounders.

The Mendelian randomization study (MRS) 
has been linked to a “natural” randomized controlled 
trial [16, 17]. It is an approach to identify genetic 
variants (instrumental variables) that represent the 
intermediate phenotype (serum uric acid in this study) 
and the effect of the instrument on outcome (TBIL in 
this study). Therefore, it can be used to study whether 
an intermediate phenotype has a causal effect on 
outcome [18]. A study with genetic variants employed 
as instrumental variable could avoid potential bias of 
observational epidemiology that comes from confounders 
and reverse causation [19, 20]. MRS has developed and 
progressed methodologically and increasingly applied 
in epidemiology to measure the causal relationship 
between exposures and outcomes in recent years. In 
addition, it has been gradually expanding the landscape 
of causal relationships in non-communicable chronic 
diseases [21]. In addition, the combined information 
of multiple variants as instruments in the study would 
increase statistical power to test the relationship between 
exposures and outcomes [22–24] and would avoid 
potential bias caused by weak instruments [25].

In this study, we used the MRS with genetic 
variants as the instrumental variable to investigate the 

potentially causal relationship between SU and TBIL 
levels.

RESULTS

The reliability of the instrumental variable

A total of 3,753 subjects, including 2,713 males 
and 1,040 females, were recruited in this study. The 
mean age of the population was 69.43 ± 8.96 years 
(Table 1). The total genetic risk score was selected as 
the instrumental variable in the Mendelian randomization 
analysis. There was a robust association between the total 
genetic risk score and SU; the F-statistic was 119.00. 
In addition, R2 represents the variance in SU explained 
by the instrumental variable, and the total genetic risk 
score explained 3.1% of the variance in SU in our 
population (Table 2). Furthermore, the other biochemical 
variables and the relationship between total genetic risk 
score and potential confounders are shown in Table 3. 
There was no relationship between total genetic risk 
score and confounders with p values greater than 0.05 
after adjustment (age: p = 0.086; gender: p = 0.090; 
BMI: p = 0.573; FBG: p = 0.765; BUN: p = 0.765; 
respectively), suggesting no evidence for relationship 
between the total genetic risk score and other factors. 
Therefore, the selected instrumental variables in our 
MRS were adequate.

Elevated serum urate was a potential causal 
factor in reduction of TBIL

The results of conventional epidemiological analysis 
by the OLS method and Mendelian randomization analysis 
with the TLS approach are shown in Table 4. In the OLS 
regression, there was no significant relationship between 
SU and TBIL (for males: beta = -0.003; p = 0.061; for 
females: beta = 0.002, p = 0.201; respectively); after 
adjusting for age, BMI, BUN and FBG, similar results 
were found between SU and TBIL in gender subgroups 
(male: beta = -0.001, p = 0.589; female: beta = 0.002, p = 
0.242; respectively). However, using the TLS approach, a 
negative correlation between SU and TBIL was identified 
(beta = -0.021, p = 0.009). In gender subgroup analysis, 
the negative correlation was significant in males (beta = 
-0.020, p = 0.035) but not in females (beta = -0.006, p = 
0.491). Similar results were also observed after adjustment 
for confounders (for all: beta = -0.021, p = 0.010; for 
males: beta = -0.021, p = 0.037; for females: beta = 
-0.006, p = 0.491). In addition, the comparison between 
the OLS analysis and the TLS analysis was calculated, and 
a significant difference was found in the adjusted analysis 
(for all: DHp = 0.002; for males: DHp = 0.038; for 
females: DHp = 0.320). Therefore, these results suggest 
that elevated serum urate was a potential causal factor in 
reduction of TBIL.
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Elevated serum urate was a potential causal 
factor in reduction of TBIL in individuals with 
hyperuricemia

Further studies were conducted in normal and 
hyperuricemia subgroups (Table 5). In the normal SU 
subgroup, a significant association between SU and TBIL 
was found by the OLS regression (for crude: beta = 0.013, p < 
0.001; for adjusted: beta = 0.011, p < 0.001). However, when 
stratified by gender, no significant association was found in 
either males or females (p > 0.05). In the TLS regression 
analysis, there was no significant association between SU 
and TBIL (for crude: beta = -0.047, p = 0.109; for adjusted: 
beta = -0.047, p = 0.092), and the DHp value was 0.025 
and 0.002 in crude and adjusted analysis respectively, 
suggesting the result of OLS regression was affected by 
potential confounders or reverse causality, because it was 
different from the results of the TLS regression. Moreover, 
no association was observed between SU and TBIL in males 
(for crude: beta = 0.006, p = 0.085; for adjusted: beta = 0.007, 
p = 0.063) and females (for crude: beta = 0.018, p = 0.477; 
for adjusted: beta = 0.010, p = 0.698).

In addition, the OLS and TLS regression was 
also performed in hyperuricemia subjects (Table 5). In 
the OLS regression, no relationship between SU and 
TBIL was found in both crude (for all: beta = -0.003, p 
= 0.441; for male: beta = -0.007, p = 0.141; for female: 
beta = -0.007, p = 0.141) and adjusted analysis (for all: 
beta = 0.001, p = 0.854; for male: beta = -0.003, p = 
0.523; for female: beta = 0.010, p = 0.147). In the TLS 
regression analysis, there was no significant relationship 

between SU and TBIL in crude analysis (beta = -0.053, 
p = 0.053), but after adjusting for confounders, increased 
SU was associated with significant reduction of TBIL 
in hyperuricemia individuals (beta = -0.053, p = 0.027); 
the Durbin-Hausman test provided further evidence of a 
negative effect of SU on TBIL (DHp = 0.010). Similarly, 
further analysis was conducted in gender subgroups, 
and significant association was found in males (beta 
= -0.056, p = 0.049) but not in females (beta = -0.107,  
p = 0.240) after adjustment for age, BMI, BUN and FBG. 
The Durbin-Hausman test provided further evidence of a 
negative effect of SU on TBIL (DHp = 0.039 and 0.050, 
respectively).

DISCUSSION

The theoretical foundation of Mendelian 
randomization depends on three assumptions [12, 26, 27]. 
(I) The instrumental variable is robustly associated with 
modifiable exposure of interest, with the F-statistic being 
considerably greater than ten [28]. In this study, the 
F-statistic was 119.00 and the R2 was 0.031 (Table 2), 
indicating a robust relationship between the genetic 
risk score (instrumental variable) and SU (exposure 
of interest). (II) The instrumental variables are not 
associated with confounding factors that cause biased 
conventional epidemiological associations between 
modifiable risk factors and outcomes. This assumption 
could be examined by verifying the instrumental variable 
for association by multivariate linear regression with 
adjusted for confounders (Table 3). There was no evidence 

Table 1: Summary of the characteristics of the subjects
All (3,753) Males (2,713) Females (1,040)  

Mean SD Mean SD Mean SD
Age (years) 69.43 8.96 70.49 8.96 66.69 8.36
BMI (kg/m2) 24.80 3.38 24.67 3.26 25.13 3.67
BUN (mmol/L) 5.65 2.10 5.78 2.29 5.33 1.44
FBG (mmol/L) 5.59 1.61 5.60 1.64 5.59 1.54
TBIL (µmol/L) 19.25 8.21 20.11 8.62 17.01 6.56
SU (µmol/L) 347.24 101.07 360.27 95.61 312.21 106.45

BMI: Body mass index; BUN: Blood urea nitrogen; FBG: Fasting blood glucose; TBIL: Total bilirubin; SU: Serum urate; 
SD: Standard deviation

Table 2: Association between uric acid transporter genetic risk score and SU 
F-statistic R2 p

Overall 119.00 0.031 < 0.001
Males 127.50 0.045 < 0.001
Females 69.12 0.062 < 0.001

The F-statistic represents the strength between the instrumental variables and UA; R2 represents the variance in SU explained 
by the instrumental variables.
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for a relationship between the uric acid transporter as the 
instrumental variable and any other confounders tested, all 
p values were greater than 0.05 (age, gender, BMI, FBG 
and BUN). (III) The instrumental variables are related to 
the outcome only via its association with the modifiable 
exposure. This assumption was difficult to assess, and 
should be considered Despite this, the possibility of 
pleiotropic effects of the uric transporter instrumental 
variable on TBIL levels was difficult to exclude [29]. 
We did note that some of the uric acid transporters 
(particularly ABCG2 [30]) were widely expressed and may 
have pleiotropic effects (i.e. effects on TBIL levels aside 
from or in addition to a direct effect of the serum urate). 
To reduce the possibility of violating the assumption, the 
Mendelian randomization approach was adjusted by age, 

gender, BMI, FBG and BUN in our study. Therefore, we 
were able to show that the selected instrumental variables 
in our MRS were adequate.

This study investigated for the first time the 
association between SU and TBIL levels using MRS. 
The Mendelian randomization employed the TLS 
approach with the uric acid transporter risk score as the 
instrumental variable; the results provided evidence that 
the SU levels were negatively correlated with TBIL. 
The Durbin-Hausman test provided further proof of the 
negative effect between exposure (SU) and outcomes 
(TBIL) with significant differences (DHp = 0.002) in 
the adjusted analysis of TBIL. In addition, the individual 
SNPs were also analyzed in our study (Table 6). At 
ABCG2 (rs1481012), negative beta and significant DHp 

Table 3: Analysis of association of SU genetic risk scores with tested confounders
beta SE P

Age
All Crude -0.105 0.047 0.027

Adjusted -0.084 0.049 0.086
Males Crude -0.126 0.051 0.012

Adjusted -0.112 5.655 0.037
Females Crude 0.083 0.111 0.455

Adjusted 0.055 0.113 0.625
FBG
All Crude 0.194 0.263 0.459

Adjusted 0.150 0.266 0.573
Males Crude -0.246 0.278 0.376

Adjusted -0.262 0.279 0.349
Females Crude 1.109 0.600 0.065

Adjusted 0.540 0.624 0.387
BUN
All Crude -0.003 0.202 0.986

Adjusted 0.061 0.203 0.765
Males Crude 0.028 0.198 0.886

Adjusted 0.065 0.200 0.746
Females Crude 1.084 0.640 0.094

Adjusted 0.965 0.655 0.141
BMI
All Crude 0.149 0.126 0.235

Adjusted 0.102 0.203 0.765
Males Crude 0.223 0.140 0.112

Adjusted 0.182 0.143 0.199
Females Crude 0.269 0.252 0.285

Adjusted 0.206 0254 0.417

Each independent test variable was adjusted by the other three variables (gender has been adjusted in All group). SE: Standard 
error; BMI: Body mass index; BUN: Blood urea nitrogen; FBG: Fasting blood glucose; SE: Standard error.
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values (beta = -0.019, p = 0.024, DHp = 0.006) were 
observed, suggesting the best evidence for a causal 
association between elevated SU and reduction of TBIL 
in this study. We also noted, from the F-statistics and 
R2, that ABCG2 (rs2231137), SLC2A9 (rs16890979) and 
SLC17A1 (rs3799352), were weak instrumental variable 
and contributed very little to this analysis.

The assumption that elevated SU levels decrease the 
TBIL levels via induction of ROS and insulin resistance 
was considered. Tentative evidence was observed to support 
this hypothesis in previously published studies. Increasing 
concentrations of SU levels in the culture media of 
adipocytes induced a further increase in intracellular ROS 
production with activated NADPH [3]; others have reported 
that SU induces oxidative stress in adipocytes, vascular 
smooth muscle cells and human umbilical vein endothelial 

cell [31, 32]; Zhu et al. recently reported that hyperuricemia 
could increase ROS levels [33]. However, bilirubin showed 
powerful antioxidant properties [4–6] and could be 
oxidized to biliverbin by ROS, which can then protect cells 
from oxidative stress [7]. On the side, several studies has 
reported that high uric acid  inhibits insulin signaling and 
induces insulin resistance [33, 34]. Interestingly, bilirubin 
could increase insulin sensitivity in published reported  
[35, 36]. Taken together, these studies support the hypothesis 
that elevated SU levels can lead to increased ROS levels 
and induced insulin resistance, and resulting in reduction 
of TBIL levels. In addition, elevated SU may increase ROS 
levels in females, and 17β-estradiol might inhibit expression 
of ROS [37–39]; therefore, the relationship between SU and 
TBIL was not significant in females. However, we found 
that the association between SU and TBIL is significant in 

Table 4: The OLS regression and the TLS regression analysis of SU against TBIL
The OLS regression The TLS regression DH p

beta SE p beta SE p
All (3753) Crude 0.002 0.001 0.224 –0.021 0.008 0.009 0.003

Adjusted 0.003 0.002 0.025 –0.021 0.008 0.010 0.002
Males (2713) Crude –0.003 0.002 0.061 –0.020 0.010 0.035 0.066

Adjusted –0.001 0.002 0.589 –0.021 0.010 0.037 0.038
Females (1070) Crude 0.002 0.002 0.201 –0.005 0.009 0.604 0.410

Adjusted 0.002 0.002 0.242 –0.006 0.009 0.491 0.320

SE: Standard error; DH p: Durbin-Hausman p value; Adjusted for age, gender (in All), BMI, BUN and FBG; DHp: Durbin-
Hausman p value; TLS: two-stage least square; OLS: ordinary least squares.

Table 5: The OLS regression and the TLS regression analysis of SU against TBIL in participants 
with high and normal SU

Participants The OLS regression The TLS regression DH p
beta SE p beta SE p

Normal SU
All (2794) Crude 0.013 0.003 < 0.001 –0.047 0.029 0.109 0.025

Adjusted 0.011 0.003 < 0.001 –0.047 0.028 0.092 0.002
Males (1975) Crude 0.006 0.004 0.085 –0.037 0.033 0.269 0.180

Adjusted 0.007 0.004 0.063 –0.037 0.033 0.264 0.170
Females (819) Crude –0.001 0.004 0.849 0.018 0.025 0.477 0.450

Adjusted –0.003 0.004 0.415 0.010 0.045 0.698 0.590
Hyperuricemia
All (959) Crude –0.003 0.004 0.441 –0.053 0.028 0.053 0.045

Adjusted 0.001 0.004 0.854 –0.053 0.028 0.027 0.010
Males (733) Crude –0.007 0.005 0.141 –0.046 0.030 0.124 0.170

Adjusted –0.003 0.005 0.523 –0.056 0.028 0.049 0.039
Females (226) Crude 0.007 0.007 0.297 –0.086 0.061 0.158 0.036

Adjusted 0.010 0.007 0.147 –0.107 0.090 0.240 0.050

Adjusted for age, gender (in All), BMI, BUN and FBG; SE: Standard error; TLS: two-stage least square; OLS: ordinary least 
squares; DHp: Durbin-Hausman p value
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males. Although the mechanism that underlies this gender-
specific association is unclear, in this and other studies, 
higher levels of urate and bilirubin were observed in males 
than females [40, 41], which may explain the different 
statistical power of detection of urate-bilirubin associations 
in males vs. females. Our study provides an important 
insight in the understanding the potential mechanism of 
TBIL, elevated serum urate is a potential factor in reduction 
of total bilirubin. In addition, several published studies 
have been reported that bilirubin was a decrease risk factor 
in diabetes mellitus [42, 43] and cardiovascular disease  
[44, 45]. Thus, it was quite important for physician to 
emphasize the risk of elevated SU and subjects should 
be strongly recommended to decrease high level of SU to 
avoid diabetes mellitus and cardiovascular disease.

Our study has a number of strengths. First, we 
used both the OLS and the Mendelian randomization 
approach, not merely a conventional observational 
method, to investigate exposure-outcome relationships 
and the potential relationship between SU and TBIL-
related phenotypes in a Chinese population. This method 
allows a more precise conclusion of causality compared 
with traditional observational studies [19]. Second, the 
instrumental variable consisted of four SNPs, and the 
combined use of multiple variants as instruments increased 
the statistical power to test relationships between exposure 
and outcomes [22–24] and avoided the bias caused by weak 
instruments [25]. Finally, the uric acid transporter SNPs 
used were sufficient to represent the hereditary background 
of the Chinese population [46]. Nevertheless, this analysis 
has several limitations. Our study was conducted only 
with an older population, and further studies should be 
conducted in the general population. The data we analyzed 
was from a single, relatively small cohort, and further 

confirmation on our results in other cohorts from the 
Chinese population would be necessary. And our research 
merely focused on Chinese subjects, and studies using 
Mendelian randomization approach should be repeated in 
other populations.

In summary, although the relationship between SU 
and TBIL was likely to be very complex, our findings 
provide strong evidence that elevated SU levels is a 
potential factor in reduction of TBIL. To the best of our 
knowledge, this is the first research that investigates 
the relation between SU and TBIL using Mendelian 
randomization analysis, and it generated strong evidence 
to resolve the controversial association between SU and 
TBIL. Furthermore, our study provides an important 
insight in the understanding the potential mechanism of 
TBIL.

MATERIALS AND METHODS

Study population

The study population and methods of data collection 
were described previously [46]. This present study 
included 3,753 subjects (2,713 males and 1,040 females), 
and subjects who have been treated with urate-lowering 
drugs were excluded from this study. Characteristics of 
the participants, including age, gender, body mass index 
(BMI), fasting blood glucose (FBG), blood urea nitrogen 
(BUN), total biliverdin (TBIL) and serum urate (SU), were 
analyzed (Table 1). Subjects with high serum urate (> 417 
µmol/L) were considered hyperuricemia patients [47]. 
This study was approved by the Ethical Committees of the 
School of Life Sciences of Fudan University and informed 
consent was obtained from each participant.

Table 6: The TLS regression analysis of SU against TBIL using a single genetic variant as the in-
strument

Gene (SNP) Subjects F-statistic R2 beta SE p DH p
ABCG2
(rs1481012)

All 107.50 0.028 –0.019 0.008 0.024 0.006
Males 78.33 0.028 –0.026 0.011 0.019 0.017

Females 46.67 0.043 0.003 0.009 0.779 0.990
SLC2A9
(rs16890979)

All 10.13 0.003 –0.133 0.058 0.023 < 0.001
Males 5.72 0.002 –0.186 0.112 0.097 < 0.001

Females 9.05 0.009 –0.046 0.029 0.109 0.036
ABCG2
(rs2231137)

All 35.51 0.009 –0.010 0.017 0.429 0.300
Males 34.91 0.013 –0.006 0.015 0.695 0.740

Females 5.75 0.006 –0.028 0.033 0.388 0.300
SLC17A1
(rs3799352)

All 7.99 0.002 –0.004 0.031 0.900 0.980
Males 7.48 0.003 0.018 0.035 0.609 0.580

Females 1.24 0.001 –0.056 0.101 0.576 0.440

Adjusted for age, gender (in All), BMI, BUN and FBG; DHp: Durbin-Hausman p value; TLS: two-stage least square.
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Instrumental variables

For the uric acid transporter genetic risk score, SU-
increasing alleles were selected based on our previous 
report [46]. In that study, in order to find the serum urate 
associated genes, 31 loci were tested in all individuals in 
Chinese. Then 11 loci in eight genes were shown to be 
associated with SU after multiple corrections. In summary, 
four single nucleotide polymorphisms (SNPs), which were 
reported to be associated with SU in literature, were selected 
as instrumental variables in our study: rs1481012 in ABCG2 
(beta = 27.555, p = 3.50E-31, PFDR = 1.02E-29), rs2231137 
in ABCG2 (beta = -16.945, p = 2.33E-12, PFDR = 3.38E-11), 
rs16890979 in SLC2A9 (beta = -24.654, p = 0.014, PFDR 
= 0.042) and rs3799352 in SLC17A1 (beta = -7.456, p = 
5.35E-3, PFDR = 0.017). We selected those four loci based 
on the following consideration: 1) The loci explain 4.2% of 
the variance of SU concentration, while approximately 7% 
for all known loci. 2) The loci have strong and unequivocal 
contributions to the concentration of SU based on our 
lab’s previous study [46] and the reported genome-wide 
association studies [48–50]. However, regarding other loci, 
they show weak and ambiguous effects on SU and may cause 
controversial results. 3) Ethnicity have been proved to be a 
heterogeneous source for the association between genetic 
loci and SU. Some loci identified in EU and US populations 
did not affect serum urate levels in Chinese populations 
[51]. In our previous study, we had systematically studied 
the genetic basis of SU with all potential urate-related 
SNPs and found those four loci significantly influenced the 
concentrations of serum urate in this population [46]. 4) The 
loci corresponding genes encode urate transporters, which 
directly modify the SU concentrations. In order to get a 
more precise and powerful genetic risk score to explain the 
variance of SU, a weighted genetic risk score was calculated. 
An allele-counting genetic risk score was calculated. Based 
on the number of minor alleles that were associated with 
increased SU levels, each SNP was coded 0–2, and that 
number was multiplied by the corresponding beta value, 
and then the total genetic risk score was determined as the 
sum the four values. Most importantly, the instrumental 
variables selected must fulfill three assumptions [12, 26, 27]: 
the instrumental variables should be (1) robustly associated 
with the modifiable exposure of interest; (2) independent 
from confounding factors; (3) related to the outcome only 
via their association with the modifiable exposure.

Statistical analysis

First, the traditional observed relationship between 
SU and TBIL levels was analyzed using the ordinary 
least squares (OLS) regression. Second, the MRS was 
determined by conducting a two-stage least square (TLS) 
regression as previously described [52]. As shown above, 
the total genetic risk score calculated by four SNPs was 
selected as the instrumental variable in the TLS regression 

to assess the relationship between SU and TBIL levels. In 
the MRS, the F-statistic was examined from the first-stage 
regression and represents the strength between instrumental 
variables and exposures [53]; R2 represents the variance 
in SU as explained by the instrumental variables. Both 
the F-statistic and determination coefficient (R2) were 
measured. According to the assumption of the Mendelian 
randomization approach, the F-statistic should be greater 
than ten [28], which would suggest that genetic instrumental 
variables were powerful enough to represent the level of SU. 
The relationship between the total genetic risk score and 
potential confounders was also assessed by linear regression. 
For the last step, the difference between the OLS regression 
and the TLS regression was measured by the Durbin-
Hausman test [54]. If the p value is significant, it suggests 
that the OLS regression cannot evaluate the relationship 
between exposure and outcome, and then the TLS regression 
is used for further analysis; while when the p value is not 
significant, both the OLS and TLS regression can be used.

All analyses were carried by R (Version 3.2.2: 
www.r-project.org/). P value less than 0.05 was 
determined statistical significance.
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